
NOTES ON MODULES AND ALGEBRAS

WILLIAM SCHMITT

1. Some Remarks about Categories

Throughout these notes, we will be using some of the basic terminol-
ogy and notation from category theory. Roughly speaking, a category C
consists of some class of mathematical structures, called the objects of C,
together with the appropriate type of mappings between objects, called the
morphisms, or arrows, of C. Here are a few examples:

Category Objects Morphisms

Set sets functions
Grp groups group homomorphisms
Ab abelian groups group homomorphisms
ModR left R-modules (where R-linear maps

R is some fixed ring)

For objects A and B belonging to a category C we denote by C(A,B)
the set of all morphisms from A to B in C and, for any f ∈ C(A,B), the
objects A and B are called, respectively, the domain and codomain of f .
For example, if A and B are abelian groups, and we denote by U(A) and
U(B) the underlying sets of A and B, then Ab(A,B) is the set of all group
homomorphisms having domain A and codomain B, while Set(U(A), U(B))
is the set of all functions from A to B, where the group structure is ignored.

Whenever it is understood that A and B are objects in some category C
then by a morphism from A to B we shall always mean a morphism from
A to B in the category C. For example if A and B are rings, a morphism
f : A → B is a ring homomorphism, not just a homomorphism of underlying
additive abelian groups or multiplicative monoids, or a function between
underlying sets.

2. Modules

2.1. Idea and basic definitions. Throughout these notes, we shall assume
that all rings have unit elements, and that homomorphisms between rings
preserve units. Unless explicited indicated otherwise, all modules considered
are over commutative rings.

Date: September 9, 2006.

1



2 WILLIAM SCHMITT

The archetypal example of a group is the collection Perm(S) of all permu-
tations of a set S, with functional composition as binary operation. Indeed,
the beautiful, but almost completely useless, Cayley’s theorem states that
any group G is isomorphic to a subgroup of Perm(S) for some set S and, in
particular, taking S to be the underlying set U(G) of G always works. (The
reason this result is not so useful is that the imbedding of G in Perm(U(G))
given by the theorem is typically so sparse that it yields virtually no infor-
mation about G.)

There is an analogous result for rings which, for some reason, most algebra
textbooks fail to mention. For any abelian group M , the set End(M) of all
endomorphisms of M (i.e., homomorphisms from M into itself) is a ring,
with functional composition as multiplication, and pointwise addition, that
is, for all α, β ∈ End(M), the endomorphisms αβ and α+β are respectively
determined by (αβ)(x) = α(β(x)) and (α + b)(x) = α(x) + β(x), for all
x ∈ M .

We now show that any ring R is isomorphic to a subring of End(UAb(R)),
where UAb(R) is the underlying additive abelian group of R. Given an
element r ∈ R, let µr : R → R be the function determined by µr(x) = rx,
for all x ∈ R. The left distributive law implies that µr in fact belongs to
End(UAb(R)). Associativity of multiplication is equivalent to the statement
that that µrs = µrµs, while the right distributive law means that µr+s =
µr + µs, for all r, s ∈ R ; therefore the mapping R → End(UAb(R)) given
by r 7→ µr is a ring homomorphism. The fact that R has a unit element
ensures that this homomorphism is injective, and hence R is isomorphic to
a subring of End(UAb(R)).

While the interpretation of a group G as a subgroup of Perm(U(G)) is not
usually of much interest, the idea of a representation of G by permutations,
that is, a homomorphism of the form G → Perm(S) for some set S (also
known as an action of G on S) is of fundamental importance; in particular,
group actions are among the basic tools in the structure theory of groups,
as well as in the theory of enumeration.

The version of Cayley’s theorem for rings suggests that, just as groups
naturally act on sets, rings act on abelian groups. Indeed, the appropriate
notion of representation for a ring R is given by a ring homomorphism
α : R → End(M), for some abelian group M . Such a representation is known
as an R-module. Writing rx instead of α(r)(x), for r ∈ R and x ∈ M , allows
us to give the following more traditional, equivalent definition.

Definition 2.1. Let R be a ring with unit element 1. An R-module consists
of an abelian group M together with a map R × M → M , denoted by
(r, x) 7→ rx, such that

(1) r(x + y) = rx + ry
(2) (r + s)x = rx + sx
(3) (rs)x = r(sx)
(4) 1x = x,
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for all r, s ∈ R and x, y ∈ M .

We remark that the definition we have given here is that of left R-module;
this is because we have adopted the convention that composition of functions
is read from right to left, that is, αβ means first do β, then do α. Let us
write End(M)op for the ring of endomorphisms of M with the opposite
notational convention for functional composition: αβ means first do α, then
do β. A homomorphism of rings α : R → End(M)op is called right R-module.
Equivalently, we have the following definition.

Definition 2.2. Let R be a ring with unit element 1. An right R-module

consists of an abelian group M together with a map R × M → M , denoted
by (r, x) 7→ xr, such that

(1) (x + y)r = xr + yr
(2) x(r + s) = xr + xs
(3) x(rs) = (xr)s
(4) x1 = x,

for all r, s ∈ R and x, y ∈ M .

When the ring R is commutative, as it shall be throughout these notes,
there is no essential difference between left and right modules.

A homomorphism of R-modules, also called an R-linear map, is a function
f : M → N that is a morphism of underlying abelian groups and commutes
with the action of the ring R, that is,

f(x + y) = f(x) + f(y) and f(rx) = rf(x),

for all x, y ∈ M and r ∈ R. We denote by ModR the category of all
R-modules, with R-linear maps as morphisms. Hence, if M and N are R-
modules, the set of all R-linear maps from M to N is denoted by ModR(M,N).

A subset N of an R-module M is a submodule of M if its underlying
abelian group is a subgroup of that of M and it is closed under the action of
the ring. If N ⊆ M is a submodule, then the quotient abelian group M/N
is an R-module, with action defined by r(x+N) = rx+N , for all r ∈ R and
x ∈ M . The familiar isomorphism and correspondence theorems for abelian
groups hold for modules as well, with essentially no modifications necessary.
Some of the more familiar examples of modules are mentioned in the follow-
ing examples.

Example 2.3. If K is a field, then a K-module is simply a vector space
over K and submodules are subspaces.

Example 2.4. Every abelian group is a Z-module and conversely. The
action is given by letting nx be the n-fold sum x+ · · ·+x, for n ≥ 0 and the
|n|-fold sum (−x) + · · · + (−x), for n negative. A submodule of an abelian
group, considered as a Z-module, is the same thing as a subgroup.

Example 2.5. Every ring R is a module over itself, with action given by
multiplication in R. The R-submodules of R are its ideals. (For noncom-
mutative R, there is both a left and right action of R on itself, given by
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multiplication on the left and on the right. The submodules for the left
action are the left ideals of R, and the submodules for the right action are
the right ideals.)

2.2. Free modules. For any subset S of an R-module M , the submodule
generated by S, denoted by RS, is the smallest submodule of M containing
S; it may be described either as the intersection of all submodules of M
that contain S, or as the set of all finite sums of the form

∑

i rixi, with
ri ∈ R and xi ∈ S. A subset S ⊆ M is linearly independent if, whenever
x1, . . . , xn belong to S and r1x1 + · · · + rnxn = 0 for some r1, . . . , rn ∈ R,
then r1 = · · · = rn = 0. An R-module M is free if it is contains a basis, that
is, a linearly independent subset B such that RB = M .

Example 2.6. Every ring R, considered as a module over itself, is free with
basis {1R}.

Example 2.7. If K is a field, then every K-vector space is a free K-module.

The fact that vector spaces always have bases, and are thus free modules,
follows immediately from the following proposition:

Proposition 2.8. Suppose that V is a K-vector space, S is an independent

subset of V , and x ∈ V is such that S∪{x} is dependent. Then x is contained

in the subspace KS generated by S.

Proof. Since S ∪ {x} is dependent there exist elements s1, . . . , sn of S, and
r0, . . . , rn in R, with some ri 6= 0, such that r0x + r1s1 + · · · + rnsn = 0.
Because S is independent, it follows that r0 6= 0, and thus we may use the
fact that K is a field to write x = r′1s1 + · · · + r′nsn, where r′i = −ri/r0.
Hence x ∈ KS. �

In order to prove that any vector space V has a basis, simply use Zorn’s
Lemma to obtain a maximal independent subset B; it then follows from
Proposition 2.8 that B generates, and is thus a basis for, V .

We remark that the converse of Proposition 2.8 holds over any ring R: If
S is any subset of an R-module M , and x an element of the submodule RS,
then S ∪ {x} is dependent.

For any set S, the free module on S, denoted by R{S}, consists of all finite
formal R-linear combinations of elements of S, under the obvious operations.
The module R{S} has basis S, and is characterized by the fact that, for any
R-module M , restriction of R-linear maps R{S} → M to the set S defines
a bijection

ModR(R{S},M) → Set(S,U(M)).

The inverse bijection may be described as “extending by linearity,” that is,
for any function f : S → U(M), let f̄ : R{S} → M be the homomorphism
defined by f̄(

∑

i risi) =
∑

i rif(si); then f 7→ f̄ is the inverse bijection. We
refer to R{S} as “the” free R-module on S, but the definite article here is
being used, as it often is in mathematics, in a weak sense; the module R{S}
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is unique only up to canonical isomorphism; there are (infinitely) many ways
of constructing the “formal R-linear combinations” comprising R{S}.

If M is free with basis {bi : i ∈ I}, then each x ∈ M may be expressed as
a unique R-linear combination of some finite number of bi’s. It follows that
M is isomorphic to the direct sum

⊕

i∈I Ri, where each Ri is a copy of the
R-module R.

Example 2.9. Any free abelian group, that is, free Z-module, is isomorphic
to a direct sum of copies of Z and thus, in particular, is infinite. Hence any
finite abelian group is not free.

One fact that deserves mention here is that a submodule of a free mod-
ule need not be free. For example, if p and q are prime numbers, then the
ring Zpq of integers modulo pq is free as a module over itself, but it con-
tains as submodules copies of Zp and Zq, which are too small to be free as
Zpq-modules. Over certain rings, however, submodules of free modules are
always free; for instance, all principal ideal domains have this property.

A word of caution is in order at this point: it is possible for a free module
to have bases of different cardinalities. The next example gives a typical
instance of this phenomenon:

Example 2.10. Suppose that M = R{b1, b2, . . . } is the free R-module with
basis {b1, b2, . . . } and that A = EndR(M) is the endomorphism ring of M .
Like any ring, A = A{1A} is free as a module over itself, with basis consisting
of the unit element of A, which is the identity map on M in this case. Now
let ϕ1, ϕ2 ∈ A be the endomorphisms of M determined by

ϕ1(bi) =

{

b(i+1)/2 if i is odd,

0 if i is even,

and

ϕ2(bi) =

{

0 if i is odd,

bi/2 if i is even.

The A-module A is also free with basis {ϕ1, ϕ2}. To see this, first note that
for any g1, g2 ∈ A the endomorphism h = g1ϕ1 + g2ϕ2 satisfies

h(b2i) = g2ϕ2(b2i) = g2(bi) and h(b2i−1) = g1ϕ1(b2i−1) = g1(bi),

for all i ≥ 1. Hence if g1ϕ1 + g2ϕ2 is the zero endomorphism, then g1 and
g2 must equal zero; thus the set {ϕ1, ϕ2} is linearly independent.

On the other hand, given any f ∈ A, let f1, f2 be the endomorphisms of
M determined by

f1(bi) = f(b2i−1) and f2(bi) = f(b2i),

for all i ≥ 1. It follows immediately that f = f1ϕ1 + f2ϕ2; hence {ϕ1, ϕ2}
generates, and is thus a basis for, A.
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Fortunately, for modules over a very large class of rings, those said to have
invariant basis number (which includes all commutative rings, in particular)
this cannot occur; all free modules over such rings have well-defined rank,
given by the cardinality of any basis.

2.3. Pairings and Duality. For any R-modules M and N , the set ModR(M,N)
of all morphisms from M to N is an abelian group, with addition deter-
mined pointwise. Furthermore, since we are assuming the ring R is com-
mutative ModR(M,N) is in fact an R-module, with pointwise R-action:
(rf)(x) = r(f(x)).

Definition 2.11. The dual of an R-module M is the R-module M∗ =
ModR(M,R), with addition and R-action determined pointwise.

Suppose that M ,N and P are R-modules. A mapping f : M × N →
P is called R-bilinear if, for each x0 ∈ M and y0 ∈ N , the mappings
f(x0,− ) : N → P and f(− , y0) : M → P , given respectively by

y 7→ f(x0, y) and x 7→ f(x, y0),

are R-linear. A pairing from M to N is a bilinear map M × N → R.
We usually denote the value of a pairing on (x, y) by 〈x , y〉. A pairing
p : M × N → R gives rise to linear maps λ = λp : M → N∗ and ρ =
ρp : N → M∗, defined by

x 7→ 〈x , 〉 and y 7→ 〈 , y〉,

respectively. The pairing p is nondegenerate if, for each x ∈ M and y ∈ N ,
there exist x′ ∈ N and y′ ∈ M such that 〈x , x′〉 and 〈y′ , y〉 are nonzero.
Equivalently, the pairing p is nondegenerate if each of the maps λp and ρp

is injective.
The canonical pairing of the dual module M∗ to M is given by the eval-

uation map:

〈α , x〉 = α(x),

for all α ∈ M∗ and x ∈ M . The maps λ and ρ associated to the canonical
pairing are, respectively, the identity map on M∗, and the natural map from
M into the double dual M∗∗.

Suppose that M is a free module with basis B = {b1, . . . , bn}. For 1 ≤
i ≤ n, let b′i be the element of the dual module M∗ defined by

〈b′i , bj〉 = δij =

{

1R if i = j,

0 otherwise.

It is readily verified that the set B′ = {b′1, . . . , b
′
n} is a basis for the dual

module M∗ (the proof is identical to the corresponding result for vector
spaces), and hence M and M∗ are isomorphic R-modules. The basis B′ is
said to be dual to the basis B. The expression for α ∈ M∗ in terms of the
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dual basis B′ is

α =

n
∑

i=1

〈α , bi〉 b′i,

while the expression for x ∈ M in terms of the basis B is

x =
n
∑

i=1

〈b′i , x〉 bi.

If M is free of finite rank, say M = R{b1, . . . , bn}, we may define a pairing
of M to itself by 〈bi , bj〉 = δij . This pairing is clearly nondegenerate, and
the associated maps λ and ρ are isomorphisms (in fact the same isomor-
phism) from M onto M∗. We may thus identify M with M∗ once we have
chosen a basis for M .

We now consider duality for free modules of infinite rank. Now supp-
pose that M is a free R-module with infinite basis {bi}i∈I and again, define
b′i ∈ M∗ by 〈b′i , bj〉 = δij . We denote by M ′ the direct product of free mod-
ules Πi∈IR{b′i}, and write the elements (rib

′
j)i∈I of M ′ as (infinite) formal

sums
∑

i∈I
rib

′
i. (Note that R{b′i} and R are isomorphic R-modules, via the

morphism determined by 1R 7→ b′i.) Even though the elements of M ′ are
infinite linear combinations of the b′i’s, the rule 〈b′i , bj〉 = δij determines a
well-defined pairing from M ′ to M , because elements of M are finite linear
combinations of bi’s. This pairing induces an isomorphism λ : M ′ → M∗,
under the inverse of which the element α ∈ M∗ corresponds to

∑

i∈I
〈α , bi〉b

′
i.

The set B = {b′i}i∈I is independent in M∗ but is not a basis because ele-
ments of M∗ cannot, in general, be written as finite linear combinations of
elements of B. In this situation we refer to B, rather, as a pseudobasis of
M∗. In particular, we note that M is not isomorphic to M∗ in this case,
but instead is isomorphic to a proper submodule of M∗.

2.4. Gradings.

Definition 2.12. An R-module M is graded if it is equipped with a direct
sum decomposition

⊕

n≥0
Mn. If M and N are graded R-modules, and k ∈ Z,

an R-module morphism f : M → N is said to be homogeneous of degree k if
f(Mn) ⊆ Nn+k, for all n ≥ 0. (For k < 0, we define Ni = {0}, for all i < 0.)

The R-modules Mn are called the homogeneous components of the graded
module M =

⊕

n≥0
Mn; an element x ∈ M is homogeneous if it belongs to

Mn for some n, in which case the degree of x, denote by |x|, is equal to n.

Definition 2.13. The graded dual of a graded R-module M =
⊕

n≥0
Mn is

the module M∗g =
⊕

n≥0
M∗

n.

In general, the graded dual of a graded module M is a submodule, and is
not equal to, the full dual ModR(M,R) of M .

Definition 2.14. A graded module M =
⊕

n≥0
Mn is free, of finite type if

each homogenous component Mn is a free module of finite rank.
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It follows immediately from the discussion above that if a graded module
M is free of finite type then it is isomorphic to its graded dual.

2.5. Tensor Products.

Definition 2.15. The tensor product (over R) of R-modules M and N is
the R-module M ⊗N generated by the symbols x⊗y, for x ∈ M and y ∈ N ,
subject to the relations:

(x + x′) ⊗ y = x ⊗ y + x′ ⊗ y x ⊗ (y + y′) = x ⊗ y + x ⊗ y′,

(rx) ⊗ y = r(x ⊗ y) = x ⊗ (ry),

for all x, x′ ∈ M , y, y′ ∈ N and r ∈ R.

Exercise 1. Show that x ⊗ 0 = 0 ⊗ y = 0 in M ⊗ N , for all x ∈ M and
y ∈ N .

In some cases M and N may be modules over more than one ring. Because
of the last of the above relations, the choice of ring over which the tensor
product is formed plays an important role in determining M ⊗ N ; roughly
speaking, the bigger the ring is, the smaller the module M ⊗ N will be.
Whenever there is possibility of ambiguity, we use the symbol ⊗R, rather
than ⊗, to denote the tensor product operation.

The relations satisfied by the generators x⊗ y are precisely those needed
to ensure that the map t : M × N → M ⊗ N given by t(x, y) = x ⊗ y is
R-bilinear. The bilinear map t is thus universal in the following sense: For
any module P and bilinear map g : M × N → P , there exists a unique R-
linear map ḡ : M ⊗ N → P such that g = ḡt. This property is most clearly
indicated by the statement that the diagram

M × N
g

t

P

M ⊗ N

ḡ

commutes. (Whenever such a diagram has the property that the composition
of morphisms along any two directed paths from one object to another yields
the same morphism, the diagram is said to commute.) Another way to state
the universal property of the bilinear map t is that the correspondence

(2.16) ModR(M ⊗ N,P ) → BilR(M × N,P ),

given by f 7→ ft (where BilR(M × N,P ) denotes the set of all R-bilinear
maps M × N → P ) is a bijection, with inverse g 7→ ḡ.

As is always the case for things satifying universal properties, the ten-
sor product is determined uniquely, up to canonical isomorphism, by its
universal property. More precisely, we have the following proposition.

Proposition 2.17. Suppose that M and N are R-modules, and that M⊗′N
is an R-module and t′ : M ×N → M ⊗′ N a bilinear map such that, for any

R-module P and bilinear map g : M×N → P , there exists a unique R-linear
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map ĝ : M ⊗′ N → P such that g = ĝt′. Then there is a unique R-module

isomorphism f : M ⊗ N → M ⊗′ N such that ft = t′.

Proof. The universal property of t : M ×N → M ⊗N implies the existence
of a unique R-linear map f : M ⊗ N → M ⊗′ N such that ft = t′, while
the universal property of t′ : M × N → M ⊗′ N gives a unique R-linear
h : M ⊗′ N → M ⊗N such that ht′ = t. We thus have hft = t and fht′ = t′,
and by uniqueness it follows that hf and fh are the identity maps on M⊗N
and M ⊗′ N , respectively. �

A careful reader will notice that in Definition 2.15 we described the ten-
sor product M ⊗ N of R-modules M and N , but did not in fact give a
construction of it. For those readers (who might, justifiably, be concerned
that tensor products might not even exist in some cases) we briefly describe
the construction here. Given R-modules M and N , let F be the free module
on the set M × N . (Note that the module structures of M and N play no
role in the definition of F .) Let J be the submodule of F generated by all
elements of the form

(x + x′, y) − (x, y) − (x′, y) (x, y + y′) − (x, y) − (x, y′)

(rx, y) − r(x, y) (x, ry) − r(x, y),

for x, x′ ∈ M , y, y′ ∈ N and r ∈ R. (Note that the module structures of M
and N play essential roles in defining J .) The quotient module F/J is the
tensor product M ⊗N , and the map t : M ×N → M ⊗N is the composition
M × N ↪→ F → F/J of the canonical projection with the inclusion. For all
x ∈ M and y ∈ N , the element x ⊗ y of M ⊗ N is the image under t of the
pair (x, y).

Sometimes surprising things can happen when forming tensor products,
due to the fact that the relations satisfied by the generators x⊗ y can cause
more to vanish than one might initially suspect. A standard example of this
behavior (Example 2.19) is due to the following proposition.

Proposition 2.18. Suppose that M and N are abelian groups, and that

x ∈ M and y ∈ N have orders |x| = m and |y| = n. Then the order of x⊗ y
in M ⊗ N = M ⊗Z N divides d = gcd(m,n).

Proof. Choose integers r and s such that d = rm + sn. Then

d(x ⊗ y) = rm(x ⊗ y) + sn(x ⊗ y)

= (rmx) ⊗ y + x ⊗ (sny)

= 0.

�

Example 2.19. If the integers m and n are relatively prime then gcd(|x|, |y|) =
1, for all nonzero x ∈ Zm and y ∈ Zn. Thus it follows from Proposition 2.18
that Zm ⊗ Zn = {0}.
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Example 2.20. Viewing the rational numbers Q as just an abelian group,
we have Q⊗M = {0}, for any finite abelian group M . To see this, consider
an element r ⊗ x in Q ⊗ M , with x of order n; then

r ⊗ x = n(1/n)(r ⊗ x)

= (1/n)r ⊗ (nx)

= 0.

It is necessary to exercise caution when attempting to define a module
morphism f : M ⊗ N → P whose domain is a tensor product. When spec-
ifying f one needs to make sure that the values f(x ⊗ y) satisfy relations
in P corresponding to the defining relations on the elements x⊗ y; in other
words, that

f((x+x′)⊗y) = f(x⊗y) + f(x′⊗y) f(x⊗(y+y′)) = f(x⊗y) + f(x⊗y′),

f((rx) ⊗ y) = rf(x ⊗ y) = f(x ⊗ (ry)),

for all x, x′ ∈ M , y, y′ ∈ N and r ∈ R. The usual technique for doing this
is to first define a bilinear map g : M × N → P , then use the universal
property of the tensor product, characterized by the bijection (2.16), to
obtain a morphism ḡ : M ⊗ N → P ; and then let f = ḡ.

The next proposition shows that, in the case of free modules (of which we
shall encounter many), the operation of tensor product is very simple. The
proof of the proposition provides a good illustration of the above technique
for defining morphisms on tensor products.

Proposition 2.21. If M = R{B} and N = R{C} are free R-modules with

bases B and C, respectively, then the tensor product M⊗N is free with basis

{b⊗ c : b ∈ B and c ∈ C}; in other words, the correspondence (b, c) → b⊗ c
determines an isomorphism from R{B × C} onto R{B} ⊗ R{C}.

Proof. Define a map α : R{B} × R{C} → R{B × C} by




∑

i

ribi ,
∑

j

sjcj



 7→
∑

i,j

risj(bi, cj).

It is readily verified that α is bilinear, and hence induces a morphism
ᾱ : R{B} ⊗ R{C} → R{B × C}, under which

(

∑

i

ribi

)

⊗





∑

j

sjcj



 7→
∑

i,j

risj(bi, cj).

On the other hand, since R{B × C} is free, the correspondence (b, c) 7→ b⊗c
defines a unique morphism R{B × C} → R{B}⊗R{C}, and this morphism
is inverse to ᾱ. �

Exercise 2. For all all n,m ≥ 2, the abelian groups Zm ⊗Zn and Zgcd(m, n)

are isomorphic.
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Exercise 3. Suppose that M and N are R-modules, and that A ⊆ M and
B ⊆ N are submodules. Show that M/A⊗N/B is isomorphic to (M⊗N)/J
where J = A ⊗ N + M ⊗ B.

Exercise 4. Given R-modules M , N and P , show that there exist unique
isomorphisms

(i) λ = λM : R ⊗ M → M and ρ = ρM : M ⊗ R → M ,
(ii) τ = τM,N : M ⊗ N → N ⊗ M ,
(iii) α = αM,N,P : (M ⊗ N) ⊗ P → M ⊗ (N ⊗ P ),

satisfying

(i) λ(r ⊗ x) = ρ(x ⊗ r) = rx,
(ii) τ(x ⊗ y) = y ⊗ x,
(iii) α((x ⊗ y) ⊗ z) = x ⊗ (y ⊗ z),

for all r ∈ R, x ∈ M , y ∈ N and z ∈ P .

The families of maps λ, ρ, τ and α are called, respectively, the left and
right unit constraints, the twist , and the associator.

2.6. The tensor product of module homomorphisms.

Proposition 2.22. If f1 : M1 → N1 and f2 : M2 → N2 are morphisms of R-

modules, then there exists a unique morphism (f1⊗f2) : M1⊗M2 → N1⊗N2

satisfying

(f1 ⊗ f2)(x1 ⊗ x2) = f1(x1) ⊗ f2(x2),

for all x1 ∈ M1 and x2 ∈ M2.

Proof. The map g : M1×M2 → N1⊗N2 given by g(x1, x2) = f1(x1)⊗f2(x2)
is easily checked to be bilinear. Let f1 ⊗ f2 equal ḡ. �

The map f1 ⊗ f2 is called the tensor product of f1 and f2.

Proposition 2.23. If the morphisms f1 : M1 → N1 and f2 : M2 → N2 are

surjective, then the tensor product (f1 ⊗ f2) : M1 ⊗ M2 → N1 ⊗ N2 is also

surjective.

Proof. The proof is immediate from the definition of f1 ⊗ f2 and the fact
that N1 ⊗ N2 is generated by the set {y1 ⊗ y2 : y1 ∈ N1 and y2 ∈ N2}. �

Important Fact: If R-module morphisms f1 : M1 → N1 and f2 : M2 → N2

are injective, then it is not necessarily the case that (f1 ⊗ f2) : M1 ⊗ M2 →
N1 ⊗ N2 is injective.

Example 2.24. Suppose that f : Z → Q is the inclusion and g : Zn → Zn is
the identity map. Then f and g are injective, while f⊗g : Z⊗Z Zn → Q⊗Z Zn

is not, since Z ⊗Z Zn
∼= Zn and Q ⊗Z Zn = {0}.

Example 2.24 illustrates an important point, which is that a tensor prod-
uct of submodules need not be a submodule of the tensor product; given
submodules M ′ ⊆ M and N ′ ⊆ N , the tensor product of the inclusion maps
M ′ ↪→ M and N ′ ↪→ N is a morphism M ′ ⊗ N ′ → M ⊗ N , but is not
necessarily injective.
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3. Algebras

Definition 3.1. An R-algebra is a set A, equipped with both R-module
and ring structures having the same underlying additive structure, and such
that

(3.2) r(xy) = (rx)y = x(ry),

for all r ∈ R and x, y ∈ A. A homomorphism of R-algebras is an R-linear
ring homomorphism.

Example 3.3. The polynomial ring R[x] is an R-algebra, with the usual
multiplication of polynomials by ring elements. More generally, for any set
S we denote by R[S] the polynomial algebra having S as set of “independent
indeterminants”.

Example 3.4. The divided powers algebra is the free module D = R{d0, d1, . . . },
with product defined by

didj =

(

i + j

i

)

di+j,

for all i, j ≥ 0. The R-linear map R[x] → D determined by xn 7→ n!dn,
for all n, is an algebra homomorphism; if the ring R contains the rational
numbers, then this map is an isomorphism.

Example 3.5. If M is any R-module, then the set End(M) = ModR(M,M)
of all endomorphisms of M is an R-algebra, with pointwise addition, multi-
plication given by functional composition, and R-action given by (rf)(x) =
r(f(x)), for all r ∈ R, f ∈ End(M), and x ∈ M .

Example 3.6. The set Mn(R) of all n × n matrices with entries in R is
an R-algebra under the usual matrix operations. If M is a free R-module
of rank n, then choosing a basis for M determines an isomorphism between
Mn(R) and the algebra End(M) of the previous example.

Example 3.7. If S is any set, then the set Set(S,U(R)), of all functions
from S into the underlying set of R, is an R-algebra, with all operations
defined pointwise.

Example 3.8 (“Ring-first” Definition of Algebra). Suppose that A is
a, not necessarily commutative, ring and that η : R → A is a ring homo-
morphism whose image is contained in the center of A (i.e., η(R) ⊆ {a ∈
A : ax = xa, for all x ∈ A}). The ring A becomes an R-algebra, with R-
action defined setting rx equal to the product η(r)x in A. On the other
hand, any R-algebra A is of the above form, where η : R → A is the unique
ring homomorphism determined by η(1R) = 1A.

In order to fully understand the dual relationship between the notions of
algebra and coalgebra (to be defined in the next section), it is necessary to
express the definition of algebra solely in terms of morphisms in the category
of R-modules. We begin with the multiplication:



SOME NOTES ON MODULES AND ALGEBRAS 13

The distributivity of multiplication in an algebra A, together with Equa-
tion 3.2, which expresses the compatibility of the multiplication and R-
action, means that, viewing A as an R-module, the map m : A × A → A
defined by (x, y) 7→ xy is R-bilinear. Hence there is a unique R-linear map
µ : A ⊗ A → A satisfying µ(x ⊗ y) = xy; we refer to the map µ, as well as
the binary operation m, as the multiplication on A. Associativity of multi-
plication now can be expressed by the equality of two different compositions
of R-module homomorphisms, most clearly indicated by the commutativity
of the diagram

(3.9) A ⊗ A ⊗ A
µ⊗1

1⊗µ

A ⊗ A

µ

A ⊗ A
µ

A.

(Here, and in all other diagrams, 1 denotes the appropriate identity map,
rather than the unit element of some ring or algebra.)

The map η : R → A in Example 3.8 is called the unit map of the algebra
A; note that η may be regarded as either as a ring homomorphism or an
R-linear map. We now translate the defining property of the unit element
1A into a corresponding statement about the map η. Consider the diagram
of R-modules and R-linear maps

(3.10) R ⊗ A
η⊗1

∼=

A ⊗ A

µ

A ⊗ R
1⊗η

∼=

A,

where the diagonal arrows are the canonical isomorphisms λ : R⊗A → A and
ρ : A⊗R → A, given by r⊗x 7→ rx and x⊗r 7→ rx, respectively (see Exercise
4). The fact that the unit element 1A = η(1R) satisfies 1A · x = x = x · 1A

means precisely that µ(η ⊗ 1) = λ and µ(1 ⊗ η) = ρ. Hence the unit
property of 1A is equivalent to the fact that the diagram commutes. We
therefore make the following definition:

Definition 3.11. An R-algebra is a triple (A,µ, η), where A is an R-module
and µ : A⊗A → A and η : R → A are R-linear maps such that the diagrams
(3.9) and (3.10) commute.

We usually denote the algebra (A,µ, η) simply by A, and write µA and ηA

for the product and unit maps of A whenever necessary to avoid confusion.

Example 3.12. If G is any monoid, then the free module R{G} becomes an
R-algebra with product given by the unique map µ : R{G}⊗R{G} → R{G}
satisfying µ(x ⊗ y) = xy, for all x, y ∈ G; in other words, µ is the unique
multiplication on R{G} extending that of the monoid G. The unit map η of
R{G} satisfies η(r) = r1G, for all r ∈ R; in other words, the unit element of
R{G} is the identity element of G. The algebra R{G} is called the monoid
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algebra of G. If G happens to be a group, then R{G} is called the group

algebra of G.

Example 3.13. The free monoid on a set S is the set 〈S〉 of all finite
sequences of elements of S (that is words on S), with concatenation as
binary operation. The empty word is the unit element of 〈S〉. The monoid
〈S〉 is characterized by the following universal property: for any monoid
G, and any function f from S into the underlying set of G, there exists
a unique monoid homomorphism f̄ : 〈S〉 → G such that f̄ i = f , where i
denotes the inclusion of S into 〈S〉. (The homomorphism f̄ is defined by
f̄(a1 · · · an) = f(a1) · · · f(an), for all a1 · · · an ∈ 〈S〉.)

The free R-algebra on the set S is the monoid algebra of the free monoid
〈S〉, and is denoted by R〈S〉 (rather than R{〈S〉}). Hence R〈S〉 has as
basis the set of all words on S, and is characterized by a combination of
the universal properties of free monoids and free R-modules; that is, for any
R-algebra A, and any function f from S into the underlying set of A, there
exists a unique algebra homomorphism f̄ : R〈S〉 → A such that f̄ i = f ,
where i is the inclusion of S into R〈S〉.

Suppose that A and B are R-algebras. The tensor product A ⊗ B of
underlying R-modules is then an R-algebra, with product determined by
(x1 ⊗y1)(x2 ⊗y2) = x1x2 ⊗y1y2, and unit element 1A⊗B = 1A ⊗1B. In terms
of module homomorphisms, we have

µA⊗B = (µA ⊗ µB)(1 ⊗ τ ⊗ 1)

and

ηA⊗B = (ηA ⊗ ηB)κ,

where τ = τB,A : B ⊗ A → A ⊗ B is the twist map and κ : R → R ⊗ R
is the natural isomorphism (which is equal to both the left and right unit
constraints; λR = ρR, in this case).

Exercise 5. (i) Show that R[x] ⊗ R[x] ∼= R[x, y], as algebras.
(ii) More generally, show that the algebras R[S] ⊗ R[T ] and R[S + T ] are

isomorphic for any sets S and T , where S + T denotes the disjoint
union of S and T .

Definition 3.14. An algebra A is graded if it has a direct sum decomposition
A =

⊕

n≥0
An (that is, it is graded as an R-module), such that 1A ∈ A0 and

the product AiAj = {xy : x ∈ Ai and y ∈ Aj} is contained in Ai+j , for all
i, j ≥ 0.

Example 3.15. The polynomial algebra R[x] is graded, with homogeneous
components R[x]n = R{xn}, for all n ≥ 0. The divided powers algebra
D = R{d0, d1, . . . } is graded, with Dn = R{dn}. Any algebra A may be
considered as graded, with all elements homogeneous of degree zero.
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If M and N are graded R-modules, then the tensor product M ⊗ N is
graded, with homogeneous components given by

(M ⊗ N)n =
⊕

i+j=n

Mi ⊗ Nj ,

for all n ≥ 0. We also consider the ring R as graded, with all elements
homogeneous of degree zero. An R-algebra A is thus graded if and only
if A is graded as an R-module and the product µ : A ⊗ A → A and unit
η : R → A are homogeneous degree zero maps.


