Degrees of Structures

Valentina S. Harizanov
George Washington University
Washington, DC
harizanv@gwu.edu
http://home.gwu.edu/~harizanv/
• Consider countable structures A for computable languages.

 Turing degree of A is the Turing degree of the *atomic diagram of* A, $D(A)$. A is *computable (recursive)* if its Turing degree is 0. $D(A)$ may be of much lower Turing degree than $Th(A)$.

• (Tennenbaum) If A is a nonstandard model of PA, then A is not computable.

• (Harrington, Knight) There is a nonstandard model A of PA such that A is low and $Th(A) \equiv_T \emptyset(\omega)$.

• (Downey and Jockusch) Every Boolean algebra of low Turing degree has a computable copy.
• The *Turing degree spectrum* of A is

$$DgSp(A) = \{\deg(B) : B \cong A\}.$$

• (Knight) A structure A is *automorphically trivial* if there is a sequence $\vec{c} \in A^{<\omega}$ such that every permutation of A that fixes \vec{c} pointwise is an automorphism of A.

(i) If A is automorphically trivial, then

$$|DgSp(A)| = 1.$$

(ii) If A is automorphically nontrivial, then $DgSp(A)$ is closed upwards.
(Harizanov, Knight and Morozov)

(i) If A is automorphically trivial, then

$$(\forall B \simeq A)[D^e(B) \equiv_T D(B)].$$

(ii) If A is automorphically nontrivial, and $X \geq_T D^e(A)$, there exists $B \cong A$ such that

$$D^e(B) \equiv_T D(B) \equiv_T X.$$

(Harizanov and R. Miller) If the language of A is finite, then A is trivial iff and $DgSp(A) = \{0\}$.

• (Hirschfeldt, Khoussainov, Shore and Slinko) For every automorphically nontrivial structure A, there is a structure B, which can be:

- a symmetric irreflexive graph,
- a partial order,
- a lattice,
- a ring,
- an integral domain of arbitrary characteristic,
- a commutative semigroup,
- a 2-step nilpotent group, such that

$$DgSp(A) = DgSp(B).$$
* \mathcal{D} = the set of all Turing degrees

* (Wehner; Slaman)
 There is a structure A such that
 \[
 DgSp(A) = \mathcal{D} - \{0\}.
 \]

* (Hirschfeldt)
 There is a complete decidable theory, with all types computable, whose prime model A has no computable copy, but has an X-decidable copy for every $X \geq_T \emptyset$.
• (Goncharov, Harizanov, Knight, McCoy, R. Miller, and Solomon)
 For each computable successor ordinal α, there is a structure A such that
 $DgSp(A)$ consists of the Turing degrees of sets X such that $\Delta^0_\alpha(X)$ is not Δ^0_α.

• In particular, for every $n \in \omega$, there is a structure A such that
 $$DgSp(A) = \{ c \in \mathcal{D} : c^{(n)} > 0^{(n)} \}.$$

A degree c is non-low_n if $c^{(n)} > 0^{(n)}$.
Enumerations

• An enumeration of $S \subseteq P(\omega)$ is a binary relation ν:

$$S = \{\nu(i) : i \in \omega\}, \text{ where } \nu(i) = \{x : (i, x) \in \nu\}.$$

ν is computable (c.e.) if it is computable (c.e.) as a binary relation.

• (Wehner)

There is a family S such that for every $X >_T \emptyset$, S has an enumeration computable in X, but S has no computable enumeration.

• There is a family S such that for every $X >_T \emptyset$, S has an enumeration c.e. relative to X, but S has no c.e. enumeration.
Transforming S into a graph

- Assign to $A \in S$, a *daisy graph* G_A consisting of one
 index point a at the center with $a \to a$, and for each $n \in A$
 a *petal* (disjoint from other petals)

 $$a \to a_0 \to \cdots \to a_n \to a$$

- $G(S)$ is the union of a disjoint family of G_A for each $A \in S$.
 $G(S)$ is a rigid graph.

- $G^\infty(S)$ consists of infinitely many copies of G_A for each $A \in S$.
 $G^\infty(S)$ is not rigid.
 Copies of $G^\infty(S)$ correspond to enumerations of S.
Let $S \subseteq P(\omega)$, $X \subseteq \omega$.

- There is an enumeration of S c.e. in X iff there is a copy of $G^\infty(S)$ computable in X.

- $S^+ =_{def} \{ A \oplus \overline{A} : A \in S \}$.

- There is an enumeration of S computable in X iff there is a copy of $G^\infty(S^+)$ computable in X.
• (Goncharov, Harizanov, Knight, McCoy, R. Miller, and Solomon)

Let $\alpha \geq 2$ be a computable successor ordinal.
There is a structure with copies in exactly the Turing degrees of sets X such that $\Delta^0_\alpha(X)$ is not Δ^0_α.

• Proof sketch. Relativize the proof for Δ^0_1 to Δ^0_α.

Get a graph G such that the degrees of copies of G are just the degrees of sets that are not Δ^0_α.

• Code a directed graph G in a structure G^* such that:

G has a Δ^0_α copy iff G^* has a computable copy.
More generally, for any $X \subseteq \omega$,
G has a $\Delta^0_\alpha(X)$ copy iff G^* has an X-computable copy.
Proof sketch. Code a directed graph G in a structure G^*, using a pair of structures B_0, B_1 such that

- B_0 codes $G \models a \rightarrow b$ and
- B_1 codes $G \models \neg (a \rightarrow b)$.

$G^* = (G \cup U, G, U, Q, \ldots)$, where

- G and U are disjoint,
- Q (a ternary relation) assigns to $a, b \in G$ an infinite set $U_{(a,b)}$:
 $(x \in U_{(a,b)} \iff Qabx)$,
- the sets $U_{(a,b)}$ form a partition of U,

$$(U_{(a,b)}, \ldots) \cong \begin{cases}
 B_0, & \text{if } G \models a \rightarrow b, \\
 B_1, & \text{if } G \models \neg (a \rightarrow b).
\end{cases}$$
Assume

- Pair \(\{B_0, B_1\} \) is \(\alpha \)-friendly.

- \(B_0 \) and \(B_1 \) satisfy the same infinitary \(\Pi_\beta \) sentences for \(\beta < \alpha \).

- \(B_0 \) satisfies some computable \(\Pi_\alpha \) sentence that is not true in \(B_1 \), and *vice versa*.

Then for any \(\Delta_\alpha^0 \) set \(S \), there is a uniformly computable sequence \((C_n)_{n \in \omega} \) such that

\[
C_n \simeq \begin{cases}
B_0, & \text{if } n \in S, \\
B_1, & \text{if } n \notin S.
\end{cases}
\]
• (R. Miller)
 There is a linear order A such that
 \[DgSp(A) \cap \Delta^0_2 = \Delta^0_2 - \{0\}. \]

• (Harizanov and R. Miller)
 There exists a structure A such that $DgSp(A)$ consists of the degrees that are high-or-above:
 \[DgSp(A) = \{c \in \mathcal{D}: c' \geq 0''\}. \]

• A degree c is high if $c' = 0''$.

• \((\omega, \prec)\) computable linear order
 Computable isomorphism \(f : L = (\omega, \prec) \rightarrow (\mathbb{Q}, \prec)\).

• (Harizanov and R. Miller)
 For any relation \(R\) on \(L\), there exists a structure \(A\) such that
 \[
 DgSp(A) = DgSp_L(R).
 \]

• Define a relation \(R\) on \(L\) by:
 \[
 f(R) = \left(-1, -\frac{1}{2} \right) \cup \left(\bigcup_{n \in \mathbb{N}} \left[n, n + \frac{1}{2} \right) \right) \cup \left(\bigcup_{n \notin \mathbb{N}} \left(n - \frac{1}{\pi}, n + \frac{1}{2} \right) \right)
 \]
• $DgSp_L(R) = \{ c \in D : c' \geq 0'' \}$.

• Proof sketch. Show

 $c \in DgSp_L(R)$ iff $\emptyset''' \leq_1 Fin^C$

 for some set C with $deg(C) = c$

• $Fin^C = \{ e : W^C_e \text{ is finite} \}$

• $\emptyset''' \leq_1 Fin^C \iff \emptyset'' \leq_T C'$
• (Jockusch) The (Turing) degree of the isomorphism type of A, if it exists, is the least Turing degree in $DgSp(A)$.

• (Richter) Assume that a structure A satisfies the effective extendability condition. If the degree of the isomorphism type of A exists, then it must be 0. ($DgSp(A)$ will contain a minimal pair of degrees.)

• **Effective Extendability Condition for A**

 For every finite structure C isomorphic to a substructure of A, and every embedding f of C into A, there is an algorithm that determines whether a given finite structure D extending C can be embedded into A by an embedding extending f.
• (Richter)
 (i) A linear order without a computable copy does not have the isomorphism type degree.

 (ii) A tree without a computable copy does not have the isomorphism type degree.

• Abelian p-group G

 $$x \in (G - \{0\}) \Rightarrow (\exists n)[\text{order}(x) = p^n]$$

• (A. Khisamiev)

 An abelian p-group without a computable copy does not have the isomorphism type degree.
Richter’s Combination Method

Let T be a theory in a finite language L such that there is a computable sequence A_0, A_1, A_2, \ldots of finite structures for L, which are pairwise nonembeddable. Assume that for every $X \subseteq \omega$, there is a model A_X of T such that

$$A_X \preceq_T X,$$

and for every $i \in \omega$,

$$A_i \text{ is embeddable in } A_X \iff i \in X.$$

Then for every Turing degree d, there is a model of T whose isomorphism type has degree d.

For every Turing degree d, there is an *abelian group* whose isomorphism type has degree d.
• (Calvert, Harizanov, Shlapentokh)
 For every Turing degree d, there are various fields whose isomorphism types have degree d.

• *Proof sketch.* Let $M_0 = F$ be any computable finitely generated field.
 \tilde{F} the algebraic closure of F.
 $\{f_i(t) \in F(t)\}_{i \geq 1}$ computable sequence of monic irreducible polynomials (over F).
 α_i a root of f_i, and $M_i = F(\alpha_i)$.
 Assume further that the sequence $\{M_i\}_i$ is *totally linearly disjoint* over F,
 and is *stable* with respect to F.

• Let $A_X = \prod_{i \in X} M_i$, where $X = D \oplus \overline{D}$.
 $DgSp(A_X) = \{c \in D : c \geq \text{deg}(D)\}$.
• Let F be a field, $\{L_i\}_{i \in \omega}$ a sequence of extensions of F. Let $L = \prod_{i \in \omega} L_i$.

• $\{L_i\}_{i \in \omega}$ is totally linearly disjoint over F if the extensions are finite, and for all i, L_i and $\prod_{j \in \omega \setminus \{i\}} L_j$ are linearly disjoint over F:

$$[L_i : F] = [L : \prod_{j \in \omega \setminus \{i\}} L_j] > 1.$$

• $\{L_i\}_{i \in \omega}$ is stable with respect to F if for any embedding $\sigma : L \rightarrow \tilde{F}$ (\tilde{F} is the algebraic closure of F), such that $\sigma|_F = id$, then for all i,

either $\sigma(L_i) = L_i$ or $\sigma(L_i) \not\subset L$.

$\{L_i\}_{i \in \omega}$ is stable if $F = \mathbb{Q}$, or F is a finite field.
• Let $F = \mathbb{Q}$.

 $\{p_i\}_i$ listing of rational primes.

 $f_i(t) = t^2 - p_i$

 $M_i = \mathbb{Q}(\sqrt{p_i})$

 (Sequence $\{M_i\}_i$ is stable, and totally linearly disjoint over \mathbb{Q}.)

• Let $F = \mathbb{Q}(x)$, where x is not algebraic over \mathbb{Q}.

 $M_i = \mathbb{Q}(x, \sqrt{p_i}, \sqrt[3]{x^2 + 1})$

 (Sequence $\{M_i\}_i$ is stable with respect to $\mathbb{Q}(x)$, and totally linearly disjoint over $\mathbb{Q}(x)$.)
• Let $F = \mathbb{F}_p$ be a field of p elements for some rational prime p.
 Let α_i be of degree p_i over \mathbb{F}_p.
 $M_i = \mathbb{F}_p(\alpha_i)$.
 (Sequence $\{M_i\}_i$ is stable, and totally linearly disjoint over \mathbb{F}_p.)

• Let $F = \mathbb{F}_p(x)$, where x is not algebraic over \mathbb{F}_p.
 Let $M_i = \mathbb{F}_p(\sqrt{x^2 + i})$.
 (Sequence $\{M_i\}_i$ is stable with respect to $\mathbb{F}_p(x)$,
 and totally linearly disjoint over $\mathbb{F}_p(x)$.)