COMPLEXITY OF DIAGRAMS OF COUNTABLE STRUCTURES

Valentina S. Harizanov
The George Washington University, Washington, DC
harizanv@gwu.edu

Julia F. Knight
University of Notre Dame, Notre Dame, IN
knight.1@nd.edu

Andrei S. Morozov
Sobolev Institute of Mathematics, Novosibirsk, Russia
morozov@math.nsc.ru
Fragments of Diagrams

Consider a *countable* structure \mathcal{A} for a *computable* language L.

- **Open diagram of** \mathcal{A}, $D(\mathcal{A}) = D_0(\mathcal{A})$, is the set of all quantifier-free sentences of $L_\mathcal{A}$ true in $\mathcal{A}_\mathcal{A}$.

- **n-diagram of** \mathcal{A}, $D_n(\mathcal{A})$, is the set of all Σ_n sentences of $L_\mathcal{A}$ that are true in $\mathcal{A}_\mathcal{A}$.

- **Complete (elementary) diagram of** \mathcal{A}, $D^c(\mathcal{A})$, is the set of all sentences of $L_\mathcal{A}$ that are true in $\mathcal{A}_\mathcal{A}$.

- **Turing degree** of \mathcal{A} is the Turing degree of $D(\mathcal{A})$.

- \mathcal{A} is *computable* if its Turing degree is 0.

- \mathcal{A} is *n-decidable* if its n-diagram is computable.

- \mathcal{A} is *decidable* if its complete diagram is computable.

- B_n sentences are Boolean combinations of Σ_n (and Π_n) sentences.

- $D_n(\mathcal{A}) = D^c(\mathcal{A}) \cap \Sigma_n \equiv_T D^c(\mathcal{A}) \cap B_n$

- $D_{n+1}(\mathcal{A})$ is c.e. in and above $D_n(\mathcal{A})$, uniformly in n.
Examples

• A effectively eliminates quantifiers

 $(\forall B \cong A)[D^c(B) \equiv_T D_0(B)]$

 (Intrinsic collapse of diagrams)

• (Moses)

 There is a linear order that is n-decidable, but has no
 $(n + 1)$-decidable copy.

• (Chisholm and Moses)

 There is a linear order that is n-decidable for every n, but has no decidable copy.

• $\mathcal{N} = (\omega, +, \cdot, S, 0)$

 $D_n(\mathcal{N}) \equiv_T \emptyset^{(n)}$, uniformly in n

• (Knight)

 \mathcal{A} a nonstandard model of Peano Arithmetic (PA)

 $(\exists B \cong \mathcal{A})[D_0(B) <_T D_1(B) <_T D_2(B) <_T \ldots]$

• (Knight)

 \mathcal{A} any model of PA

 $(\exists B \cong \mathcal{A})[D^c(B) \equiv_T D_0(B)]$
• (Knight)
A structure \mathcal{A} is trivial if there is sequence $\overrightarrow{c} \in A^{<\omega}$ such that every permutation of \mathcal{A} that fixes \overrightarrow{c} pointwise is an automorphism of \mathcal{A}.

(i) If \mathcal{A} is trivial, then

$$(\forall \mathcal{B} \simeq \mathcal{A})[D_0(\mathcal{B}) \equiv_T D_0(\mathcal{A})]$$

(ii) If \mathcal{A} is non-trivial, then

the set of Turing degrees of isomorphic copies of \mathcal{A} is closed upwards.

• (Harizanov, Knight, Morozov)

For any structure \mathcal{A}, there exists $\mathcal{B} \simeq \mathcal{A}$ such that

$D^c(\mathcal{B}) \equiv_T D_0(\mathcal{B})$

(i) \mathcal{A} is trivial, via \overrightarrow{c}.

For every formula $\psi(\overrightarrow{c}, \overrightarrow{x})$, effectively find a quantifier-free formula $\psi^*(\overrightarrow{c}, \overrightarrow{x})$, in the language with equality,

$\mathcal{A}_A \models [\psi(\overrightarrow{c}, \overrightarrow{x}) \iff \psi^*(\overrightarrow{c}, \overrightarrow{x})]$

(ii) \mathcal{A} is non-trivial.

Let X be such that $D^c(\mathcal{A}) \leq_T X$.

There are structure \mathcal{B}, isomorphism $f : \mathcal{A} \rightarrow \mathcal{B}$ with

$f \leq_T X \leq_T D_0(\mathcal{B})$

Thus,

$X \leq_T D_0(\mathcal{B}) \leq_T D^c(\mathcal{B}) \leq_T f \oplus D^c(\mathcal{A}) \leq_T X$
Intrinsic Collapse of Fragments of Diagrams

Questions

• (A) For fixed n, find syntactic conditions on A such that $(\forall B \equiv A)[D^c(B) \equiv_T D_n(B)]$

• (B) For fixed n, find syntactic conditions on A such that $(\forall B \equiv A)[D_{n+1}(B) \equiv_T D_n(B)]$.

(Harizanov, Knight, Morozov)

• (A) The following are equivalent:

 (i) For every structure $B \equiv A$ we have $D^c(B) \leq_T D_n(B)$

 (ii) There is $\overrightarrow{c} \in A^{<\omega}$ and a computable function d assigning to every finitary formula $\gamma(\overrightarrow{x})$ a computable infinitary formula

 $d_\gamma(\overrightarrow{c}, \overrightarrow{x}) = \bigvee_{i \in W} \beta_i(\overrightarrow{c}, \overrightarrow{x})$,

 where W is c.e. and every β_i is a finitary Σ_{n+1} formula, such that

 $A_A \models (\forall \overrightarrow{x})[\gamma(\overrightarrow{x}) \iff d_\gamma(\overrightarrow{c}, \overrightarrow{x})]$

• (B) Similar characterization holds for $D_{n+1}(B) \leq_T D_n(B)$

In (ii), instead of an arbitrary finitary formula, $\gamma(\overrightarrow{x})$ is an arbitrary finitary Π_{n+1} formula.
Proofs based of the following relativized Ash-Nerode theorem, similar to the one by Chisholm; Ash, Knight, Manasse and Slaman.

- (Harizanov, Knight, Morozov)
 For a sequence \((R_k)_{k \in \omega}\) of relations on a structure \(A\), the following are equivalent:

 \((i)\) For every isomorphism \(f\) from \(A\) to some structure \(B\), \(f(R_k)\) is c.e. relative to \(D_n(B)\), uniformly in \(k\).

 \((ii)\) For some \(\vec{c} \in A^{<\omega}\), for each \(k\), we can effectively find an index for a c.e. set of finitary \(\Sigma_{n+1}\) formulas with parameters \(\vec{c}\), whose disjunction defines \(R_k\).

- Examples
 \((i)\) For \(N \geq 1\), if \(B\) is a linear order of type \(\omega^N\), then
 \[D^c(B) \equiv_T D_{2N-1}(B)\]

 \((ii)\) If \(B\) is a linear order of type \(\omega^N \cdot \eta\), where \(\eta\) is the order type of rationals, then
 \[D^c(B) \equiv_T D_{2N}(B)\]
Turing Degrees of 1-Diagrams

• (Harizanov)
 Let \(Y \subseteq \omega \) be c.e. There is a computable linear order \(B \) of order type \(\omega \) whose successor relation \(S \) is Turing equivalent to \(Y \). Hence
 \[
 D_1(B) \equiv_T Y,
 \]
since Moses showed that \(D_1(B) \leq_T D_0(B) \oplus S \).

• (Harizanov, Knight, Morozov)
 Let \(Y \subseteq \omega \) be c.e. Let \(A \) be 1-decidable. Assume that for every \(\overrightarrow{c} \in A^{<\omega} \), we can effectively find a finitary \(\Pi_1 \) formula \(\theta(\overrightarrow{c}, \overrightarrow{u}) \) and \(\overrightarrow{a} \) such that
 \[
 \mathcal{A}_A \models \theta(\overrightarrow{c}, \overrightarrow{a}),
 \]
 and for every finitary \(\Sigma_1 \) formula \(\sigma(\overrightarrow{c}, \overrightarrow{u}) \),
 \[
 [\mathcal{A}_A \models \sigma(\overrightarrow{c}, \overrightarrow{a})] \Rightarrow (\exists a') [\mathcal{A}_A \models (\sigma(\overrightarrow{c}, a') \land \neg \theta(\overrightarrow{c}, \overrightarrow{a}'))].
 \]
 Then there is a computable structure \(B \simeq A \) such that
 \[
 D_1(B) \equiv_T Y.
 \]
Turing Degrees of the First Two Diagrams

- (Harizanov, Knight, Morozov)
 Let $X, Y \subseteq \omega$ be such that Y is c.e. in and above X and $D_0(A) \leq_T X$.

 Assume that A satisfies the following conditions.

 (0) For every $\vec{c} \in A^{<\omega}$, we can effectively find a finitary Δ_1 formula (given by a pair of finitary Σ_1, Π_1 formulas) $\chi(\vec{c}, \vec{x})$ such that

 \[
 A_A \models (\exists \vec{x})[\text{ran}(\vec{c}) \cap \text{ran}(\vec{x}) = \emptyset \land \chi(\vec{c}, \vec{x})]
 \]

 \[
 A_A \models (\exists \vec{x})[\text{ran}(\vec{c}) \cap \text{ran}(\vec{x}) = \emptyset \land \neg \chi(\vec{c}, \vec{x})].
 \]

 (1) For every $\vec{c} \in A^{<\omega}$, we can effectively find a finitary Π_1 formula $\theta(\vec{c}, \vec{x})$ and $\vec{a} \in A^{<\omega}$ such that

 \[
 A_A \models \theta(\vec{c}, \vec{a}),
 \]

 and for every finitary Σ_1 formula $\sigma(\vec{c}, \vec{x})$,

 \[
 [A_A \models \sigma(\vec{c}, \vec{a})] \Rightarrow (\exists \vec{a}')[A_A \models (\sigma(\vec{c}, \vec{a}')) \land \neg \theta(\vec{c}, \vec{a}'))]
 \]

 Then there is $B \simeq A$ such that

 \[
 D_0(B) \equiv_T X \land D_1(B) \equiv_T Y
 \]

- Example: $A = (\omega, <)$
 For a given $\vec{c} = (c_0, \ldots, c_{m-1})$, a corresponding Π_1 formula $\theta(\vec{c}, x, y)$ is

 \[
 [S(y, x) \land x > c_0 \land \ldots \land x > c_{m-1}],
 \]

 and a corresponding Δ_1 formula $\chi(\vec{c}, x, y)$ is

 \[
 [(x < y) \land x > c_0 \land \ldots \land x > c_{m-1}].
 \]
Examples of \mathcal{A} such that there exists $\mathcal{B} \cong \mathcal{A}$ with $D_0(\mathcal{B}) \equiv_T X$ and $D_1(\mathcal{B}) \equiv_T Y$, where Y is c.e. in and above X

- Let \mathcal{A} be the Boolean algebra $I(\omega)$
 A corresponding Π_1 formula uses a unary atom relation, and
 a corresponding Δ_1 formula uses the binary relation of being disjoint.

- Let \mathcal{A} be the Abelian group $\mathbb{Z}_p^\omega \oplus \mathbb{Z}_p^\omega$.
 A corresponding Π_1 formula uses the unary relation of not being divisible by p, and
 a corresponding Δ_1 formula uses the binary relation of one element being a multiple by p of the other element.
Turing Degrees of Sequences of n-Diagrams

• An $(N+1)$-$table$ is a sequence of sets $(C_n)_{n \leq N}$ such that C_{n+1} is c.e. in and above C_n for $n < N$.

• An ω-$table$ is a sequence of sets $(C_n)_{n \in \omega}$, where C_{n+1} is c.e. in and above C_n, uniformly in n.

• We say these tables are over C_0.

• For any structure \mathcal{A}, $(D_n(\mathcal{A}))_{n \in \omega}$ is an ω-table.

• (Knight)

 For a sequence of Turing degrees $(d_n)_{n \in \omega}$, the following are equivalent:

 (i) There exists a nonstandard model \mathcal{A} of PA such that for all n,
 \[\text{deg}(D_n(\mathcal{A})) = d_n. \]

 (ii) There exists an ω-table $(C_n)_{n \in \omega}$, over a completion of PA, such that for all n,
 \[\text{deg}(C_n) = d_n. \]
Questions

• For fixed $N \in \omega$, find conditions on \mathcal{A} guaranteeing that for every $(N+1)$-table $(C_n)_{n \leq N}$ there exists $\mathcal{B} \cong \mathcal{A}$ such that

 \[(\forall n \leq N)[D_n(\mathcal{B}) \equiv_T C_n]\]

• Find conditions on \mathcal{A} guaranteeing that for every ω-table $(C_n)_{n \in \omega}$ there exists $\mathcal{B} \cong \mathcal{A}$ such that

 \[(\forall n \in \omega)[D_n(\mathcal{B}) \equiv_T C_n]\]
Back and Forth Relations

For simplicity, assume A is a structure for a finite relational language.

Convention: If $\overrightarrow{a} \in A^{<\omega}$, assume the elements in \overrightarrow{a} distinct. Assume concatenation $\overrightarrow{a} \overrightarrow{c}$ defined only if the elements in \overrightarrow{a} distinct from the elements in \overrightarrow{c}.

(Barwise; Ash and Knight)

- Let $\overrightarrow{a}, \overrightarrow{b} \in A^{<\omega}$ be such that $lh(\overrightarrow{a}) \leq lh(\overrightarrow{b})$.

 (i) $\overrightarrow{a} \leq_0 \overrightarrow{b}$ iff the open formulas true of \overrightarrow{a} are all true of \overrightarrow{b}.

 (ii) $\overrightarrow{a} \leq_{n+1} \overrightarrow{b}$ iff

 $$(\forall \overrightarrow{d})(\exists \overrightarrow{c})[\overrightarrow{b} \overrightarrow{d} \leq_n \overrightarrow{a} \overrightarrow{c}]$$

- $\overrightarrow{a} \leq_n \overrightarrow{b}$ iff the infinitary Π_n formulas true of \overrightarrow{a} are also true of \overrightarrow{b}.
Independence of Formulas

(Harizanov, Knight, Morozov)

• Formula $\theta(\overrightarrow{u}, \overrightarrow{x})$ is 0-independent over \overrightarrow{u} if it is open, and for every $\overrightarrow{c} \in A^{lh}(\overrightarrow{u})$, there exist \overrightarrow{a} and \overrightarrow{a}':

$$A_A \models \theta(\overrightarrow{c}, \overrightarrow{a}) \land \neg \theta(\overrightarrow{c}, \overrightarrow{a}')$$

• For $n > 0$, $\theta(\overrightarrow{u}, \overrightarrow{x})$ is n-independent over \overrightarrow{u} if it is Π_n and for every \overrightarrow{c}:

 (i) There exists \overrightarrow{a} such that $A_A \models \theta(\overrightarrow{c}, \overrightarrow{a})$,

 (ii) For every \overrightarrow{a} with $A_A \models \theta(\overrightarrow{c}, \overrightarrow{a'})$, and every $\overrightarrow{a_1}$, there exist $\overrightarrow{a'}$ and $\overrightarrow{a'_1}$ such that $A_A \models \neg \theta(\overrightarrow{c}, \overrightarrow{a'})$ and

$$\overrightarrow{c} \land \overrightarrow{a} \land \overrightarrow{a_1} \leq_{n-1} \overrightarrow{c} \land \overrightarrow{a'} \land \overrightarrow{a'_1}$$

• Examples: ω^ω, $\omega^\omega \cdot \eta$

 0-independent: x is greater than elements in \overrightarrow{u}, and $x_0 < x_1$;

 1-independent: \ldots and $S(x_1, x_0)$;

 2-independent: \ldots and x is a 1-limit (first in its copy of ω);

 3-independent: \ldots and x_0 and x_1 are 1-limits, where x_1 is the next one after x_0;

 4-independent: \ldots and x is a 2-limit (first in its copy of ω^2), etc.

These successor relations and initial element relations were used by Moses.
Turing Degrees of Arbitrary Sequences of Diagrams

- (Harizanov, Knight, Morozov)
 Suppose $D_N(\mathcal{A})$ is computable, and the relations \leq_n are c.e., for $n < N$. Suppose also that for each tuple \vec{u} of distinct variables, and each $n \leq N$, we can find a formula that is n-independent over \vec{u}. Then for any $(N+1)$-table $(C_n)_{n \leq N}$, there exists $\mathcal{B} \cong \mathcal{A}$ such that
 \[(\forall n \leq N)[D_n(\mathcal{B}) \equiv_T C_n]\]

- (Harizanov, Knight, Morozov)
 Suppose $D^c(\mathcal{A})$ is computable, and the relations \leq_n are c.e., uniformly in n, for $n \in \omega$. Suppose also that for each tuple \vec{u} of distinct variables, and each n, we can find a Π_n formula that is n-independent over \vec{u}. Then for any ω-table $(C'_n)_{n < \omega}$, there exists $\mathcal{B} \cong \mathcal{A}$ such that
 \[D_n(\mathcal{B}) \equiv_T C_n, \text{ uniformly in } n.\]
 The uniformity implies that
 \[D^c(\mathcal{B}) \equiv_T \bigoplus_n C_n\]
Examples

• For any $2N$-table $(C_n)_{n \leq 2N - 1}$, there is a linear order \mathcal{B} of type ω^N such that for all $n \leq 2N - 1$, $D_n(\mathcal{B}) \equiv_T C_n$.

• For any $(2N + 1)$-table $(C_n)_{n \leq 2N}$, there is a linear order \mathcal{B} of type $\omega^N \cdot \eta$ such that for all $n \leq 2N$, $D_n(\mathcal{B}) \equiv_T C_n$.

• For any ω-table $(C_n)_{n \in \omega}$, there is a linear order \mathcal{B} of type ω^ω or of type $\omega^\omega \cdot \eta$ such that for all n, $D_n(\mathcal{B}) \equiv_T C_n$, uniformly in n.

Open Problems

• Weaken the definition of n-independent formulas so that the general results still hold, but can be applied to Boolean algebras and other structures.

• What are the possible sequences $(\deg(D_n(\mathcal{B})))_{n \in \omega}$, for $\mathcal{B} \cong \mathcal{N}$?

• Characterize the sequences of Turing degrees of n-diagrams for models of a given completion of PA.
Knight’s Conjecture

Let S be a completion of PA and let $(C_n)_{n \in \omega}$ be an ω-table. Suppose that there exist an enumeration R of a Scott set and a family of functions $(t_n)_{n \geq 1}$ such that:

- $R \leq_T C_0$,
- $t_n \leq_T C_{n-1}$ uniformly in n,
- $\lim_s t_n(s)$ is an R-index for $S \cap \Sigma_n$,
- for all s, $t_n(s)$ is an R-index for a subset of $S \cap \Sigma_n$.

Then there is a (nonstandard) model A of S such that

$$D_n(A) \equiv_T C_n,$$

uniformly in n.

Open Problem

- If A is a non-standard model of PA, must there be $B \cong A$ such that $D_1(A) \leq_T D_1(B)$ and $D_0(B) <_T D_0(A)$?

Knight showed that for any nonstandard model of PA, there is an isomorphic copy whose atomic diagram has strictly lower Turing degree. The problem is to produce such a copy without lowering the degree of the 1-diagram.