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Abstract: We present several results about incidence Hopf algebras of families of partially ordered
sets, including a characterization of their algebra structure, a combinatorial technique for finding
generating sets of primitive elements in the cocommutative case, and a determinant formula for
the antipode which holds for a class including the Faa di Bruno Hopf algebra. We introduce
a variety of examples of incidence Hopf algebras arising from families of graphs, matroids and
distributive lattices, many of which generalize well-known Hopf algebras.



1 Introduction

For several years after the introduction of the notion of Hopf algebra, practically the only Hopf
algebras that were dealt with were the ones obtained from groups and Lie algebras, and from
some other special algebraic situations, such as the problems of algebraic number theory arising
from the study of Witt vectors. Algebraic topology gradually contributed an increasingly complex
variety of new Hopf algebras, which remain to this day a challenge to whoever were to nourish
dreams of classification. Lastly, combinatorics began to pile up an impressive array of disparate
constructions, which today, in retrospect, can be subsumed under the capacious umbrella of Hopf
algebra.

It is the purpose of this paper to develop the theory underlying the Hopf algebras arising in
combinatorics, giving special regard to new identities which can be obtained, and known identities
which can be made obvious, by using the Hopf algebra formalism.

The first attempt at bringing Hopf algebra techniques to bear on combinatorics is the paper
by Joni and Rota [13], which amounts essentially to a list of all combinatorial structures known
to the authors which could be given — or which were naturally endowed with — a coalgebra or a
bialgebra structure. Unfortunately, the authors did not contribute any structural considerations;
indeed, they were unaware of the fact that almost all bialgebras considered in their paper are
actually Hopf algebras. To be sure, the antipodes of these bialgebras are sometimes far from
obvious, as the present author showed in his thesis [18].

The main thrust of the present paper is a classification of incidence Hopf algebras of partially
ordered sets. In so doing, we were led to some results of independent interest, such as the logarithm
formula for the determination of primitive elements (theorem 9.4, generalizing previous results of
Ree [14] and Reutenauer [15]), a determinant formula for the antipode (theorem 8.1), and several
special results relating to partially commutative Hopf algebras, which are natural generalizations
of the partially commutative monoids introduced by Cartier and Foata [4]. In the wake of this
classification, we study some Hopf algebras arising naturally from graphs and trees, which simplify
some pioneering work of Grossmann and Larson [9].

We hope that the present work will be instrumental in including Hopf algebra techniques
among the standard technical baggage of every combinatorialist, and in providing the algebraist
a ground on which to test future conjectures on the structure of Hopf algebras.

2 Synopsis

Some familiarity with the elementary properties of Hopf algebras, which can be found in either
Abe [1] or Sweedler [21], is assumed. However, the notion of incidence Hopf algebra is developed
fully in the next three sections, as follows. Let K be a commutative ring with unit and let P
be a set of finite intervals (partially ordered sets having unique minimal and maximal elements)
which is closed under formation of subintervals. The incidence coalgebra of P, over K, is the free
K-module on the quotient of P by a suitable equivalence relation, with coproduct deriving from
the natural splitting of an interval [z, y] into all pairs of subintervals ([z, 2], [2,9]), for z < z < y.
Whenever the set of intervals P is hereditary, that is, closed under direct product as well as under
formation of subintervals, then direct product induces a bialgebra structure on the incidence
coalgebra. If, in addition, the given equivalence relation on intervals meets a certain condition
(satisfied by the isomorphism relation, in particular) then the incidence coalgebra is an irreducible



Hopf algebra, called the incidence Hopf algebra of P. The antipode of an incidence Hopf algebra
is always an involution, and an incidence coalgebra or Hopf algebra is filtered, according to the
lengths of intervals in the family P. In general, this filtration is different from the coradical
filtration. If the intervals in P are graded, then their ranks determine a grading of the incidence
Hopf algebra. For any incidence coalgebra C, an incidence Hopf algebra H can be constructed
which contains C as a subcoalgebra and which is isomorphic to the free irreducible, commutative
Hopf algebra over C.

In section six it is shown that, as algebras, incidence Hopf algebras are isomorphic to monoid
algebras of free partially commutative monoids, i.e., free partially commutative algebras. In fact,
any free partially commutative algebra can be given an incidence Hopf algebra structure. This
characterizes the algebra structure of incidence Hopf algebras. On the other hand, it is shown
in section seven that the dual algebra of an incidence Hopf algebra corresponds to a reduced
incidence algebra in the sense of [7].

In section eight, a class of incidence Hopf algebras is introduced for which a determinant
formula for the antipode holds. This class contains many well-known Hopf algebras, including the
Faa di Bruno Hopf algebra. In the Faa di Bruno case, this antipode formula yields a determinant
expression for the coefficients of the inverse of a formal power series under functional composition.

The structure of general irreducible cocommutative Hopf algebras is examined in section nine.
When such a Hopf algebra H is divisible (a property generalizing being over a characteristic zero
ring), there is a projection A from H onto its Lie algebra of primitive elements. The map A is useful
for finding generating sets of primitive elements of H. These results are applied to cocommutative
incidence Hopf algebras in section ten; in particular, divisibility of cocommutative incidence Hopf
algebras is characterized combinatorially, and a combinatorial formula for the projection A is
obtained.

Basic examples of incidence Hopf algebras appear throughout the first eleven sections. The last
four sections are dedicated to a detailed examination of various classes of incidence Hopf algebras
arising from families of graphs, matroids and distributive lattices. These sections are intended to
provide algebraists with concrete new examples of Hopf algebras, and to show combinatorialists
the kinds of algebraic structure underlying many families of familiar objects.

3 Incidence Coalgebras

If P is a partially ordered set, or poset, for short, and z < y in P, the interval [z,y] is the
set {z € P : z <z < y}. P islocally finite if all of its intervals are finite. If the poset P
is an interval, then the unique minimal and maximal elements of P are denoted by 0p and 15,
respectively. All posets considered in this paper will be locally finite intervals, unless specifically
stated otherwise. In order to avoid possible set theoretic difficulties, we will assume that all posets
and other combinatorial objects have underlying sets which are contained in some fixed universal
set. Thus any family, or class, of structures we consider will actually be a set.

A family of posets P is interval closed, if it is non-empty and, for all P € P and x < y € P,
the interval [z,y] belongs to P. An order compatible relation on an interval closed family P is
an equivalence relation ~ such that, whenever P ~ () in P, there exists a bijection ¢ : P — Q
such that [0p,z] ~ [0g, ¢(z)] and [z,1s] ~ [p(z),1e], for all z € P. The map ¢ is called an order
compatible bijection from P to (), and in general depends on P and Q.

Poset isomorphism is an obvious example of an order compatible relation. In most examples



considered here, the family P will consist of posets with additional structure, and P ~ @ in P
will mean that there exists an isomorphism from P to ) which preserves the additional structure.
It is not the case, however, that posets which are related by an order compatible relation are
necessarily isomorphic. For example, let P be the set of all intervals in either of the posets P;
and P, whose Hasse diagrams are shown in figure 1. For @), R € P, define @) ~ R to mean that Q)
and R are isomorphic, or @ = P; and R = P». Then ~ is order compatible and P; ~ P,, but P;
and P, are not isomorphic as posets.

P Py

FIGURE 1

Suppose K is a commutative ring with 1, and ~ is an order compatible relation on an interval
closed family P. The quotient set P/ ~ is denoted by P. The ~-equivalence class, or type, of
a poset P € P is denoted by [P]. If P = [z,y], then we write [z,y] to denote either P or [P];
it should always be clear from the context which is meant. Let C(P) denote free K-module
generated by P. Define linear maps A : C(P) — C(P) ® C(P) and € : C(P) — K by

AlP] = Y [0r,0] ® [z, 1]

z€P
and -
elP] = { (1) ;tLelw_isle,
for all [P] € P.

Theorem 3.1 If ~ is an order compatible relation on an interval closed family P, then C(P) is
a K-coalgebra with comultiplication A and counit e.

Proof The fact that A is well-defined is a direct consequence of the fact that ~ is order
compatible. It follows immediately from the definitions that

(A®NoAP|=(I@A)oA[P]= ) [0p,2]® [2,4]® [y, 1],
zlyeP

and
(e® 1) o A[P] = (I®¢) o A[P] = [P],



for all [P] € P. Therefore C(P) is a coalgebra. O
C(P) is called the incidence coalgebra of the family P (modulo the relation ~).
For all [P],[Q], [R] € P, the section coefficient ([P];[Q],[R]) = (P;Q, R) € K is the coefficient
of [Q] ® [R] in A[P], i.e., the number of elements z € P such that [0p,z] ~ Q and [z,15] ~ R.
Thus A[P] can be written as

Y. (PQRIQI®IR],

[QL[ReP
and so
(A®I)oA[P] = ) (PBT,S) ( > (T;Q,R)Q®R) ® S
[T],[S] [QL,[R]
= > (Z(P;T, S)(T; Q,R)> Q®R®S,
[QLIR][S] \[T]
and

I®A)eAP] = 3 (PQU)Q® ( 3 (U;R,S)R®S)
[QLIU] [RL[S)

= > (Z(P;QaU)(U;R,S)> QRR®S.

[QLL[R][S] \ [V]

Therefore the coassociativity of A is equivalent to the identity

> (P;Q,U)(U;R,S) = Y (P;T,5)(T;Q,R),
w]eP meP

for all [P],[Q],[R],[S] € P. The common value of the two sides of the above is denoted by
(P;Q,R,S). Similarly, one can define multisection coefficients (P;Q1,...,Qy), for any n > 3.
The following example shows that section coefficients generalize binomial coefficients.

Example 3.1 (Binomial Coalgebra) Let B be the family of finite boolean algebras (i.e., posets
which are isomorphic to lattices of subsets of finite sets, ordered by inclusion) and let ~ be the
isomorphism relation on B . If V is a finite set and U C W C V, then the isomorphism class of
the interval [U, W] is uniquely determined by the cardinality of W — U. If |W — U| = n, let z,
denote this type. Then the incidence coalgebra C(B) is the free module K{zg, 1,2, ...}, with
coproduct A and counit € given by

A = 3 (F) ok ® 20,

k=0

() = 1 ifn=0
Al =19 0 otherwise,

and

for all n > 0. The coalgebra C(B) is called the binomial coalgebra.



Recall that a filtration of a coalgebra C is a sequence of submodules of C, Cy C C; C - - -, such
that C = Up,>0Cp and A(Cy) C > 5— Cr @ Cp—y, for all n > 1.

For any poset P, the length [(P) of P is defined to be one less than the largest number of
elements ocurring in any chain in P. Suppose C(P) is an incidence coalgebra. If P,Q € P and
P ~ Q, then [(P) = I(Q), so I is well-defined on the set of types P. For all integers n > 0, let C,
be the submodule of C(P) generated by those types [P] in P such that I([P]) < n.

Proposition 3.2 If P is an interval closed family of posets with order compatible relation ~,
then the sequence Cy C Cy C --- is a filtration of the coalgebra C(P).

Proof If P is any poset and z € P, then [([0p,z]) + I([z,15]) < I(P). Therefore A(C,) C
22:1 Ck ® Cp—k- a

A chain zg < 21 < -+ < z,, in a poset is saturated if, for 1 < 1 < n, ;1 < y < z; implies
y=x;_1 or y =x;. A poset P is graded if the lengths of all saturated chains between 0p and 1,
are the same, in which case the length of P is called the rank of P and denoted by r(P). If an

interval closed family P consists of graded posets, then the rank function is well-defined on types.
For all n > 0, let C(n) C C(P) be the submodule of C(P) generated by types in P of rank n.

Proposition 3.3 If P is an interval closed family of graded posets with order compatible relation
~, then C(P) = @ C(n) is a graded coalgebra.
n>0

Proof If P is a graded poset and = € P, then 7([0p,z]) + r([z, 15]) = r(P). Hence A(C(n)) C
Yr_1C(k)®C(n—k), for all n > 0. Also, it is clear that €(C(n)) = 0, for n # 0. 0

4 Incidence Hopf Algebras

The direct product of posets P; and P, is the cartesian product P, x P,, partially ordered by
the relation (z1,z2) < (y1,%2) if and only if z; < y; in P, for i = 1,2. We will always make the
necessary identifications so that direct product is an associative (but not necessarily commutative)
operation.

A hereditary family is an interval closed family of posets P which is also closed under formation
of direct products. Suppose P is a hereditary family and P, = {R € P : R # P xQ, for anyP,Q €
P} is the set of indecomposable elements of P. It follows that P is a semigroup under direct
product, which is generated by P,. Let ~ be an order compatible relation on P which is also a
semigroup congruence, i.e., whenever P ~ ) in P, then PxR ~ QX Rand Rx P ~ Rx @, for all
R € P. Then the set of types P="P / ~ is a semigroup, with product induced by direct product of
posets. The congruence ~ is reduced if, whenever P, € P and |Q| = 1, then PxQ ~ Qx P ~ P.
In this case, the set of types P is a monoid, with identity element 1 equal to the type of any one
point interval.

An order compatible relation on a hereditary family P which is also a reduced congruence is
called a Hopf relation on P.

Suppose K is a commutative ring with 1, and ~ is a Hopf relation on a hereditary family P.
The monoid structure of P induces a product on the incidence coalgebra C(P), making C(P) an
algebra, isomorphic to the monoid algebra of P over K. Let H(P) denote C(P) together with
this algebra structure.



Theorem 4.1 ([18]) If P is a hereditary family and ~ is a Hopf relation on P, then H(P) is a
Hopf algebra over K. The antipode S : H(P) — H(P) is given by

k
SIPI=>" > (- []zi-1, i, (4.1)
k>0 zg<---<zp =1
z9=0p
zp=1p

for all [P] € P.

Proof The fact that A is an algebra map (and thus H(P) is a bialgebra) follows directly from the
observation that if P; and P, are posets and (z1,z2) < (y1,¥2) in P; X Py, then [(z1, z2), (y1,¥2)] =

[z1,91] X [w2, y2].
It is easy to show that the operator S’ : H(P) — H(P) defined recursively by S’(1) =1 and

S'P) = — 3" [0p, 2] [z, 1]

z€P

z#0p
or, dually,

S'[Pl =~ (5[0, 2])[z, 1]

zeP

z#lp
for all [P] # 1 in P, is an antipode for H(P). The operator S defined by equation (4.1) satisfies
these recursion relations, and is thus equal to the antipode S’. m|

H(P) is the incidence hopf algebra of the family P (modulo the relation ~).
Because of the fact that A is an algebra map, the section coefficients satisfy the additional
identity
(PxQ;R,8) = Y (P;R1,5)(Q; Ry, S2),

[R1][R2]=[R]
[S11[S2]=[5]

for all [P],[Q],[R],[S] € P.

Example 4.1 (Binomial Hopf Algebra) Let B be the family of finite boolean algebras and
let ~ be isomorphism, as in example 3.1. If U and V are finite sets, then the direct product of the
lattices of subsets of U and V is isomorphic to the lattice of subsets of the disjoint union U + V.
Thus B is a hereditary family. Let x denote the isomorphism class of the lattice of subsets of a
one element set. The incidence Hopf algebra H(B) is isomorphic to the polynomial algebra K|z],
with coproduct A and counit € given by

and

1 ifn=0
ny _
€(=") = { 0 otherwise,

for all n > 0. The antipode of H(B) is determined by S(z) = —z. H(B) is called the binomial
Hopf algebra. G.-C. Rota’s umbral calculus, which provides a unified framework for studying

polynomial sequences of binomial type (see, e.g., [16]), is essentially the study of the Hopf algebra
H(B).



Example 4.2 (Free Partially Commutative Hopf Algebras) Let A be any set, and let A
denote the free monoid on A. Identify A in the usual manner with a subset of A*. Suppose 0
is a symmetric relation on A. The quotient of A* by the congruence generated by the set of all
pairs (zy,yx), for (z,y) € 0, is called the free partially commutative monoid on A, (modulo the
commutation relation 6). Identify each element x of A with the boolean algebra of subsets of the
the set {z}. Let B be the set of one-point intervals in these boolean algebras. The free semigroup
(AU B)™, consisting of all non-empty elements of (AU B)*, is a hereditary family of posets. Let
p be the symmetric relation on (A U B)* containing all pairs (zb,z) and (bz,z), for z € A and
b € B. The congruence ~ on (AU B)™ generated by 6 U p is a Hopf relation, and the set of types
(AU B)*/ ~ is naturally identified with the free partially commutative monoid on A modulo
6. The incidence Hopf algebra of (A U B)™, modulo ~, is denoted by K(A,6), and is called the
Hopf algebra of partially commutative polynomials on A, modulo 6. The coproduct of K(A,8) is
determined by A(z) =z ® 1+ 1®z, for all z € A.
For any word w € A*, let [w] € K (A, 6) be the partially commutative word represented by w,
let w be the reverse of w, and let |w| denote the number of letters in w. Since the antipode S
satisfies S(z) = —z for all x € A, and antipodes are always algebra anti-isomorphisms, it follows
that
Sl = (~1)/*[a), (4.2)

for all partially commutative words [w].
The Hopf algebras K (A, ) were introduced in [19], where identities involving partially com-
mutative words were derived by comparing formulas (4.2) and (4.1) for the antipode.

In general, if a non-trivial Hopf algebra H is either commutative or cocommutative then
the antipode of H has order two. Even though incidence Hopf algebras are generally neither
commutative nor cocommutative, they still have this property.

Proposition 4.2 The antipode S of an incidence Hopf algebra H(P) satisfies So S = 1.

Proof If P € P has length zero, then clearly S o S[P] = [P]. If [(P) > 1, then by applying
equation 4.1 twice, we have

k
SosSPl = > S (1F Y (1)U ]Iz, @)
k20w0<---<wk Ug{l ----- k_l} ZZI
:I:0=0P
zk:1p

k
= S 3 (0o [ lwi1, @]

k>0zg<---<zy 1=1
zg=0p
zp=1p

— [P].

O

If H(P) is an incidence Hopf algebra, let H, be the submodule of H(P) generated by those

types in P having length less than or equal to n, for all n > 0. As we have seen before, Hy C H; C

-+ - is a coalgebra filtration of H(P). Furthermore, for any posets P and @, (P x Q) = I(P)+1(Q),
and therefore H, Hy C H,,, for all n,k > 0. Therefore we have the following proposition.



Proposition 4.3 If P is a hereditary family of posets with order compatible relation ~, then the
sequence Hy C Hy C --- is a filtration of the Hopf algebra H(P).

The filtration Hy C H; C - - - is called the length filtration of H(P). The length filtration differs
from the coradical filtration of H(P) because there are, in general, many primitive elements of
H(P) which are not contained in H; (see section 9).

If P consists of graded posets, let H(n) be the submodule of H(P) generated by types of rank
n. Then H(n)H (k) C H(n + k), for all n,k > 0. Therefore we have:

Proposition 4.4 If P is a hereditary family of graded posets, then H(P) = @ H(n) is a graded

n>0
Hopf algebra.
The grading H(P) = @ H(n) is called the rank grading of H(P).
n>0
Remarks:
Suppose H(P) is an incidence Hopf algebra with length filtration Hy C Hy; C ---. Because

there is only one type of one-point interval in P, it follows that Hy = K, and therefore H(P)
is an irreducible Hopf algebra. A more general definition of incidence Hopf algebra results by
replacing the condition that the order compatible congruence ~ be reduced with the following,
weaker, requirement: there exists () € P such that P ~ P X @ ~ Q x P, for all P € P, and for
all P € P with |P| = 1, there exists R € P such that P x R ~ R x P ~ (). In this case, the set
of one point types is a group with identity element [Q], and H(P) is a Hopf algebra which is not
necessarily irreducible.

One may define incidence bialgebras by weakening the condition that ~ is reduced still further,
requiring only that there exists ) € P such that P ~ P x Q ~ @Q x P, for all P € P. In this case,
the set of one point types in P is a monoid with identity element [Q], and H(P) is a bialgebra,
which, in general, does not have an antipode.

We will only consider reduced order compatible congruences (i.e. Hopf relations) in this
paper, partly because one can say more about the structure of H(P) in this case (theorem 6.4, for
example), but also because this is a natural requirement from the point of view of combinatorics.

5 Free Commutative Incidence Hopf Algebras

Suppose P is an interval closed family of posets such that, whenever P,@Q € P, the product
P x @ does not belong to P. Let P* denote the family of all finite direct products of posets in
P. Then P* is a hereditary family. Let ~ be an order compatible relation on P. We extend
the definition of ~ to all of P* as follows: Given Pi,..., Py, Q1,...,Qm in P, let A be the set of
all indices 7 such that |P;| # 1, and let B be the set of all indices j such that |Q;| # 1. Define
P x---xP,~ Qi X - XQy in P* whenever there exists a bijection ¢ : A — B such that
P; ~ Qqy(s), for all i € A. Tt follows that the extended relation ~ is a Hopf relation on P

The incidence Hopf algebra H(P") is called the free commutative incidence Hopf algebra of P
(modulo ~). Let P; C P denote the set of types of non-singleton posets in P. As an algebra H(P")
is isomorphic to the polynomial algebra K[P;]. H(P") is the free, irreducible, commutative Hopf
algebra on the coalgebra C(P), in the sense that any coalgebra map from C(P) into an irreducible,
commutative Hopf algebra factors uniquely through the inclusion C(P) — H(P").



One may similarly define free, and free partially commutative, incidence Hopf algebras of an
interval closed family modulo order compatible relation.

Example 5.1 (Standard Incidence Hopf Algebra of a Poset) Suppose P is any poset, not
necessarily having unique minimal and maximal elements. The set I(P) of all intervals in P is
obviously interval closed. Let ~ be the isomorphism relation on I(P). The free commutative
incidence Hopf algebra H(I(P)*) is called the standard incidence Hopf algebra of P, and denoted
by H(P).

For example, suppose P is an interval of length one. Let z denote the isomorphism class of
P. Then H(P) = K|[z], the binomial Hopf algebra (see example 4.1).

Example 5.2 (Linear Orders) Suppose L, is the family of all finite linearly ordered sets, and
~ is the isomorphism relation on £,. Let x, denote the type of a linearly ordered set of length
n, and let £ = L, be the set of all finite direct products of elements of £,. The free commutative
incidence Hopf algebra H (L) is isomorphic to the polynomial algebra K[z1, z2, .. .], with coproduct
given by

n
A(xn) = Z Tk @ Tn—k,
k=0
for all n > 0. According to equation 4.1, the antipode of H(L) is given by

S(zn) = Z(_l)k Z Loy * Ty (5.1)

k>1 ny+--tngp=n
nJZI

for all n > 1.

6 Hereditary Families of Posets

In this section, we show that the monoid of types of any hereditary family modulo a Hopf relation
is free partially commutative. Thus any incidence Hopf algebra is the monoid algebra of a free
partially commutative monoid.

If P is a hereditary family with Hopf relation ~, the set of indecomposable elements of the
monoid P is denoted by P,. Note that 1 ¢ P,, and also that [P] € P, implies P € P,, but the con-
verse is not necessarily true. The following lemma shows that factorization into indecomposables
in P is unique, up to possible rearrangement of factors.

Lemma 6.1 Suppose P = Py x --- x P, and Q = Q1 X -+ X Qp, where [P;],[Q;] € Ps, for
1<i<n,1<j<m. IfP ~Q, then m = n and there exists a permutation o of {1,2,...,n}
such that P; ~ Qg(;), for 1 <1 < n.

Proof The result clearly holds if either m or n is equal to 1. Suppose m,n > 1 are given and the
result holds for all smaller values of m and n. Let ¢ : P — @ be an order compatible bijection.
Switching the roles of P and @ if necessary, choose i such that |P;| = max{|P;[,|Qx| : 1 <j <
n, 1 <k <m}. If p(0p,,...,1p,...,0p,) = (z1,...,2m) € Q, then

P~ [OP,(OPI""’IPi""’OPn)]
~ [OQ,(£C1,,$m)]
= [OQU'Tl]X"'X[OQma'T’m]:

10



which contradicts the fact that [P;] € P, unless 7 = 0g,, for all but one value of k. Hence
©0py,---,1p;---,0p,) = (0Qy,---+Zj,---,0q,,) and thus P; ~ [0g,, ;] C @y, for some j. So, by
the maximality of |P;, it follows that z; = 1¢, and thus P; ~ Q;.

Therefore [(0p,,...,1p;,---,0p,), 1] ~ [(0q,,---,1q;,---,0q,,), 1], which implies that P x
s X Pyxe o X Py~ Q1 X s X QX X Qy (the “hat” designates a missing term). Hence, by the

inductive hypothesis, m = n and there exists a bijection p : {1,...,%,...,n} — {1,...,7,...,n}

such that Py ~ Q) for all k # i. The map p extends in the obvious manner to a permutation

of {1,...,n} having the desired property. O
From now on, let S,, denote the group of permutations of {1,...,n}.

Lemma 6.2 Suppose u = aias---an and v = bybs---b, are words of length n > 2 over some
alphabet. For 1 < i1 < n, let u; = a1---d;---ap and v; = by---b;---b,. If there exists a
permutation o € Sy such that u; = vg(;) for 1 <i <n, then u = v.

Proof Suppose u # v and let k¥ = min{é : a; # b;}. Suppose k > 1. If o(k — 1) < k, then
Uk—1 = Vg(k—1) implies that ay = by. Hence o(k — 1) > k, and therefore uy 1 = Vg(k—1) implies
ap = bg_1. Similarly, by = ax_1, and hence ay = by, contrary to the definition of k. Therefore we
must have k£ = 1. Since n > 2, there exists i > 1 such that o(i) > 1. But then u; = v,(; implies
that a1 = b1, a contradiction; thus u = v. O

Lemma 6.3 Suppose [P],[Q] € Po, PXQ £ QX P and Py X --- X Py ~ Q1 X --- X Q for some
n > 1, where [B;],[Qi] € {[P],[Q]}, for 1 <i<mn. Then P; ~ Q;, for 1 <i < n.

Proof The result is trivial for 7 equal to 1 or 2; suppose it is true for all n less than some k£ > 2 and
letn==Fk. Let p: Py x---xXP, — @Q1X---XQ, be an order compatible bijection. Then, by lemma,
6.1, there is a permutation o € S, such that ¢(0p,,...,1p;...,0p,) = (0Q;,---:1Q,q)---+0Qn);
for 1 < i < n. Hence

Plx"'XEX"'XPRNQIX"'XQAUU)X"'XQn7
for 1 <4 < n. Therefore, by the inductive hypothesis,
([Pl]a"'a -Pz]aa[Pn]) = ([Ql]aa[Qo‘(z)]aa[Qn])a
for 1 <4 < n. Thus, by lemma 6.2, P; ~ @Q;, for 1 <i <mn. O

Theorem 6.4 If ~ is a Hopf relation on a hereditary family P, then P is a free partially com-
mutative monoid on the set of indecomposable types P-.

Proof Suppose P~ Q, where P =P, x --- X P, Q = Q1 X --- X Qy,, and [P;],[Q;] € P., for
1 < i < n. For any permutation 7 € S, let T'(7) be the set of increasing pairs whose order is
reversed by 7, i.e.,

T(r) ={(%,7) : 1<i<j<nand7(i) >7(5)}

and let t(7) = |T'(7)|. By lemma 6.1, there exists o € S, such that

P ~ Qq(iy, for1 <i<n. (6.1)

11



Suppose such o is chosen with ¢(o) as small as possible. Let P ,...,P;, be the factors of P,
and Qj,,...,Q;, be the factors of @ (in the same order as they occur in P and @ respectively)
having the same type as either P; or P;. It follows from lemma 6.1 and the definition of order
compatibility, that £ = r and

Pi1 X"'X-PikNle XXQJIc

If P, ~ Qj, for 1 <r <k, then there exists another permutation o’ € S, satisfying (6.1) with
t(0’) < t(o). Therefore P;, # Qj,, for some s; and thus by lemma 6.3, P; x P; ~ P; x P;. Hence
the permutation o is a product of transpositions of subscripts corresponding to commuting types
i P,. O

7 Duality

Suppose H is a K-coalgebra. Let H" denote the K-module of all K-linear maps Hom(H, K)
and, for any f € H* and = € H, let (f,z) denote the value which f takes on z. The transpose
of the coproduct A is the map A* : (H ® H)* — H" satisfying (A*(h),z) = (h, A(z)), for all
h € (H® H)" and z € H. The convolution product p' : H'® H* — H" is defined as the
composition of A* with the natural map H'®@ H* — (HQH)", ie., fg=p'(f®g) = (f®g)oA,
for all f,g € H*. Thus H" is a K-algebra, having the counit € of H as identity. H" is called the
dual algebra of H.

The subset Alg(H, K) of H* consisting of all algebra maps from H to K is a group under
convolution, called the group of multiplicative functions on H, and is denoted by M(H). The
inverse of any f € M(H) is given by the composition f o S, where S is the antipode of H.

If H = H(P) is the incidence Hopf algebra of a hereditary family P, modulo a Hopf relation
~, then the dual H(P)" is called the incidence algebra of P (reduced modulo ~ ). H(P)* can
be identified with the set of all maps from P to K, and the group of multiplicative functions
M (H(P)) can be identified with the set of all maps from P, to K. The convolution of f and g in
H(P)*, or in M(H(P)), is given explicitly by

<fga [PD = Z(fa [OPa"I"])<ga [J,‘, 1P]>a

zeP

for all [P] € P. Note that this operation corresponds to the usual product in an incidence algebra,
as defined in [17] or [7].

Suppose H = @,,~o H(n) is a graded Hopf algebra over K, which is a free, locally finite
K-module, that is, each H(n) is a free K-module of finite rank. Let H' denote the K-module
@D, >0 H(n)*. H " is a graded algebra with product x' given on homogenous components by the
composition

ZH Y H(n—k ;)Z (k) ® Hn— k)" 25 Hn)",

where A™ is the transpose of the coproduct A of H. Because H, has finite rank for all n, it follows
that H(r)*® H(k)* = (H(r) ® H(k))", for all r,k > 0. Thus H' is a graded Hopf algebra with
coproduct A’ given on homogenous components by the composition

Hn)' 5 S (H(k) © Hin — k) —>ZH )'® Hin — k)",
k=0

12



where * is the transpose of the product x of H. The Hopf algebra H' is called the graded dual
of H.

8 Uniform Families

A uniform family is a hereditary family P of graded posets together with a Hopf relation ~ such
that the following conditions are satisfied:
(1) P is commutative.
(2) If [P] € Py, y € P and y < 1p, then [y,1,] € P.
(3) For all n > 1, there exists exactly one type in P, having rank n.

Given a uniform family P, let z, denote the unique indecomposable type of rank n, for each
n > 1 and let zp = 1. The incidence Hopf algebra H(P) is thus isomorphic, as a graded algebra,
to the the polynomial algebra K|[z1,zs,...], where degz,, = n, for all n > 0.

For all n,k > 0, define the rank polynomial W, = W, x(x1,22,...) in H(P) by letting
Wy, =1, and for n > 1, choosing [z,y] of rank n, belonging to 750, and setting

W,k = Z [z, z].

z€[z,y]

rlz,y]l=k
Note that W, ,, =1 and W, g = x,, for all n > 0, and W, ; = 0, whenever n < k. It follows
that the coproduct of H(P) is given by

A(zy) = an,k & Tk,
k>0

for all n > 0. As we will see in example 14.1, the polynomials W, ; generalize the partial Bell
polynomials By, ;, (see [5], p. 133).

For all n > 1, let M,, denote the n X n matrix whose entry in row %, column j is equal to
Wi it1n—j, for 1 <4,5 < n, and let My be the 1 x 1 identity matrix.

Theorem 8.1 If P is a uniform family, then the antipode S of H(P) ~ K|[x1,z2,...] is given by
S(zyn) = (—1)"det My, for n > 0.

Proof The formula is obviously true for n = 0. Suppose that n > 0. The cofactor of W, ;, in
M, is equal to det My, for 0 < k < n — 1. Expanding by cofactors along the top row of M,, yields

the recursive formula )
n—

det M, = > (—1)" "W, ; det M.
k=0
Define an algebra map S’ : H(P) — H(P) by S'(zn) = (—1)" det M, for all n > 0. It follows
that

n—1

(—1)"S"(zn) = ) ()" W, L (—-1)FS (24),
k=0

and thus

n
0= Z Wn,kS'(a:k).
k=0

13



In other words, po (I ® S') o A(z,,) = 0, for all n > 1, where p : H(P) ® H(P) — H(P)
is multiplication in H(P), and I : H(P) — H(P) is the identity map. Thus, by uniqueness,
S’ = S, the antipode of H(P). 0

Example 8.1 (Linear Orders) The family £ of products of linear orders (see example 5.2) is
uniform, with rank polynomials given by W,, ;, = x,,_, for all n,k > 0, where z, = 0, for r < 0.
Thus by theorem 8.1, the antipode of H(L) can be expressed as

S(zp) = (—1)" det ($j7i+1)1§i’j§n, (8.1)
for all n > 0.

For all multiplicative functions f € M(H(L)), let f(t) be the power series >, ¢ f(zn)t".
The correspondence f —+ f(t) defines an isomorphism from M (H (L)) onto the group (under
multiplication) of power series with coefficients in K, having constant term equal to one. Equations
5.1 and 8.1 thus provide formulas for the coefficients of the multiplicative inverse of any such series.

9 Cocommutative Structure Theory

If H is any K-coalgebra and n > 1, let H(™ denote the n-fold tensor product H ® --- ® H, and
let A, : H — H®™Y be the n-fold coproduct. The coradical R of H is defined to be the direct
sum of all simple coalgebras of H. For all n > i > 1, let Hi(n) denote the n-fold tensor product
H® ---QH®RQ®H®---® H, having R as the ith factor. Define a sequence of submodules of
H by setting Hy = R, and H, = AL (H™ + H + ... + HM), for all n > 2. Tt is not difficult
to see that each H, is a subcoalgebra of H and the sequence Hy C H; C --- is a filtration of H.
The filtration Hy C H; C --- is called the coradical filtration of H (see [21]).

Suppose H is an irreducible K-bialgebra. Let u : H® H — H, A : H — H ® H,
n: K — H,and e : H — K be the product, coproduct, unit and counit of H, respectively.
The K-module Hom(H, H) of all K-linear maps from H to itself is an algebra with convolution
product, given by fg = po (f ® g) o A, for all f,g € Hom(H, H). The convolution identity
1 € Hom(H, H), given by 1 = 7 o ¢, should not be confused with the identity map I, satisfying
I(z) =z, for all z € H.

Let Hy C Hy C - - be the coradical filtration of H and, for each n > 0, let J,, denote the ideal
in Hom(H, H) consisting of all maps which annihilate H,. Since H is irreducible, its coradical
Hj is equal to n(K) = K, hence f € Jy if and only if f o7 is identically zero. If f € Jy, then
freJ,q, foralln > 1.

The ideals Jy D J; D --- form a local base for a topology on Hom(H, H), which is thus a
topological algebra. In particular, if f € Jy, then the sequence of powers (f"),>1 converges to
Zero.

As an example, note that 1— I belongs to Jy, hence S = 1/I = 1/(1—(1—1)) = Y 51— 1)*
converges in Hom(H, H). Therefore H is a Hopf algebra with antipode S. In the case that
H = H(P) is an incidence Hopf algebra, and [P] € P, we thus have

S[P) = Y (1-DFP]

k>0
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= Y 1-®- &1 —1I)]oAp[P]

k>0
k
= > 2 () [z,
k20w0<"'<wk i=1
zg=0p
zp=1p

which is simply equation 4.1 for the antipode of an incidence Hopf algebra.

If H is any K-Hopf algebra, the submodule of primitive elements P(H) = {z € H : Az =
z®1+1®z} is a K-Lie algebra, with [z,y] = zy — yz, for all z,y € P(H). On the other hand,
given any Lie algebra L over a field of characteristic zero, the universal enveloping algebra U(L)
can be equipped with a unique Hopf algebra structure such that L = P(U(L)). The following
structure theorem is well-known (see, e.g., [21], p. 274).

Theorem 9.1 If H is an irreducible, cocommutative Hopf algebra over a field K of characteristic
zero, then H is isomorphic to the universal enveloping algebra U(P(H)).

Define a Hopf algebra H over a characteristic zero ring K to be divisible if, for all n > 1 and
z € H, (I —1)"(z) is divisible by n in H. Note that if K is a field of characteristic zero, then any
Hopf algebra over K is divisible.

We now construct a linear projection A : H — P(H), in the case that H is irreducible,
cocommutative and divisible over K. Among other things, the map A will allow us to explicitly
exhibit commutative, cocommutative, divisible incidence Hopf algebras as polynomial Hopf al-
gebras with primitive indeterminants (i.e., as symmetric algebras, with the usual Hopf algebra
structure).

If H is irreducible, then the tensor product H ® H is also irreducible, and the K-module
Hom(H ® H,H ® H) is a topological algebra in the same manner as Hom(H, H). If H is also
divisible, and f € Hom(H, H) is an algebra map or coalgebra map, then 1 — f € Jy and the series
0g(f) = — Xes1 (1 — f)F/k and 1og(f @ f) = — Yy, (1® 1 — f & f)¥ /I converge in Hom(H, H)
and Hom(H ® H, H ® H), respectively. -

Lemma 9.2 Suppose H is irreducible, divisible and cocommutative, and f € Hom(H,H) is a
coalgebra map. Then A olog(f) =log(f ® f) o A.

Proof For all k > 1, let py : H*Y — H denote the k-fold product on H, and let T}, :
Hk) —y H(2k) be the “twist” map, given by

Tr1@Y1Q  QrxQ@UYy) =71 Q- QT QY1 Q@ -+ ® Yk,

for all z;,y; € H.
If we write fi=1—fand fo=1®1— f® f, then Ao f; = fo 0 A, because f is a coalgebra
map. Therefore, for all k& > 1,

Ao {H'l = Aoppo(fi® - ® f1)oAg
= (®pk)oThy10(A® - ®@A)o (fi® - ® f1) oAy
= (ug@pr)oTkr10(fo® @ f2)o(A® - Q@A)o Ay
= Ml(f)o(f2®"'®f2)°A2k+1
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where u,(f) denotes the k-fold product on H®. By cocommutativity, Agpy1 = A,(f) o A, where

A,(f) is the k-fold coproduct on H®). Hence Ao ff™! = ff+16 A and thus the result follows from
the series definition of log(f). O

Lemma 9.3 Suppose Hy C Hy C --- is a filtration of an irreducible Hopf algebra H (e.g., the
coradical filtration; or the length filtration, if H is an incidence Hopf algebra). Let H' = kere,
and H = H,NH™, for alln > 0. Then for all z € H, A(z) =z® 1+ 1Q® z +y, where
y€H, | ®H, ;.

Proof Lety=A(r)—z®1—1®uxz. Sincez € H', we have (I®¢)(y) = (IQ¢€)oA(x)—z—0=
x —x = 0. Therefore y € H® HT. Similarly, y € H* ® H, and thus y € H* ® H*. Since
Hy C H; C--- is a filtration, A(z) € Y H; ® H,—. Also,z®1+1Q®z € H,® Hy+ Hy® H,,
and so

n
y € (HT®@H")NY H;® Hy
1=0

n
- Y HYeH,
=0

But Hi = {0}, hence
n
yed) H'@H ,CH ®H,.
i=1
a

Theorem 9.4 If H is a divisible, cocommutative, irreducible Hopf algebra, and f € Hom(H, H)
is a coalgebra map, then log(f) : H — P(H).

Proof Let Hy C H; C --- be a filtration of H. Since n(K) = Hj and the composition € o 7 is
the identity on K, it follows that H = Hy® H". Given any z € H write z = a + b, where a € H
and b € HT. Then log(f)(z) = log(f)(a) + log(f)(b) = log(f)(b). Hence it suffices to show that
log(f)(z) € P(H), for allz € H. By lemma 9.2, Aolog(f)(z) = log(f ® f)oA(z), for all z € H.
But

log(f®f) = log[(f®1)(1® f)]
= log(f®1)+log(l1® f)
= log(f)®1+1®log(f),

and thus it follows from lemma 9.3 that log(f)(z) € P(H), for allz € H™. O

In [14], R. Ree proved a theorem which is equivalent to the above in the case K is a field of
characteristic zero and H is a tensor algebra, i.e., the universal enveloping algebra of the free Lie
algebra P(H). His approach is quite different from the one taken here and, in particular, does
not use the language of Hopf algebras.

Suppose o € S, is a given permutation. In the sequence o(1),...,0(n) insert a vertical bar,
or “spacer”, between o(i) and o(i + 1) whenever o(i) > o(i + 1). This partitions the sequence
into strictly increasing subsequences called ascending runs, e.g.,

o(l),...,0(1) |o(ir +1),...,0(i2) | ... | o(ia, +1),...,0(n). (9.1)

Let a, denote the number of ascending runs of o.
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Theorem 9.5 Suppose H is a divisible, cocommutative, irreducible Hopf algebra, and f € Hom(H, H)
is an algebra map. Then for z1,...,z, € P(H),

_1\as—1 1
tog(7) 1+ z) = 5 X (M) o) (9.2)

oES, Qo

Proof Fixk>1 Forl<i<kandl<j<m,sete =1® - ®z;® - ®1, where z; is the

ith factor and all other factors are equal to one. Therefore Ay ;(z;) = Y8, :1:( ) and thus
k . .
Dpoy(zy--zn) = Y 2t i), (9.3)
81 5eeeyin =1
Let L,, denote the set of all linearly ordered partitions of {1,...,n} (an element of L,, is a partition

of {1,...,n} together with a linear order on its set of blocks), and let Ly ; = {7 € Ly, : |7| = k}.
If # = (Bi,...,By) € Ly, then each B; inherits a linear ordering from {1,...,n}, and the
concatenation of these ordered sets gives a new ordering «'(1),...,7'(n) of the set {1,...,n}. It
follows from equation 9.3 and the fact that f is an algebra map that

(f=DF@izn) = Y f@wa) Tarm)- (9.4)

ﬂELnk

For each o € Sy, let k, denote the number of elements 7 of L,, ; such that 7’ = o, so that
(f =" = Y kof (@oq) - Ton))-
g€Sny

Given m = (B4, ..., B) € Ly, note that each ascending run of the permutation 7’ is a concate-
nation of consecutive B;’s. Therefore, given o € S,,, if £ < a,, then k, = 0. And if k£ > a,,
then each m € Ly, ;, with 7’ = ¢ corresponds to a subdivision of the partition (9.1) into a total of
k pieces, which can be constructed by inserting vertical bars into k — a, of the available n — a,

spaces. Therefore
(n — aa)
“"0’ l ?

for all o € S, and all £ > 1. It is not difficult to show (using induction) that
Z (—=1)* (n — a) (=1t (n)l
> E \k—a a a

for all n,k,a > 1. Therefore equation 9.2 follows. O
C. Reutenauer [15] proved a special case of the above theorem under the restrictions that H
is a tensor algebra, K a field of characteristic zero, and f the identity map.

Corollary 9.6 If H is a divisible, cocommutative, irreducible Hopf algebra, f € Hom(H,H) is
an algebra map, and x4, ...z, € P(H) commute, then

bgﬁ@ruﬁﬁz{f@ﬂ ifn=1

0 otherwise.

In particular, log(f)(z") = 0p1 - f(z), for all x € P(H).
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Proof Since the x; commute, it follows from equation 9.4 in the proof of theorem 9.5 that

_1)|7|-1
log(f) (@1~ a) = flan - am) 30 T
2 Tl
Now,
_1)|w|-1
> E— - e
TELy y€EIlL,
= Z :u’7r(’75 1Hn)a
v€ll,

where II,, denotes the lattice of all partitions of the set {1,...,n}, and p, is the partition Mobius
function, which is defined by the condition

Z Mw(% 11‘In) = 5n,la
v€lly
for all n > 1 (see [17]). Hence the result follows. O

In the characteristic zero case, corollary 9.6 follows immediately from theorem 9.5 and the
Specht-Wever theorem (see [12]).

Whenever H is irreducible and divisible over K, we write A for log(I), where I : H — H is
the identity map. If H is also cocommutative, then according to theorem 9.4 and corollary 9.6,
A is a surjection from H onto P(H), whose restriction to P(H) is the identity, that is, A is a
projection from H onto P(H).

Example 9.1 (Binomial Hopf Algebra) The binomial Hopf algebra K|z] (see example 4.1)
is divisible, for any K. The projection A : K[z] — P(K[z]) satisfies

n )z ifn=1
Mz )_{ 0 otherwise.

Example 9.2 (Free Partially Commutative Hopf Algebras) If K is a field of characteris-
tic zero, then by theorem 9.5, the projection A from the free partially commutative Hopf algebra
K(A,0) (see example 4.2) onto P(K(A,#)) is given by

Aw] = Y w(i)_[{'ﬂau)m%(n)],

a
oESy g

whenever w = x1 -+ -z, where z; € A, for 1 <17 < n.

One immediate consequence of theorem 9.1 is that an irreducible, cocommutative Hopf algebra
over a field of characteristic zero is generated by primitive elements. The following proposition
generalizes this fact to divisible Hopf algebras and, furthermore, gives a technique for finding
generating sets of primitive elements.

Proposition 9.7 Suppose H is a divisible, cocommutative, irreducible Hopf algebra, and Hy C
Hy C--- is a filtration of H. If S is a subset of H such that the subalgebra of H generated over
K by S, = SN H, contains Hy, for all n > 0, then A\(S) generates H. Hence, in particular, H
18 generated by primitive elements.
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Proof Since Hy C H; C --- is a filtration, we have

Ap1(H))C > Hy®---®H, (9.5)

t1+-+ig=n

for all k > 2. Let H" = kere and H,f = H" N Hy, for all n > 0. If z € H,, then by (9.5),

Az) ==Y (1-D*@a)/k =z+p(z1,...,2,), (9.6)
k>1
where p is a (non-commutative) polynomial with coefficients in K, and z1,...,z, € H,_;. Let

(A(S)) be the subalgebra of H generated by A(S). The proof now follows by induction: If z € Si,
then z can be written uniquely as a + b, where a € Hy and b € P(H), because H = Hy® Ht and
H{ C P(H). Hence A\(z) = b and so z = a + A(z). Thus S, and therefore Hj, is contained in
(A(S)). Now suppose H, 1 C (A(9)). If z € Sy, then it follows from equation 9.6 that z € (A(S5)).
Therefore H, C (A\(95)). ]

10 Cocommutative Incidence Hopf Algebras

Suppose P is a hereditary family of posets. A Hopf relation ~ on P is self-dual if, for all P € P,
there exists a bijection ¢ = @p from P to itself such that [0p,z] ~ [p(z),1s], for all z € P.
The incidence Hopf algebra H(P) is cocommutative if and only if the relation ~ is self-dual. In
particular, whenever P consists of self-dual posets, then isomorphism is a self dual relation.

The monoid of types P is divisible if, for all k > 1, and [P],[Q] € P, the number of length
k chains 0p = zg < -+- < 74 = 1p in P such that H§:1[$i—1,$i] = [Q] is a multiple of k. For
example, if P consists of boolean algebras and ~ is isomorphism, then P is divisible. Clearly,
H(P) is divisible if and only if P is divisible.

Theorem 10.1 If H = H(P) is a divisible, cocommutative incidence Hopf algebra, then the
projection A : H — P(H) is determined by

(-t
AlP] = Z Z T r H[ﬂciq,wi], (10.1)
k>1ag<---<ap i=1
zg=0p
zp=1p
for all [P] € P.
Proof Immediate from the power series expansion of log(I). a

Note that formula (10.1) for A = log(I) also holds when H is non-cocommutative, but in that
case, the image of A is not necessarily contained in P(H).

If H = H(P) is commutative, then by theorem 6.4, as an algebra, H is isomorphic to the
polynomial algebra K[P,]. If H is also divisible and cocommutative, then it follows from propo-

sition 9.7 that the set A\(P,) generates H. The following theorem shows that H(P) is isomorphic

to the symmetric algebra on the free module K{\(P,)}, equipped with the usual Hopf algebra
structure (see [21], p. 59 ).
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Theorem 10.2 If H = H(P) is a divisible, commutative and cocommutative incidence Hopf

algebra, then H is isomorphic to the polynomial Hopf algebra K[\(P,)], having primitive indeter-
minates.

Proof By proposition 9.7, the set of primitive elements A(P,) generates H. It remains to show
independence. Suppose r > 1 is minimal such that there exist [P1],...,[P,] € P, and a non-zero
polynomial p with coefficients in K satisfying p(A[P1], ..., A[P;]) = 0. Assume that [(P) > I(F)),
for 1 <i < r; and arrange p according to descending powers of A\[P;], i.e.,

PP, .., AIR) = po(ALP2, -, AR AP + pr(A[P2), -, AR (A[PL]) !
+ o 4 P (A[P], - .., A[B])
= 0,

where pog,...,p, are polynomials with coefficients in K, for some n > 1. By equation 10.1,
AP = [P] + g([@1],-.-,[Qk]), for some k, where g is a polynomial with coefficients in K
and [(Q;) < I(P1), for 1 < ¢ < k. Hence the coefficient of [P;]" in p(A[P1],...,A[P;]) is equal
to po(A[P%], ..., A[P;]), which must be zero. Thus by the minimality of r, py is identically zero.

Similarly, p1,. .., p, are identically zero, and therefore so is p. Hence the set A(P,) is algebraically
independent over K. O

Example 10.1 (Linear Orders) Suppose H (L) is the free commutative incidence Hopf algebra
of the family of linear orders (see examples 5.2 and 8.1). If K is a field of characteristic zero, the
projection A : H(L) — P(H(L)) is given, according to equation 10.1, by

_1\k—1
T I

k>1ny+-+np=n
n;>1
for all n > 0. Thus H (L) is isomorphic to the polynomial Hopf algebra K[A(z1), A(z2), .. .|, where
the A\(z;) are primitive.

Suppose H (P) is a divisible, commutative and cocommutative incidence Hopf algebra. Because
I = exp(\) in Hom(H, H), we have the following polynomial expression for the basis element
[P] € P in terms of primitive elements:

k
Pl=Y % S [ Mo, o (10.2)

k>1 """ zg<-<ay, =1
zg=0p
rp=1p

11 Commutative Incidence Hopf Algebras

A Hopf relation ~ on a hereditary family of graded posets P is locally finite if there are finitely
many types [P] € P of rank n, for all n > 0. Suppose such P and ~ are given, and @,,~o H(P)(n)
is the rank grading of the incidence Hopf algebra H(P). For all [P] € P, define P’ in the graded
dual H(P)' by

1 if [P] =[]

0 otherwise,

(Pl[QN) = {
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for all [Q] € P. The set P' = {P': [P] € P} is thus a basis for H(P)'. The product in H(P)' is
given by
P'Q'= ) (RPQR,

[R]eP

and the coproduct A’ is given by

A(P)= 3 Q@R
[Ql,[P1eP
[QI[RI=[P]

for all P'. Q" e P'.

Now suppose that K is a field of characteristic zero and the monoid of types P is commutative.
Write L(P) for the Lie algebra of primitive elements of H(P)". L(P) has basis P, = {P': [P] €
P, }, and bracket determined by

[P,, QI] — PIQI o QIPI
= Y (BPQ) - (RQ,P)R,

[R]€Ps

for all P/, Q" € P.. In particular, it follows from the above that if P, is finite, then L(P) is finite
dimensional and nilpotent.

According to theorem 9.1, H(P)' is isomorphic to the universal enveloping algebra of L(P).
It follows from the theorem of Poincaré-Birkhoff-Witt that if ’P; is totally ordered, then the set
of monomials of the form P/ --- P, where k > 0 and P/ <--- < P, € P!, is a basis for H(P)'.

12 Cocommutative Graph Hopf Algebras

Suppose G is a graph with vertex set V(G) and edge set E(G). If U C V(G), then the induced
subgraph G|U is the graph having vertex set U and edge set consisting of all edges of G which
have both end-vertices contained in U. The sum G + H is the disjoint union of graphs G and
H. The isomorphism class, or type, of a graph G is denoted by [G]. All graphs considered in this
paper will be finite.

Suppose G is a family of graphs which is closed under formation of induced subgraphs and
sums. Let G denote the set of isomorphism types of graphs in G and let Go denote the set of
isomorphism types of connected graphs in G. A product is defined on G by [G][H] = [G + H], for
all G, H € G, and thus G can be identified with the free commutative monoid on Go.

For G € G, let B(G) denote the lattice of subsets of V(G), ordered by inclusion. Let P(G) be
the hereditary family consisting of all finite products of intervals from the posets B(G), for G € G.
Suppose G,-,G;- €3G, U; CW; CV(G;) and Uj'~ - W]’ - V(G;-), for1<i<n,1<j<m. A Hopf
relation ~ is defined on P(G) by setting [Uy, W1] X - -+ X [Uy, W] ~ [U], W{] x --- x [U},, W}.] in
P(G) if and only if 37 | Gi|(W; — U;) and 37" G%|(W] — Uj) are isomorphic graphs.

We identify the monoid of types P(G) with the monoid of isomorphism types G via the cor-
respondence [U, W] «— [G|(W — U)], whenever U C W C V(G), for G € G. Under this identi-
fication, the set of indecomposable types corresponds to the set of types of connected graphs Go.
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The incidence Hopf algebra H(G) = H(P(G)) is therefore isomorphic to the polynomial algebra
K|[G,], with cocommutative coproduct given by

AlGl= ) [GUle[G|(V(G) - D),
UCV(G)

for all G € G.
It follows from equation 4.1 that the antipode of H(G) is given by

SIG) =" (-1t T] [G1B], (12.1)

™ Ber

where the sum is over all partitions 7 of V(G).

The monoid of types P(G) is divisible, and therefore the map A : H(G) — P(H(G)) is defined
with no need for characteristic zero K. We obtain from equation 10.1 that

NG =Y (=) Y (Jx| - 1) [T [G1BY, (12.2)

s Ben

where, as above, the sum is over all partitions 7 of V(G).

According to theorem 10.2, H(G) is isomorphic to the polynomial Hopf algebra K[A(Go)].
For any graph G, the poset B(G) is graded of rank |V(G)|. Therefore, by proposition 4.4,
H(G) is a graded Hopf algebra, where for all G € G, deg[G] = |V(G)|, and by equation 12.2,
A[G] is homogeneous of degree |V(G)| as well. Associate to the family G the type sequence
t(G) = (t1,to,...) where, for all k > 1, t; is the number of isomorphism types of connected graphs
on k vertices in G. We thus have the following proposition.

Proposition 12.1 The Hopf algebra H(G) is determined, up to graded Hopf algebra isomorphism,
by the type sequence t(G).

Remark:

The construction of H(G) makes sense when G is any family of structures on finite sets for
which one has suitable notions of restriction to a subset and disjoint union. For example, G
may consist of matroids, labelled graphs, or hypergraphs. These more general Hopf algebras are
considered in [20], where the language of categories is used in order to give a precise definition of
such a familiy of structures.

Example 12.1 (Independent Graphs) Let Z be the set of all (finite) graphs with no edges,
and let z denote the type of the single vertex graph. Then H(Z) is isomorphic to the binomial
Hopf algebra K|[z| (see example 4.1).

Example 12.2 (Complete Graphs) Let K consist of all disjoint unions of complete graphs,

and let z,, denote the type of the complete graph on n vertices. Then H(K) is isomorphic to the
polynomial algebra K[z1,z2,...], with coproduct given by

Alzn) = i (Z) Tk ® Tn—k,
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for all n > 0. According to equation 12.1, the antipode of H(K) can be written as

n

S(zn) = (-1)FkIB,, k(21,725 - . ), (12.3)
k=0

where the B,, x(z1, 2, ...) are the partial Bell polynomials.
The family P(K) is uniform, with z,, the unique connected type of rank n, for all n > 0 (as
usual, g = 1). The rank polynomials W, j are given by

Wn,k = (Z) Tn—k,

for all n, k > 0, where z,, = 0, for r < 0. Therefore, by theorem 8.1, the antipode of H (K) satisfies
() = (—1)" det ((n —i+ 1) xj_m) (12.4)
n= 1<i,j<n,

for all n > 0.
By equation 12.2, the projection A\ : H(K) — P(H(K)) is given by

)\(.’L‘n) = Z(—l)k_l(k — 1)!Bn,k(£€1,.’172, .. .),
k>1

for all n > 0. The polynomials A(z,) are known as the logarithmic polynomials (see [5]) which are
usually defined by setting A(z,) equal to the coefficient of t*/n! in the series log(> >0 zxt*/k!),
for all n > 0. B

Suppose K has characteristic zero. For a multiplicative function f € M(H(K)), let f(¢) be the
divided powers series Y, < f(z5)t"/nl. The correspondence f — f(¢) defines an isomorphism
from M(H(K)) onto the group (under multiplication) of divided powers series with coefficients
in K, having constant term equal to one. Equations 12.3 and 12.4 thus provide formulas for the
coefficients of the multiplicative inverse of any such series.

13 Non-Commutative Graph Hopf Algebras

Suppose G1 and G2 are simple graphs (i.e., having no loops or multiple edges) with linearly
ordered vertex sets. If U C V(G;), then U inherits a linear ordering from V(G;). Also, the
disjoint union of V(G1) and V(G2) is linearly ordered by concatenation. Therefore the restriction
G1|U and the disjoint union of G; and G3 also have linearly ordered vertex sets.

Suppose G is a family of simple graphs with linearly ordered vertex sets, which is closed
under formation of disjoint unions and induced subgraphs. Define G1,G2 € G to be isomorphic
if there exists an order-preserving graph isomorphism f : V(G1) — V(G2). Let (G) denote the
isomorphism class, or type, of G € G. The set G of all types of graphs in G is a monoid, with
product induced by disjoint union. A type (G) factors in G if and only if G can be written as a
disjoint union of graphs G; and Gj, where each vertex set V(G;) consists of an interval in the
ordering of V(G). Let Go denote the set of indecomposable types in G. Then G is isomorphic to
the free (non-commutative) monoid on Go-

Let H;(G) denote the monoid algebra of G over K. A coproduct and counit are defined on
Hy(G) by

AlG)= Y (GIU)®(GI(V(G) -D)),
UCv(@)
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and

0 otherwise.

€<G):{ 1 ifV(G)=0

for all G € G. H/(G) is a cocommutative, non-commutative and non-divisible incidence Hopf alge-
bra, arising from products of boolean algebras in the much the same manner as the commutative
graph Hopf algebra H(G) defined earlier.

As an example, let G be the family of all graphs with linearly ordered vertex sets. The set of
types on n vertices in § is in natural one-to-one correspondence with the set of all simple graphs
with vertex set {1,...,n}. Therefore, the homogenous component H(G)(n) in the rank grading

of H)(G) has dimension 2(2).

14 Hereditary Families of Graphs

If G is a simple graph (finite, as usual) and S is a subset of the edge set E(G), let G|S denote the
subgraph of G consisting of all edges in S and all vertices which are incident to edges in S, and let
G - S denote the contraction of G to S, i.e., the graph obtained from G by succesively removing
edges in E(G) — S from G, where the end-vertices of each edge are identified upon its removal.
The resulting graph is independent of the particular order in which the elements of E(G) — S are
removed. Also, note that loops and parallel edges may be created by this process of identifying
vertices; so in order to obtain a simple graph G - S, all such loops are deleted and parallel edges
are replaced by single edges. A subset S C E(G) is closed if no loops are created while forming
the contraction G - (E(G) — S). Equivalently, S is closed if and only if there exists a partition
m = w(S) of the vertex set V(G), where the induced subgraphs G|B are connected for all blocks
B € 7, such that S is equal to the union of the edge sets E(G|B), B € 7.

The lattice of contractions of G is the lattice L(G) of all closed subsets of E(G), ordered by
inclusion. Through the correspondence S — 7(S), L(G) can be identified with the lattice of
all partitions of V(G) whose blocks induce connected subraphs, ordered by refinement. Graphs
having isomorphic lattices of contractions were characterized by Whitney in [22]. In particular,
he showed that if G is simple and 3-connected, then the isomorphism class of G is uniquely
determined by the isomorphism class of £(G).

A hereditary family of graphs is a class of simple graphs which is closed under formation of
direct sums, restrictions to closed edge subsets, and contractions. If G is a hereditary family of
graphs, G and H in G are weakly isomorphic if they are isomorphic after deleting all isolated
vertices. Let G and G, denote the sets of weak isomorphism types of graphs and connected graphs
in G, respectively. Direct sum induces a product on G, which is thus isomorphic to the free
commutative monoid on Go.

Given a hereditary family of graphs G, let H(G) denote the monoid algebra of G over K. A
coproduct A and counit e are defined on H(G) by

AlGl= Y [GIS]e[G- (B(G) - 9)),
SeL(G)

and '
(6] = { 1 if B(G)=10

0 otherwise.
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for all [G] € G. A is coassociative because the operations of restriction and contraction commute
with one another, i.e.,

(GI(S1 + 82)) - S1= (G - (51 + 53))|51,

whenever S7 + So + S3 = E(G). H(G) is an commutative incidence Hopf algebra, which is non-
cocommutative, in general, whose underlying hereditary family of posets is the family of lattices
of contractions of graphs in G.

One can define hereditary classes of matroids analagously, and construct corresponding inci-
dence Hopf algebras exactly as for graphs. However, one does not obtain a strict generalization
of the graph Hopf algebras H(G) in this manner, due to the fact that the isomorphism relation
for graphs which are not 3-connected is finer than the isomorphism relation for corresponding
graphic matroids.

Example 14.1 (The Faa di Bruno Hopf Algebra) Let K be the hereditary family consisting
of all disjoint unions of complete graphs, and let z,, denote the type of the complete graph on
n + 1 vertices. The lattice of contractions of a graph of type z,, is the full partition lattice of an
n + l-element set. Therefore H(K) is isomorphic to the polynomial algebra K|z, z2,...], with
coproduct and counit given by

n
A(.’En) = Z Bn+1,k+1(1,$1, 9 .. ) ® Tk,
k=0

6(%):{ 1 ifn=0

and

0 otherwise.

for all n > 0, where zo = 1, and the B, ; are the partial Bell polynomials. The Hopf algebra
F = H(K), called the Faa di Bruno Hopf Algebra by Joni and Rota [13], was first studied by P.
Doubilet, in [6].

Suppose K has characteristic zero. For f € M(F), let f(t) be the divided powers series
Y1 f(xn—1)t"/nl. The correspondence f — f(t) defines an anti-isomorphism from M (F)
onto the group (under composition) of divided powers series with coefficients in K, having zero
constant term and coefficient of ¢ equal to one. One form of the Lagrange inversion formula (see
[5]) states that if f(t) = >, 51 fn—1t"/n! and ¢(t) = 3,51 gn—1t"/n! are such series, which are
inverse to one another under functional composition, then the coefficients of g(t) are given by

gn = Z(_l)an-Hc,k(Oafla f27 . )

k>1

In other words, the antipode S of F satisfies

S($n) = Z(_l)an+k,k(Oa$lam25---)7 (141)
k>1

for all n > 1. A combinatorial proof of equation 14.1, using the general equation (4.1) for the
antipode of an incidence Hopf algebra, was given in [11].

The hereditary family of posets corresponding to K is the family of all intervals in partition
lattices of finite sets, which is uniform. For all n > 0, z,, corresponds to the type of the lattice
of partitions of an (n + 1)-element set, and is the unique connected type of rank n. The rank
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polynomial W, ; of F is equal to the partial Bell polynomial By 1 x+1(1,21,22,...), for all
n,k >0, where B,, ;, = 0, for n < k. Therefore, by theorem 8.1, the antipode of H(K) satisfies

S($n) = (_1)n det (Bﬂ*i+2,n*j+1(1’ L1, X2, - - ) ) (14.2)

1<4,j<n,

for all n > 1. Equation 14.2 thus provides a determinant formula for the coefficients of the inverse
of a formal power series under functional composition.

Let L(K) = P(F') be the Lie algebra of primitive elements of the graded dual hopf algebra
F'. The set {z!, : n > 1} is a basis for L(K). The product of z/, and 2, in F is given by

n+m+1
o= (") i + (4 B @)

! / SN Y | / !/ :
Hence, the bracket [z],,z],] = =, z;, — x;,z), satisfies

P n+m+1 n+m+1 ,
['mem] = m - n Tnt+m

(n+m+1)! z!
(n+1)!(m + 1)1t

= (m—n)

for all n,m > 1. Putting y,, = (n + 1)!z},, for all n > 1, we have
[y;w y;n] = (m - n)y;H—ma

for all n,m > 1. Tf K has characteristic zero, then {y{,45,...} is a basis for L(K), and since F'
is cocommutative and connected, it is isomorphic to the universal enveloping algebra of L(K), by
theorem 9.1.

Example 14.2 (Paths) Let A be the family of all graphs which are disjoint unions of paths,
and let b, denote the type of a path of length n, for all n > 0. The family A is hereditary, and
H(N) = K|by,bs,...] with coproduct and counit given by

k
Abn)=> > (H bml) ® bg—1,

kzl ni+-+ngp=n+l =1
n;>1
and
1 ifn=0
€(bn) = { 0 otherwise.
for all n > 0.

If G is a path, then every subset of E(G) is closed, so the lattice of contractions of G is a
boolean algebra. Thus H(N) is the incidence Hopf algebra of a hereditary family of boolean
algebras. This family is uniform, and the type b,, of the lattice of contractions of a path of length
n is the unique indecomposable type of rank n. The rank polynomials of H(N') are given by

k
Wn,lc—l = Z H bni—la

ny4-Ang=n+1i=1
n;>1
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for all n > 0.

For f € M(H(N)), let f(t) be the power series Y.~ f(bn,—1)t". The correspondence f —>
f(t) defines an anti-isomorphism from M (H(N)) onto the group (under composition) of power
series with coefficients in K, having zero constant term and coefficient of ¢t equal to one. Theorem
8.1 thus gives a determinant formula for the inverse of such series.

The algebra map « : F — H(N) defined by a(z,) = (n+1)!b,, for all n > 0, is a Hopf algebra
map, which is an isomorphism when K has characteristic zero. The transpose o : H(N) — F'
satisfies o (b,) = (n 4 1)!z!, = ¢/., for all n > 0. Thus the bracket in L(N) = P(H(N)') is given
by [b),,bl,,] = (m — n)b,,,,, for all n,m > 1, which is also not difficult to compute directly.

If K is the Lazard Ring m.(MU), then H(N) is isomorphic as a Hopf algebra to the dual
MU, (MU) of the Novikov algebra of operations on MU-cohomology (see [2]).

15 Minor-Closed Families of Matroids

Suppose M = M(S) is a matroid on a (finite) set S. If U C S, then M|U and M - U denote
the restriction and contraction of M to U, respectively. A matroid N is a minor of M if it is
obtained from M by any combination of restrictions and contractions. As in the case of graphs,
these operations commute, so any chain 7' C U C S determines a unique minor M(7T,U) of M,
where M(T,U) = (M|U)-T=(M-(S—(U-T)))|T.

If M = M(S) and N = N(T) are matroids, then M + N denotes the direct sum of M and N,
whose underlying set is the disjoint union S + 7. A matroid is connected if and only if it cannot
be expressed as a direct sum of two non-trivial matroids.

Suppose M is a family of matroids which is closed under formation of minors and direct
sums. Let M and M, denote the sets of isomorphism types of matroids and connected matroids
in M, respectively. Direct sum induces a product on M, which is thus isomorphic to the free
commutative monoid on M,. Let H(M) denote the monoid algebra of M over K. A coproduct
A and counit € are defined on H(M) by

AM] =} [MU]®[M - (S -U)],
UcCs

G[M]:{ 1 ifS=0

0 otherwise.

and

for all [M] = [M(S)] € M. H(M) is a commutative, usually non-cocommutative, incidence Hopf
algebra, whose underlying hereditary family consists of boolean algebras of subsets of point sets
of matroids in M.

16 Distributive Lattices

All posets considered in this section are finite and do not necessarily have unique maximal and
minimal elements.

An order ideal in a poset P is a subset L of P such that whenever y € L and z < y in P then
z € L. A subposet @Q of P is convez if, whenever z < y in Q and z € P satisfies x < z < v, then
z € Q; that is, if and only if Q = L — I, for some order ideals I C L in P.
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Let J(P) be the distributive lattice of all order ideals of the poset P, ordered by inclusion
(see [3] for more about distributive lattices). The isomorphism class of P is uniquely determined
by that of J(P), and J(P + @) is naturally isomorphic to J(P) x J(Q), for all posets P and @
(where P + @ denotes the disjoint union of P and Q). If P is a poset and I < L in J(P), then
the interval [I, L] in J(P) is naturally isomorphic to the lattice of order ideals J(L — I).

Suppose F is a family of posets which is closed under formation of disjoint unions and convex
subposets. The set of distributive lattices P = {J(P) : P € F} is a hereditary family. Let F
and F, denote the sets of isomorphism classes of posets and connected posets, respectively, in F.
Disjoint union induces a product on F, which is thus isomorphic to the free commutative monoid
on F,. Letting ~ be the isomorphism relation on P, we can identify the monoid of types P with
F, and the set of connected types P, with F,. The incidence Hopf algebra H(F) = H(P) is thus
isomorphic to the polynomial algebra K [.7-" ], with coproduct and counit given by

AlPl= > [I®[P—1]
IeJ(P)

dﬂz{lﬁp:@

and

0 otherwise,
for all [P] € F.

Example 16.1 (Rooted Forests) A tree is a (finite) simple graph which contains no cycles,
and a rooted tree is a tree together with a distinguished element, called the root. A rooted forest is
a graph whose connected components are rooted trees. A subforest (i.e, subgraph) G of a rooted
forest F' is also rooted, by letting the roots of G be those vertices in G having minimal distance
to a root in F'. Alternatively, one can define a rooted forest as a finite poset F' in which every
element is covered by at most one element. The Hasse diagram of such a poset is a forest in the
usual sense, having maximal elements as roots. A subforest of a rooted forest F' is a disjoint union
of convex subposets of F'.

If F is a family of forests which is closed under formation of subforests and disjoint unions,
then we can construct the incidence Hopf algebra H(F) arising from the family of distributive
lattices {J(F) : F € F}.

The Hopf algebra H(F), for F the set of all rooted forests, was introduced in [8] by Diir,
who mentions applications to the theory of Butcher series and thus to numerical integration of
ordinary differential equations. There is a canonical bijection from F onto the set of all non-empty
rooted trees 7, given by adding a new vertex v to any forest F', connecting v by an edge to each
of the roots of F' and declaring v to be the root of the resulting tree. Later, and independently
of Diir, Grossman and Larson defined a Hopf algebra having isomorphism classes in 7 as a basis,
which via the above bijection is isomorphic to the graded dual of H(F) (see [9]). They also
define analagous Hopf algebras for the family of rooted trees endowed with various additional
structures, such as labellings and orderings. In [10], Grossman and Larson give applications of
the Hopf algebra H(F )' to differential equations, symbolic algebra, and solutions of non-linear
systems.
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