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Abstract

A majority of social network research deals with explicitly formed
social networks. Although only rarely acknowledged for its existence,
we believe that implicit social networks play a significant role in the
overall dynamics of social networks. We propose a framework to evalu-
ate the dynamics and characteristics of a set of explicit and associated
implicit social networks. Specifically, we propose a social network ma-
trix to measure the implicit relationships among the entities in various
social networks. We also derive several indicators to characterize the
dynamics in online social networks. We proceed by incorporating im-
plicit social networks in a traditional network flow context to evaluate
key network performance indicators such as the lowest communication
cost, maximum information flow, and the budgetary constraints.

Keywords: Implicit Social Network, Online Social Network
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1 Introduction

In recent years, several online social network platforms have witnessed huge

public attention from social and financial perspectives. However, there are

different facets to this interest. Facebook, for example, has gained a large

set of users but failed to excel on profitability.

Online social networks can be broadly classified as explicit and implicit

social networks. Explicit social networks (e.g., Facebook, LinkedIn, Twitter,

and MySpace) are where the users define the network by explicitly connect-

ing with other users, possibly, but not necessarily, based on shared interests.

Implicit social networks (e.g., Last.FM, Outbrain, and Color) are networks

where a user is defined by his or her interests and the (implicit) connections

between users are not explicitly created by the users themselves but evolve

purely based on their interests as exemplified by their online behavior. An

implicit social network could be ephemeral and last only as long as is nec-

essary, unlike a majority of explicitly created networks. For example, Color

has the ability to co-locate users and determine their implicit social graph,

that can then be used to introduce items from users who do not necessar-

ily know one another. Color lets users who took and posted photographs

from an event (e.g., wedding, game, music) to view photographs taken by

other users from the same event using location-based metrics. Unlike ex-

plicit social networks, their implicit counterpart is not limited by users who

are friends or acquaintances.

We investigate online implicit social networks and their unique character-

istics when considered along with their explicit social network counterparts.

We propose a measurement matrix that can be used to evaluate social net-

works not only by their topology, but also from a network flow perspective.

With the social network matrix, practitioners can readily determine the key
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performance indicators of a single or a set of social networks.

The remainder of this paper is structured as follows. We first review

existing related literature on social network measurement and online social

network applications. We then present our social network matrix methodol-

ogy in Section 3. In Section 4, we model the implicit social network matrix

within the framework of traditional network flow context and evaluate three

practical social network management problems, including the lowest cost

problem, the maximum information flow problem and the budgeting prob-

lem. In conclusion (Section 5), we present our main findings and propose

future avenues for research.

2 Related Literature

Explicit online social networks have been extensively studied by researchers

during the last decade. However, implicit online social networks have not

received their fair share of attention, possibly due to the difficulty in extract-

ing them from readily available data. Nevertheless, the last few years have

witnessed increasing interest among both researchers and practitioners to

seriously consider implicit social networks/graphs. We now briefly discuss

existing literature on implicit social networks.

As discussed in Wasserman and Faust (1994) and Lattanzi and Sivaku-

mar (2009), social networks can be represented as an “affiliation network” in

an organization, such that a publisher can reach its audience by promoting

programs to its affiliation networks. The modeling approach in our paper

shares some common traits with the traditional affiliate network perspective

in that both models utilize the similarity between a business entity and the

social network. In addition to a pure value-based analysis perspective, our

model considers additional dimensions through incorporation of non-value
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(implicit) traits of a social network that is more fundamental to network

analysis. Our model also differs from affiliate network models with the for-

mation of relationships between any two affiliated social networks.

Nauerz and Groh (2008) consider the determination of expert users in a

Web portal. To accomplish this, they stress the importance of understanding

the users’ behavior, their interests, preferences and knowledge. They use

both static information from users’ profiles such as their age and native

language as well as dynamic information such as those that are retrieved

from Web usage mining, user tag behavior, among others. Such implicit

online social network information is then complemented by explicit online

social network information to help determine expert users.

Smith et al. (2009) show how to generate individual-centered social net-

works which are not built around explicitly announced relationships, that

they call ‘implicit affinity networks (IAN),’ which is another name for im-

plicit social networks. These IANs capture dynamic, multi-faceted relation-

ships that are implicit in the shared characteristics or attributes of individ-

uals. They determine an individual user’s social capital based on a hybrid

network that comprises both the implicit and explicit form of online social

networks using a mathematical formulation. In doing this, they decouple

bonding and bridging social capital so that they are allowed to vary inde-

pendently of each other.

Using online implicit social networks that is formed by a weighted graph

with edge weights determined by the frequency, recency, and direction of in-

teractions between users and their contacts and groups, Roth et al. (2011)

present a friend-suggestion algorithm. They follow related literature in dis-

tinguishing implicit online social networks from online explicit social net-

works that are explicitly generated by the users themselves. This algorithm
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assists users to implicitly or explicitly create customized contact groups.

They use interactions between users and their contacts as well as groups

of contacts to generate the implicit online social network graph, which is

then analyzed to operationalize the proposed algorithm. Their algorithm

incorporates both group interactions and peer-to-peer interactions to de-

termine tie strengths in the developed networks. As initial seed input to

their algorithm, they use the user’s social network with weighted edges and

a sample from the user’s contacts to generate a customized contact group

that expands the initial seed of a few contacts. They illustrate their algo-

rithm using implemented Gmail features “Don’t forget Bob!” and “Got the

wrong Bob?”

Gupte and Eliassi-Rad (2012) solve the inference problem of determining

the weighted online implicit social network that gives rise to a set of observed

events. They consider a set of users and a set of events where different users

attend (possibly different) subsets of events with the possibility of several

of these users simultaneously attending the same event. An example of an

event represented in their study include those users who took at least one

photograph at the same physical and temporal proximity of one another

similar to that in Color. They then set out to determine how connected,

which is represented by the strength of the tie in the network, any two

users are based on a set of events. The only information they use in their

approach is the knowledge that an event is attended by a known set of users.

The underlying assumption in their approach is that there is an (implicit)

relationship (e.g., interests) between any pairs of users who attend events

which is indirectly based on an implicit social network.

Song et al. (2010) use online message threads to determine implicit

social relationships among users who participated in those threads. They
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also introduce a visualization and interaction method that is suitable for ex-

ploring latent social relationships in message threads. They propose several

algorithms and evaluate them using a Facebook dataset. Among the algo-

rithms proposed and tested, the weighted harmonic rule mining with a root

included sliding window showed the best performance. They claim that the

visualization and interaction methods that they propose would enhance the

usability of social network data in determining implicit social relationships.

We develop a completely different model based on implicit social activities

that is not based on the distance model as in the latent social network litera-

ture. Latent social network is based on a distance model that is tangentially

related to the concepts discussed in this research. The reason for our inclu-

sion of this reference is to prevent possible confusion between “latent” and

“implicit” in the future.

Yang and Leskovec (2010) consider interactions among numerous par-

ticipants and develop a Linear Influence Model. Rather than assuming the

knowledge of a given social network and then modeling the diffusion by pre-

dicting which node will influence which other nodes in the network, they

focus on modeling the global influence of a node on the rate of diffusion

through the (implicit) network. They model the number of newly infected

nodes as a function of other nodes that were previously infected. For each

node, they estimate an influence function that quantifies the number of sub-

sequent infections that can be attributed to the influence of that node over

time. A nonparametric formulation of the model leads to a simple least

squares problem that can be solved on large data sets. They then validate

their proposed model on a data set comprising 500 million tweets and a data

set comprising 170 million news articles and blog posts.

Frey et al. (2011) base their study on the premise that (a) explicit on-
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line social networks provide trusted social links and (b) implicit online social

networks do not provide any trust guarantees while providing useful links.

They then combine explicit and implicit online social networks to benefit

from their complementary advantages - with the usefulness of implicit online

social networks and the trust-worthiness of explicit online social networks.

Their claim for the trustworthiness of links in an explicit online social net-

work arises from these links connecting friends and co-workers, and other

trusted parties. However, this may be questionable since links in an explicit

online social network could be generated as a result of peer pressure, herd

behavior, incentives, among others. Whereas their claim that implicit online

social networks do not convey any kind of trust may be justified since the

users on either side of an edge need not necessarily know each other in these

networks. They extend their existing work on gossip overlays and propose

Social Market, a solution to identify trusted social acquaintances. Their

methodology, TAPS (Trust-Aware Peer Sampling), helps provide each user

in an online social network with a set of neighbors who are simultaneously

useful and trust-worthy.

Yoon and Zhou (2011) consider implicit online social network by adapt-

ing the social distance model and influence model to an implicit social net-

work scenario. They then extend the basic model by incorporating the

concept of multiple network paradigms.

3 Definition and Measurements

3.1 Measurement

Traditionally, the relationship between two individuals is characterized by

their direct connections (with a 1 if it exists and a 0 when it doesn’t exist).

This is certainly the case when social relationships are measured with the

7



most widely used consideration of directionality. The measure (using 0 or

1), however, only considers the explicit relationship. Essentially, 1 signifies

that the two individuals are either friends or acquaintances through differ-

ent types of roles in life. The value 0 signifies that the two individuals are

not identified as having any direct connection. However, those two indi-

viduals can be implicitly connected through many channels. For example,

one individual may be a loyal follower to another’s blog, Facebook page,

and twitter messages, without explicitly knowing the person. This indi-

vidual may also be significantly influenced by these blogs, posts, opinions

and product choices. We argue that in order to get a complete picture of

the overall relationship between any two individuals’ social networks, it is

necessary to consider both the explicit and their implicit counterparts.

In general, social network relational directionality does not exist when

the two parties on an edge in the network participate equally in a rela-

tionship - i.e., the relationship is mutual. While this may be true in some

relationships, it is not always the case. This is somewhat different in tradi-

tional social network modeling where relationships are non-directional. We

claim that in order to analyze the implicit flow of the network and its impli-

cation on business objectives, we need to fine-tune the measurement between

any two network nodes. Clearly, there is a strong network imbalance in the

social network, for example, between famous people (e.g., Barack Obama,

Justin Timberlake) and their fans. It is possible for a person to claim so-

cial relationship with President Barack Obama simply through the fact that

this person reads Mr. President’s blog every day and through a Facebook

book account-page link. This claim is, of course, not entirely correct. We

argue that a better way is to model relational directions as well as strengths

between any two nodes. Hence the premise of our modeling approach is to
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differentiate the direction and strength of connections in the network.

We consider and define implicit social relationship on the Internet, in-

cluding an indicator from explicit social network (E) and another indicator

from social activities among the individuals (A). E measures the conven-

tional explicit connections, and A measures the implicit connections that

are not considered in E.

Indicator from explicit social network E

Implicit social network model A→B→C V A→C

Indicator from social activities A

There exist several implicit social connections on the Internet, including:

1. Individual A observes individual B’s activities

2. Individual A observes group B’s activities

3. Both individuals A and B observe individual C

4. Both individuals A and B observe group C

The overall relationship between individuals i and j (Xij) can be written

as:

Xij = f{E[topology(i� j)], Ai,j} (1)

Here, f is a function of E and A, which can be in different formats incorpo-

rating different weights and even interconnected relationship between E and

A. Using a linear function, it could be represented by the linear combination

of both E and A, such as

X = α+ βEXE + βAXA (2)
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where βEXE and βAXA represent vector multiplication for explicit social

network and social activities. βAXA could be simply a vector to measure

the degree to which i and j are connected, such as the number of years they

have known each other, if they are friends on Facebook, if they are con-

nected on Linkedin, etc. βEXE is a vector that measures the degree of the

four types of implicit connections discussed earlier. Construction of βEXE

may not be straightforward depending on the concentration of activities be-

tween the individual and groups. Both βEXE and βAXA, nevertheless, can

be empirically estimated based on observations of individuals’ and groups’

behavior and activities. Such a measurement structure allows us to generate

better and deeper insights on online consumer behavior by considering the

influence of both explicit and implicit social interactions. This structure also

opens up the opportunity to take advantage of large-scale online (implicit

+ explicit) social network data analysis, which has thus far been limited to

only explicit relationships.

The “observation” process itself is regulated by certain spatio-temporal

sampling requirements. The goal of observation is to maintain a full picture

of the implicit social activities without losing much relevant information.

A simple example is to “observe” an event when an activity is recorded,

such as a browsing record, a sales transaction, a reply, a post, etc. If we

consider automated context-aware IoT/RFID tracking/tracing of continu-

ously moving objects in a live environment, the sampling of spatio-temporal

data follows Nyquist-Shannon’s theorem. The difference between this type

of implicit social relationship and an explicit social network is that the two

entities don’t have to register in the system (as in any existing Internet social

network) to be explicitly related.
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3.2 Social network matrix

When implicit connections are observed/measured among individuals in the

community, the directional social relationship can be represented using xij ,

which represents the directional relationship from node i towards node j,

for any i ∈ [1, n].

xi = [xi1, xi2, · · · , xin] (3)

In social network matrix, we use the same concept of “node” to repre-

sent n individuals as in a traditional social network scenario. Unlike in the

traditional scenario, the social network relationship between two nodes are

no longer denoted as {0, 1}. Instead, the relationship is directional and xij

and its strength are represented by individual points in [0, 1].

3.2.1 Outbound relationship

Following the notation of directional social network relationship, for each

node in the social network, we therefore compute the aggregate outward

relationship of individual i as:

xi =
n∑
j=1

xij (4)

Each node’s outbound relationship can be explained as its overall interest

towards all the nodes in this network, including itself. We then define the

absolute outbound relationship x̂i as.

x̂i =

n∑
j=1,j 6=i

xij (5)

where x̂i represents node i’s outbound relationship without including itself.
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3.2.2 Inbound relationship

If we consider only the inward attention towards individual j, we represent

this as:

Yj = [x1j , x2j , · · · , xnj ]T (6)

The inbound relationship of individual j can then be stated as:

yj =

n∑
i=1

xij (7)

Node j’s inbound relationship yj can be interpreted as the total interest that

it receives from all nodes in the network, including j itself. We then define

j’s absolute inbound relationship as

ŷj =

n∑
i=1,i 6=j

xij (8)

which represents the overall inbound relationship excluding the one from j

itself.

3.2.3 Social Network Matrix

The complete social relationship can be represented by a symmetric matrix

Xn such that

[X]n =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
. . .

xn1 xn2 · · · xnn


with each cell xij representing the directional relationship from node i to-

wards node j.

Considering the possibility that xij can be zero for some edges in the di-

rected graph, the social network matrix is asymmetric if ∀j, xij = 0, which

essentially can be represented by subtracting the ith row in the matrix. An
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asymmetric matrix signifies that in the community there are n individu-

als who are actively observing and m (n 6= m) individuals who are being

observed.

[X]n,m =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
. . .

xm1 xn2 · · · xmn


Example and Implications

We now illustrate this concept through an example with three participants

{A,B,C} in a cyber-social network. All three individuals know one another,

and mutually and explicitly acknowledge this existing relationship. The

explicit social network can be presented as an all-one matrix:1 1 1
1 1 1
1 1 1


Given this social network topology, if social media wants to spread a piece

of relevant information, the efficiency and effectiveness would be uniformly

equal with any individual as the origin. Assume that after observing the

implicit social activities for a period, we find that A always observes B and

C but never posts any information, C actively posts information but never

observes others, and B never observes anyone nor posts any information.

The implicit SN matrix [X]3,3 for {A,B,C} is:

[X] =

 1 0.1 0.1
0.1 1 0.1
0.9 0.1 1


With this knowledge on the implicit social network relationship among

the three individuals, the strategy for the social media will not be to equally
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choose among participants because of the obvious imbalance in implicit so-

cial activities among the players. In this case, the best strategy is to spread

information starting from C, who will actively transfer this information to

A. B, however, will be very difficult to reach in this social network without

another channel or communication method.

3.2.4 Social Interest & Social Network Plate

Social activities are clustered by different social interests. For example, in

many online communities that are based on unique interest, although they

seem disparate from the outside they share several common features. Exam-

ples of this include photographers’ discussion forum or an online computer

DIY community. The Internet traffic as a common measurement indeed rep-

resents the accumulated social activities of many different social interests.

In order to provide a more accurate measurement and description of the

Internet activities, we find it absolutely necessary to differentiate the overall

set of social relationships based on their unique interests dimension, which

we define as the social network plate.

We define a social network plate as the community with a common social

interest (or social focus). Two plates k and l with different social interests

are differentiated by a mapping function fkl(·), such that the implicit so-

cial network relations from one plate can be shadowed upon another social

network plate. In reality, we find examples of social network plate phe-

nomena shadowing everywhere. For example, the social relationships and

influence from an online photography community has a strong impact on

another community that has an interest on photographic equipment. The

impact becomes weaker towards the community of modern art, for example,

although photography is a type of art presentation. However, the impact
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may be almost zero with a community on business school admissions.

Without loss of generality, consider the mapping function fkl(·) as an

angle α ∈ [0, 180] between any two different social network plates. The social

network relationships from one social network plate (e.g., Xk) is therefore

mapped to another (e.g., l) by
−→
Xkl = Xk · cos(αkl). The individual social

relationship between any two nodes on a social network plate k is therefore

strengthened by having social activities on another social network plate l,

such that

xij,k,l = xij,k +
−→
Xlk (9)

= xij,k + xij,l · cos(αlk) (10)

where i, j represent the two nodes and k represents the focal social network

plate and l represents the supporting social network plate.

While social angle can be a convenient facilitator, we argue that in spe-

cific cases the practitioner should be able to find the most suitable func-

tion for fkl(·), such as a linear function, logit, distance, etc. In the rest of

this paper, we continue with the conceptualization of social network plate

shadowing and the social angle without loss of generality. We define in-

dependency of two social network plates when they are orthogonal to each

other, which signifies that the social relationship on one social network plate

has no effect on the other as reflected by the effect between any pair of nodes.

Example and Implications

We continue with, and extend, “Example and Implications” from Section

3.2.3. We again consider the same social network with three participants

{A,B,C}, but with two different social interests (e.g., architecture art and

photography). We assume that all three players exist on both social network
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plates and explicitly acknowledge mutual relationships with one another on

both plates.

The implicit social network matrix on one plate (architecture art) is

observed and measured to be:

[X]art =

 1 0.1 0.1
0.1 1 0.1
0.9 0.1 1


The matrix on the photography social plate is:

[X]photo =

 1 0.3 0.5
0.2 1 0.3
0.1 0.8 1


If we assume that the shadowing function fart→photo = xart ∗0.5, the revised

implicit social network matrix of photography interest becomes:

[̂X]photo =

 1 .3 + .05 .5 + .05
.2 + .05 1 .3 + .05
.1 + .45 .8 + .05 1


In this case, if a photo equipment retailer wants to make an effective social

network advertisement to all these three individuals through multiple social

platforms, it’s better to use this revised matrix. In this example, we also

want to emphasize that the distance (shadowing) function fij(·) normally is

not reversible, which means that the impact of social interest A on social

interest B shouldn’t be considered the same (or reversible) as the impact

from B on A. We thus introduce the social focus matrix in the next section

to capture this set of relationships among various social interests.

3.2.5 Social Focus Matrix

A social focus matrix is defined to represent the relationship between any

two social network plates, such that all the relationships among the different
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social network plates can be captured by matrix F :

F =


f11(·) f12(·) · · · f1n(·)
f21(·) f22(·) · · · f2n(·)

...
. . .

fn1(·) fn2(·) · · · fnn(·)


where function fij(·) represents a mapping of the social relationship from

social network plate i to social network plate j. If we assume that the social

interest mapping can be presented by the angle between any two social

network plates, the original matrix can be modified as:

A =


α11 α12 · · · α1n

α21 α22 · · · α2n
...

. . .

αn1 αn2 · · · αnn


With a unique social interest, such as a business objective, we have

a special social focus vector to represent the business objective: Aθ =

[αθ1, αθ2, · · ·αθn], where αθi is the angle from the focal social network plate

i and the virtual business objective social network plate θ.

We observe that to determine the angle function between any two social

network plates automatically from implicit social network activities would

be very valuable if a uniform formula exists. In practice, this shadow func-

tion has to be discovered by defining specific models according to the unique

setup in each problem. The directional mapping of each individual network

pair is more context-specific rather than a simple general framework that

can be applied without considering the exact situations involved. There-

fore, in our model, we assume that we are able to discover the relationships

between two social plates through expert knowledge, rather than a com-

monly applicable methodology that can be repeated automatically based on

observation of implicit social activities.
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Example and Implications

We continue with the three participants example from the previous sections

to illustrate this concept. In order to obtain the most comprehensive social

network matrix among the three players and to maximize the social media ef-

ficiency and effectiveness, it would make perfect sense for the business practi-

tioners to obtain the “big data” from various social plates/platforms/interests.

In order to effectively “observe” the social activities of all social network

players, the data collection should have high velocity, variety and volume -

the 3Vs that constitute the characteristics of modern conception of big data.

In order to achieve this goal, for a social network operator, one man-

agerial implication is to manage multiple sites with different social interest

or to promote inter-site collaboration among different service providers. We

see great marketing potential from this practice to achieve more effective

and efficient marketing communications with low cost and high return. We

discuss some of the potential business benefits in the following sections.

3.3 Terminologies & Findings

Based on the definition of implicit social network matrix from the previous

section, we now define three important parameters that can be used to

measure the characteristics of social networks in its implicit form, which

includes the absolute social relationship, interest-focused social relationship,

and accumulated social centrality.

3.3.1 Absolute Social Relationship

Absolute social relationship (ASR) is measured by adding the absolute

weights of relationship from all social network plates without considering

the effects of shadow social interest from other social network plates.
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ASR =

m∑
k=1

n∑
i=1

n∑
j=1

xijk (11)

The value of ASR indicates the accumulated volume of both the static

and dynamic social activities. However, it is not capable of providing differ-

entiation information on social interests.

3.3.2 Interest-Focused Social Relationship

Interest-focused social relationship (IFSR) is measured by shadowing the

social network matrix on the target social network plate θ.

IFSRθ =
m∑
i=1

Xi · cos(αiθ) (12)

The target social plate θ can take a complete virtual form. The con-

sumers’ interest and actual demand of a specific product that appears in an

online advertisement forms one type of virtual social network plate. IFSRθ

measures the total volume of the social activities that is related to the target

social interest, conceived in the advertised product/service.

̂IFSRθ =
m∑

i=1,j 6=i
Xi · cos(αiθ) (13)

Without considering the self-reflection from within the social network

plate, ̂IFSRθ can be used to measure the the overall external social influence

that is not directly associated with the target interest.

3.3.3 Accumulated Social Centrality

The accumulated social centrality (ASC) measures the global influence of a

given social network plate.

ASCi =
m∑
j=1

Xi · cos(αij) (14)
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ASCi represents the centrality of a given social plate among communities

of different social interests.

ÂSCi =
m∑

j=1,j 6=i
Xi · cos(αij) (15)

ÂSCi is the outward influence of this considered social network plate.

4 The Social Network Indicators

Traditionally, as seen in a majority of extant social network literature, the

relationship between two entities are defined using the format {0, 1}, and

are roughly defined without specification of its degree and its social interest.

We argue that it’s critical not only to specify the implicit degree of such a

relationship, but also to specify the unique interest of such a relationship.

For example, Alice and Bob may have a strong relationship based on re-

search collaboration but almost zero relationship based on political interest.

It signifies that if Mrs. Clinton wants to disseminate her next presidential

election announcement through Alice to Bob, it’s close to impossible be-

cause they may never discuss political topics. As a result, it’s important to

carefully differentiate the concept of relationship based on common social

interest, such as the relationship between A and B through their shared in-

terest on the art of photography, the relationship between A and B through

their shared interest on photographic equipment technology or relationship

between A and B through their shared interest in religion.

We therefore define an implicit social network of a special social interest

based on accumulated shadowed relationships between two entities in the

population (Figure 1). Let A and B represent the two entities and l repre-

sent this special social interest, xABl
represent the directional implicit social
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Figure 1: Implicit social network shadowing on a virtual social interest
focused social network plate

relationship between A and B on social interest l, and

xABl
=

m∑
i=1

xABicos(αil) (16)

Consequently, the implicit social network matrix of social interest l is:

[X]l =


x11l x12l · · · x1nl

x21l x22l · · · x2nl

...
. . .

xn1l xn2l · · · xnnl


Based on [X]l we can draw the social network indicators using traditional

network flow topology analysis.

To facilitate the analysis of implicit social network, we define an inverse

relationship dij = 1
xij

, where dij represents the distance between node i and

node j. Similarly, [D]l is represented as:

[D]l =


d11l d12l · · · d1nl

d21l d22l · · · d2nl

...
. . .

dn1l dn2l · · · dnnl
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Figure 2: Interest focused Implicit Social Network

We now discuss three common dynamics that are of interest in implicit

social networks: lowest cost (shortest path) problem, Max flow, bottleneck

(Max flow-Min cut) theorem, knapsack problem.

4.1 Lowest Cost Problem

The edge relationship in an implicit social matrix represents the directional

influence between any two entities in the network. The inverse of such a rela-

tionship, to the contrary, would represent the impedance or the cost of such

influence. A firm that is interested in dissemination of information through

such a network certainly has an incentive to minimize the cost to transmit

information from a start node to the target node. Assuming that there is

an operational cost cij on each edge, such that after a certain cost (e.g.,

dij · cij) the firm interested in disseminating information (e.g., advertise-

ment for a product/service) is able to transmit a piece of information from

node i to node j. We formulate this problem based on an interest-focused

implicit social network that accumulates implicit social network shadowing

information from various social network platforms (plates). We model this
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as a directed graph G = (N,A) with an edge cost cij associated with each

edge dij

Minimize
∑

(i,j)∈A

dijcij (17)

subject to

∑
{j:(i,j)∈A}

dij −
∑

{j:(i,j)∈A}

dji =

{
n− 1 i = {s}
−1 ∀i ∈ N − {s}

(18)

dij ≤ 0 ∀(i, j) ∈ A (19)
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Figure 3: An interest focused implicit social network with communication
cost matrix

Figure 3 illustrates an implicit social network of 30 nodes and 100 non-

zero relationships. Each edge is characterized by a communication cost

factor to ensure successful directional communication. Figure 4 presents the

low cost dynamics of the social network presented in Figure 3.
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Figure 4: Plot of the lowest cost matrix

We observe two variations of this problem: 1. find the lowest cost from

one node to all other nodes and 2. find the lowest cost from every node to

every other node. Assuming the source node comes from a business entity,

the first problem could provide an indicator for the business practitioners

to evaluate the efficiency of their practice. The second problem can be

considered simply as a general indicator of an individual social network or

a set of social networks.

4.2 Maximum Flow Problem

It is not uncommon to assume that the Internet has the capacity to handle

an unlimited amount of data and information. Clearly, this is not true since

the information flow on the Internet has a capacity constraint. In other

words, in a given time period, not all data/information can be transmitted

to the target node although they can be covered without the time window.
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From a business practitioner’s perspective, it’s important to realize this con-

straint on the Internet when there is a need to disseminate a large amount of

information in a short time period. Consequently, the maximum “capacity”

of the social network platform needs to be considered.

Considering that [X] is measured mostly based on the implicit activities

in the social network, [X] represents the directional capacities of informa-

tion flow between any pair of nodes. For instance, xij measures the implicit

relationship from node i to node j that also represents the capacity of di-

rectional communication from node i to j. For disseminating information

with the goal to maximize the flow of information in the social network, the

problem would be to decide how to send information between the source

node and a sink node in a capacitated network and its maximum capacity.

The source node could represent the practitioner who desires to disseminate

information and the sink node could represent the targeted audience. The

optimization problem can be written as:

Maximize v (20)

subject to

∑
{j:(i,j)∈A}

xij −
∑

{j:(i,j)∈A}

xji =


v i = {s}
0 ∀i ∈ N − {s and t}
−v i = t

(21)

0 ≤ xij ≤ uij ∀(i, j) ∈ A (22)

There exist several algorithms to solve the above-proposed problems,

such as the augmenting path algorithms and the preflow-push algorithms.

We also argue that in a social network, the maximum value of the informa-

tion flow from a source node to a sink node equals the minimum capacity

(a.k.a. the bottleneck) among all source-sink cuts.
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4.3 Budgeting Problem

Social networks have capacity and cost limits for information transfer. Con-

sequently, practitioners must prioritize their goals with respect to commu-

nication of information in the network in order to select an effective combi-

nation of information/tasks according to cost and capacity constraints.

For cost constraints, it is necessary to decide which pieces of information

to be disseminated should be included in the next project. The choice

is among g pieces of information, where each piece of information i has

a dissemination cost ci (or size wi) and a utility ui. The objective is to

maximize the utility of the information disseminator’s project subject to

the cost or size limitation that she can transmit no more than C (or in size,

W ).

Maximize

g∑
i=1

uixi (23)

subject to the cost
g∑
i=1

cixi ≤W (24)

xi = {0, 1} ∀i (25)

or subject to the capacity

g∑
i=1

wixi ≤W (26)

xi = {0, 1} ∀i (27)

Equations 23-27 represent a basic setup for this budgeting problem. This

can be easily modified later as necessary and appropriate to anchor a specific

social network flow problem.
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5 Discussion

We proposed a new framework to evaluate the characteristics of a set of

social networks. In this framework, a social network matrix is proposed

to measure the implicit relationships among the entities in various social

networks. Based on this, we derive several indicators to characterize the dy-

namics of explicit social networks along with their implicit counterparts. We

incorporated implicit social network in a traditional network flow context to

develop the key network performance indicators such as lowest communica-

tion cost, maximum information flow, and budget constraints.

Based on network analysis and proposed implicit social network frame-

work, we are now able to analyze and discover not only the topology that

is different from a traditional explicit {0, 1} social network but also the key

nodes, the bottleneck, and optimization strategy with respect to balancing

cost and capacity for the social network. For future research, it might be

interesting to identify the propagation pattern of information flow in social

networks. Many problems associated with social network management can

be approached using the proposed social network framework that considers

both implicit and explicit social networks as well as a set of such networks

across several social network plates. For example, we can differentiate the

broadcasting/consumer targeted strategies for Internet advertising, simply

by varying the cost matrix in the lowest cost problem. The model can also

be used to solve information propagation problems.

The implicit social network measurement and matrix can be extended to

answer many existing questions in current social network research. Based

on the proposed setup, a possible future research can be directed to extend

this research to the classic Hotelling model in the social network domain,

by assuming a social network plate with a unique social interest (or a cer-
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tain marketing interest) “Xθ”. While there might physically exist a social

community that matches exactly with θ, it can also represent a virtual so-

cial network plate. By modifying the classic linear Hotelling model, we can

define: (1) two social network plates 1 & 2; (2) a sponsor with a unique

business interest θ that can be implemented on either social network plate

1 or 2; (3) the social angles from θ to social network plates 1 and 2 to be

respectively θ1 and θ2, and θ1 + θ2 = Θ. We leave this as an exercise for

future research.
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