Rank and directional entropy

E. Arthur (Robbie) Robinson (Joint work with Ayse Sahin)

The George Washington University
Talk at KIAS, Seoul, Korea.

September 27, 2010
(1) Introduction
(2) Finite Rank, \mathbb{Z} CASE
(3) The formal definition
(4) The \mathbb{Z}^{2} CASE
(5) Directional entropy
(6) Directional entropy and Rank 1
(7) MORE...
(8) Extras
(2) Finite Rank, \mathbb{Z} CASE
(3) THE FORMAL DEFINITION
(1) The \mathbb{Z}^{2} CASE
(5) Directional entropy
b) Directional entropy And Rank 1
(7) More. . .
(8) ExTRAS

Cutting and Stacking

- Elementary method to construct examples in ergodic theory.
- Classical version: invertible Lebesgue measure preserving transformation $T:[0,1) \rightarrow[0,1)$.
- Equivalently, a measure preserving \mathbb{Z} action (MPZA).
- Easily generalizes to \mathbb{Z}^{d} or \mathbb{R}^{d} to produce $M P \mathbb{Z}^{d} A$ or $M P \mathbb{R}^{d} A$.
- More general than substitutions.

Entropy

- Kolmogorov-Sinai, 1959: entropy $h(T)$ of a measure preserving transformation T. Average "information" per time step.
- Straightforward generalization to d-dimensional entropy $h(T)$ of MPZ ${ }^{d} \mathrm{~A} T$.
- Adler-Konheim-McAndrew, 1965: Topological entropy $h_{\text {top }}(T)$ of continuous map (or \mathbb{Z}^{d} action) T. Exponential growth in "complexity" $h(T) \leq h_{\text {top }}(T)$.
- Milnor, 1986: directional entropy $h_{n}(V, T)$ of $\mathrm{MPZ}^{d} \mathrm{~A}, T$. Here $V \subseteq \mathbb{R}^{d}$ subspace, $\operatorname{dim}(V)=n$.

(1) Introduction

(2) Finite Rank, \mathbb{Z} CASE
(3) The Formal definition
(4) ThE \mathbb{Z}^{2} CASE
(5) Directional entropy
b Directional entropy And Rank 1
(7) More. . .
(8) ExTRAS

Von Neuman's "ADding machine"

Step 0

Step 1

ILLUSTRATED AS BLOCK CONCATINATION

$$
W_{1}=1
$$

Picture shows base step and induction step, illustrating the combinatorial data needed for the construction:

$$
W_{1}=0, \quad W_{n+1}=W_{n} W_{n}
$$

The tower is turned on its side, with individual levels blurred.

As $T:[0,1) \rightarrow[0,1)$

As Toeplitz sequence

Action together with partition equals process.

Chacon's transformation

$$
W_{1}=0
$$

Here the combinatorial data is $W_{1}=0$ and $W_{n+1}=W_{n} W_{n} 1 W_{n}$.

Chacon's transformation

RANK 1

Definition. T is rank 1 if it can be constructed by cutting and stacking with one large tower in each step.

- Left over interval called a spacer.

Theorem

Rank 1 implies (uniquely) ergodic. (Also minimal if number of adjacent spacers is bounded.)

- Adding machine has discrete spectrum. Chacon's transformation has continuous spectrum (i.e., is weakly mixing.)
- Any ergodic T with discrete spectrum is rank 1 (e.g., irrational rotation transformation).

Rank 1 mixing

- (Smorodinski)-Adams (1998) version (see also Ornstein (1968)).

$$
W_{1}=0
$$

Recurrence relation: $W_{1}=0, W_{n+1}=W_{n} 1 W_{n} 1^{2} \ldots W_{n} 1^{q_{n}}$. Mixing provided $q_{n} \nearrow \infty$ sufficiently fast.

The Morse dynamical system

$$
\begin{aligned}
& \mathrm{W}_{1}^{0}=0 \\
& \mathrm{~W}_{1}^{1}=1
\end{aligned}
$$

Morse sequences

Finite Rank

In this example, there are 2 towers at each step. We say T has rank ≤ 2.

- A. del Junco showed this T is not rank 1 . Thus T is rank 2.
- The spectrum of T is simple, and mixed (both discrete and continuous).
- Can similarly definerank $\leq r$, rank r, and finite rank.

Theorem (See Queffelec, (1987/2010))

A substitution on r letters is rank $\leq r$.

Rank, Spectrum and Entropy

Theorem (Baxter, 1971)

Finite rank implies $h(T)=0$.

PROOF.

- Rank n implies spectral multiplicity $M_{T} \leq n$ (Chacon, 1970).
- Positive entropy $(h(T)>0)$ implies $M_{T}=+\infty$ (Bernoulli factor) (Sinai's Theorem).

(1) Introduction

(2) Finite Rank, \mathbb{Z} CASE
(3) The Formal definition
(4) The \mathbb{Z}^{2} CASE
(5) Directional entropy
6) Directional Entropy And Rank 1
(7) More. . .
(8) ExTRAS

Rohlin Towers

- Let $T: X \rightarrow X$ be a MPZA on a probability space (X, \mathcal{B}, μ).
- If $B, T B, T^{2} B, \ldots, T^{h-1} B$ are pairwise disjoint, we call it Rohlin tower with height h and base B.
- The error is $E=\left(\cup_{k=0}^{h-1} T^{k} B\right)^{c}$.
- Call $\xi=\left\{B, T B, \ldots, T^{h-1} B, E\right\}$ a Rohlin partition.

Theorem (Rohlin's Lemma)

If T is ergodic, then for any $h \in \mathbb{N}$ and $\epsilon>0$, there is a height h Rohlin tower with $\mu(E)<\epsilon$.

Rank 1

- Let ξ_{n} be a sequence of partitions. Say ξ_{n} separates $\left(\xi_{n} \rightarrow \varepsilon\right)$ if for any $A \in \mathcal{B}$ there is $A_{n} \leq \xi_{n}$ so that $\mu\left(A \Delta A_{n}\right) \rightarrow 0$.

Definition

T is rank 1 if there is a sequence ξ_{n} of Rohlin towers so that $\xi_{n} \rightarrow \varepsilon$.

Cutting and stacking definition of Rank 1 implies this one: $\xi_{n} \rightarrow \varepsilon$ follows from $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$.

Theorem (Baxter, 1971)
ξ_{n} may be chosen so that $\xi_{n} \leq \xi_{n+1}$ and $B_{n+1} \subseteq B_{n}$.
Thus all these T may be obtained by cutting and stacking.

"Funny" Rank 1

- Call a finite $R \subseteq \mathbb{Z}$ a shape.
- Suppose $\mu(B)>0$ and $T^{k} B \cap T^{\ell} B=\emptyset$ for all $k, \ell \in R$, $k \neq \ell$.
- Call $\xi=\left\{E, T^{k} B: k \in R\right\}$ a funny Rohlin tower.
- In rank $1, R=\{0,1, \ldots, h-1\}$.
- Define funny rank 1 analogously.

Shape matters! Rank 1 implies "loosely Bernoulli" (Katok, 1977, Ornstein-Rudolph-Weiss 1982), but funny rank 1 does not (Ferenczi, 1985).
(1) Introduction
(2) Finite Rank, \mathbb{Z} CASE
(3) THE FORMAL DEFINITION
(4) The \mathbb{Z}^{2} CASE
(3) Directional entropy
6) DIRECTIONAL ENTROPY AND RANK 1
(7) MORE. . .
(8) Extras

Actions of \mathbb{Z}^{d}

- Let (X, \mathcal{B}, μ) be a probability space.
- Let $T_{1}, T_{2}: X \rightarrow X$ be MPZAs that commute: $T_{1} T_{2}=T_{2} T_{1}$.
- For $\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$, define MPZ ${ }^{2} \mathrm{~A} T^{\mathbf{n}}=T_{1}^{n_{1}} T_{2}^{n_{2}}$.
- Similar definition for MPZ ${ }^{d} \mathrm{~A}$, (i.e., $T_{1}, T_{2}, \ldots, T_{d}$ commute).
- Call a finite $R \subseteq \mathbb{Z}^{d}$ a shape.

Definition. A shape- R Rohlin tower consists of disjoint sets $T^{\mathbf{n}} B, \mathbf{n} \in R$. The partition $\xi=\left\{E, T^{\mathbf{n}} B: \mathbf{n} \in R\right\}$ is a Rohlin partition.

\mathbb{Z}^{d} RANK 1

Definition

A MPZ ${ }^{d} \mathrm{~A} T$ is rank 1 if there is a sequence ξ_{n} of shape R_{n} Rohlin partitions so that $\xi_{n} \rightarrow \varepsilon$.

Proposition (R-Sahin, 2010)

Rank 1 (any shape) implies ergodic and simple spectrum.

Corollary

Rank 1 (any shape) implies $h(T)=0$.

\mathbb{Z}^{d} RANK r

Definition

Suppose T is a $M P \mathbb{Z}^{d} A$ there are shapes R_{n}^{j} and positive measure sets B_{n}^{j}, for $j=1, \ldots, r$ and $n \in \mathbb{N}$, so that

$$
\xi_{n}=\left\{T^{\mathbf{n}} B_{n}^{j}: \mathbf{n} \in R_{n}^{j}, j=1, \ldots, n\right\} \cup\left\{X \backslash \cup_{j=1}^{n} \cup_{\mathbf{n} \in R_{n}^{j}} T^{\mathbf{n}} B_{n}^{j}\right\}
$$

is a partition, and $\xi_{i} \rightarrow \varepsilon$. We say T is rank $\leq r$ for shapes $\left\{R_{n}^{1}, R_{n}^{2}, \ldots, R_{n}^{j}\right\}$.

Rank r if rank $\leq r$ and not rank $\leq r-1$.

Proposition

Rank $\leq r$ implies $M_{T} \leq r$ and $h(T)=0$, but not necessarily ergodic.

FøLNER SEQUENCES

A sequence $\mathcal{R}=\left\{R_{k}\right\}$ of shapes in \mathbb{Z}^{2} is a Følner sequence (van Hove sequence) if for any $\mathbf{n} \in \mathbb{Z}^{2}$

$$
\lim _{k \rightarrow \infty} \frac{\left|R_{k} \triangle\left(R_{k}+\mathbf{n}\right)\right|}{\left|R_{k}\right|}=0
$$

- A natural choice is rectangles

$$
R_{k}=\left[0, \ldots, w_{k}-1\right] \times\left[0, \ldots, h_{k}-1\right],
$$

where $w_{k}, h_{k} \rightarrow \infty$.

Types of Rank 1

- Rank 1: no shape restriction.
- FøIner rank 1: R_{n} a FøIner sequence.

Proposition (R-Sahin, 2010)

If Følner, can get $\xi_{n} \leq \xi_{n+1}$ with the same $\mathcal{R}=\left\{R_{n}\right\}$.

- Cutting and stacking works!
- Rectangular rank 1: rectangles
- Geometric restrictions (on rectangular Rank 1):
- Bounded eccentricity: $1 / K \leq w_{k} / h_{k} \leq K$.
- Subexponential eccentricity: $\log \left(w_{k}\right) / h_{k} \rightarrow 0\left(w_{k} \geq h_{k}\right)$.

Chacon \mathbb{Z}^{2} ACtions

$$
\begin{array}{r}
W_{1}= \\
\\
\\
\\
1
\end{array}
$$

Weak mixing, not strong mixing, \& "MSJ" (R-Park, 1991).
Note. $w_{n} / h_{n}=1$: "bounded" eccentricity.

Rudolph's Example

N_{n} of these blocks in a row.

Rudolph's example (continued)

A block consisting of all possible $\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}$
rows, in some particular order.

There are
$\left(\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\right)$!
of these.

Rudolph's example (continued)

- All $\left(\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\right)$! blocks (every possible order) stacked.
- $w_{n+1}=\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}} \times$ $\left(w_{n}+\Delta w_{n}\right)$.
- $h_{n+1}=$

$$
\begin{array}{r}
\left(\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\right)!\times \\
\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}} \times \\
\left(h_{n}+\Delta h_{n}\right) .
\end{array}
$$

Properties of Rudolph's example

- Requires appropriate choice of $\Delta w_{n} \rightarrow \infty, \Delta h_{n} \rightarrow \infty$ and $N_{n} \rightarrow \infty$.
- Side lengths

$$
\begin{aligned}
& w_{n+1}=\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\left(w_{n}+\Delta w_{n}\right), \text { and } \\
& h_{n+1}=\left(\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\right)!\left(\left(\Delta w_{n}\right)\left(\Delta h_{n}\right)\right)^{N_{n}}\left(h_{n}+\Delta h_{n}\right)
\end{aligned}
$$

- Sides satisfy $\log \left(h_{n}\right) / w_{n} \rightarrow \infty$. Super exponential eccentricity.

Theorem (Rudolph, 1978)

Horizontal T_{1} is Bernoulli shift with arbitrary finite entropy $0<h\left(T_{1}\right)<\infty$.

(1) Introduction

(2) Finite Rank, \mathbb{Z} CASE
(3) THE FORMAL DEFINITION
(1) The \mathbb{Z}^{2} CASE
(5) Directional entropy
6) Directional entropy and rank 1
(7) MORE. .
(8) Extras

REVIEW d-DIMENSIONAL ENTROPY

Before defining directional entropy, we briefly review the ordinary (d-dimensional) entropy of a $\mathrm{MPZ}^{d} \mathrm{~A} T$.

- Let ξ be a finite partition. The entropy of ξ is

$$
H(\xi)=-\sum_{A \in \xi} \mu(A) \log \mu(A)
$$

- Define $\xi_{n}=\bigvee T^{-\mathbf{n}} \xi$

$$
\mathbf{n} \in[0, \ldots, n)^{d}
$$

- The ξ-entropy of T is

$$
h(T, \xi)=\lim _{n \rightarrow \infty} \frac{1}{n^{d}} H\left(\xi^{n}\right) .
$$

- The entropy of T is given by

$$
h(T)=\sup _{\xi} h(T, \xi) .
$$

This gives usual entropy of transformation T when $d=1$.

Preliminaries for directional entropy

- Subspace $V \subseteq \mathbb{R}^{d}, n=\operatorname{dim}(V)<d$.
- $Q \subseteq V, Q^{\prime} \subseteq V^{\perp}$ unit cubes, and
- $S(V, t, m)=\left(t Q+m Q^{\prime}\right)$ (we call it a window.)

Directional entropy (Milnor, 1986)

Let T be a $\mathrm{MPZ}^{d} \mathrm{~A}$, with ξ a finite partition, and $\operatorname{dim}(V)=n$.

- $\xi_{V, t, m}:=\bigvee_{\mathbf{n} \in S(V, t, m)} T^{-\mathbf{n}} \xi$.
- $h_{n}(T, V, \xi, m):=\limsup _{t \rightarrow \infty} \frac{1}{t^{n}} H\left(\xi_{V, t, m}\right)$.
- $h_{n}(T, V, \xi):=\sup _{m>0} h_{n}(T, V, \xi, m)$

DEFinition (Milnor, 1986)

If $1 \leq n<d, n$-dimensional directional entropy in direction V is

$$
h_{n}(T, V)=\sup _{\xi} h_{n}(T, \xi, V)
$$

If $n=d$, then $h_{d}(T, V)=h(T)$, (where $\left.V=\mathbb{R}^{d}\right)$.

Directional entropy (\mathbb{Z}^{2} CASE)

- $h_{1}(V, T)<\infty$ for some V, implies $h_{2}(T)=0$.
- Ledrappier's \mathbb{Z}^{2} shift T has $h_{1}(T, V)>0$ for all V.
- K. Park (unpublished, c 1987) Chacon MPZ ${ }^{2}$ A T has $h_{1}(T, V)=0$ for all V.
- $h_{1}(T, V)=\|(p, q)\|^{-1} h\left(T^{(q, p)}\right), V=(p, q) \mathbb{R}, p / q \in \mathbb{Q}$.
- Rudolph rank $1 \mathbb{Z}^{2}$ has $h_{1}(V, T)>0$ where $V=\mathbf{e}_{1} \mathbb{R}$.
- (K. Park, 1999) If $V=\mathbf{v} \mathbb{R},\|\mathbf{v}\|=1$, then $h_{1}(T, V)=h\left(F^{t \mathbf{v}}\right)$ for the unit \mathbb{R}^{2} suspension $F^{\mathbf{t}}$ of T.
- (K. Park, 1999) The function $h(\mathbf{v})=h(T, \mathbf{v} \mathbb{R}),\|\mathbf{v}\|=1$, is upper semicontinuous, and $\{\mathbf{v}: h(\mathbf{v})=0\}$ is G_{δ}.

(1) InTroduction

(2) Finite Rank, \mathbb{Z} CASE
(3) THE FORMAL DEFINITION
(4) The \mathbb{Z}^{2} CASE
(5) Directional entropy
(6) Directional entropy and Rank 1
(7) More. . .
(8) Extras

ThEOREMS

The first result has no assumptions beyond rectangular rank 1 .

Theorem 1. (R-Sahin, 2010)

Let T be a rectangular rank-1 $M P \mathbb{Z}^{d} A$. Then there is a 1-dimensional subspace $V \subseteq \mathbb{R}^{d}$ so that $h_{1}(T, V)=0$.

With addition hypotheses on the eccentricity, we can say more.

Theorem 2. (R-Sahin, 2010)

Let T be a rectangular rank-1 $M P \mathbb{Z}^{d} A$ with subexponential eccentricity. If $V \subseteq \mathbb{R}^{d}$ is an n-dimensional subspace, $1 \leq n \leq d$, then $h_{n}(T, V)=0$.

Two LAMMAS

Lemma (Milnor, 1988)

The formulas that define directional entropy simplify to

$$
\begin{aligned}
h_{n}(T, V, \xi, m) & =\lim _{t \rightarrow \infty} \frac{1}{t^{n}} H\left(\xi_{V, t, m}\right), \text { and } \\
h_{n}(T, V, \xi) & =\lim _{m \rightarrow \infty} h_{n}(T, V, \xi, m) .
\end{aligned}
$$

Theorem (Boyle-Lind, 1997)

If $\xi_{k} \leq \xi_{k+1}$ and $\xi_{k} \rightarrow \epsilon$ then

$$
h_{n}(T, V)=\lim _{k \rightarrow \infty} h_{n}\left(T, V, \xi_{k}\right) .
$$

ZERO-ENTROPY LEMMA

LEMMA

Suppose $\xi_{k} \leq \xi_{k+1}$ and $\xi_{k} \rightarrow \varepsilon$. If $t_{j} \rightarrow \infty$, and

$$
\lim _{j \rightarrow \infty} \frac{1}{\left(t_{j}\right)^{n}} H\left(\left(\xi_{k}\right)_{V, t_{j}, m}\right)=0
$$

for all k and all $m>0$, then $h_{n}(T, V)=0$.

We will use this lemma in the proofs of both theorems.

Proofs (SET-UP)

We do the case $d=2$.
Let $V \subseteq \mathbb{R}^{2}$ be a 1-dimensional subspace (to be specified later for Theorem 1), and let ξ_{k} be a sequence of shape- R_{k} Rohlin towers for T.
Assume WOLOG:

- $\xi_{k} \leq \xi_{k+1}$ (Baxter's Theorem),
- R_{k} is $w_{k} \times h_{k}$ where $h_{k} \leq w_{k}$ for all k.

Note. There are no eccentricity assumptions in Theorem 1.
Let $t_{j} \rightarrow \infty$ be a slowly increasing sequence, to be specified later.
Ultimate Goal. For fixed m, k, show that $H\left(\left(\xi_{k}\right)_{V, t_{j}, m}\right) / t_{j} \rightarrow 0$.

Proofs (LABELS)

- Let $j>k$.
- Call a level $T^{\mathbf{n}} B_{j}$ in ξ_{j} good if $S\left(V, t_{j}, m\right) \subseteq R_{j}-\mathbf{n}$.
- Let $G_{j} \subseteq \mathbb{Z}^{2}$ be the set of good levels.
- Let $F_{j}=\left(\cup_{\mathbf{n} \in G_{j}} T^{\mathbf{n}} B_{j}\right)^{c}$.
- And, recall $E_{j}=\left(\cup_{\mathbf{n} \in R_{j}} T^{\mathbf{n}} B_{j}\right)^{c}$.

Proofs (Good Levels)

Proofs (New partitions)

- $\xi_{j}^{*}:=\left\{T^{\mathbf{n}} B_{j}: \mathbf{n} \in G_{j}\right\} \cup\left\{F_{j}\right\}$.
- $\eta_{j}:=\left(\xi_{k}\right)_{T, t_{j}, m} \vee \xi_{j}^{*}$.
- Note that $\left(\xi_{k}\right)_{T, t_{j}, m} \leq \eta_{j}$.
- Thus $H\left(\left(\xi_{k}\right)_{T, t_{j}, m}\right) \leq H\left(\eta_{j}\right)$.
- So it suffices to show $H\left(\eta_{j}\right) / t_{j} \rightarrow 0$.
- (This will achieve our Ultimate Goal.)

Proofs (Relations among partitions)

Key observation: Each of the sets $T^{\mathbf{n}} B_{j}$ for $\mathbf{n} \in G_{j}$ belong to the partition η_{j}.
"Goodness" insures the partition $\left(\xi_{k}\right)_{V, t_{j}, m}$ is "constant" on levels $T^{\mathbf{n}} B_{j}$, for $\mathbf{n} \in G_{j}$. In other words, each $T^{\mathbf{n}} B_{j}$ is a subset of some $A \in\left(\xi_{k}\right)_{V, t_{j}, m}$.

$$
\begin{aligned}
H\left(\eta_{j}\right) / t_{j} & =-\frac{1}{t_{j}} \sum_{A \in \eta_{j}} \mu(A) \log \mu(A) \\
& =-\frac{1}{t_{j}}\left(\sum_{\mathbf{n} \in G_{j}} \mu\left(T^{\mathbf{n}} B_{j}\right) \log \mu\left(T^{\mathbf{n}} B_{j}\right)+\sum_{A \in \eta_{j}^{\prime}} \mu(A) \log \mu(A)\right) \\
& =-\frac{1}{t_{j}}\left(\left|G_{j}\right| \mu\left(B_{j}\right) \log \mu\left(B_{j}\right)-\sum_{A \in \eta_{j}^{\prime}} \mu(A) \log \mu(A)\right)
\end{aligned}
$$

Proofs (Left term Goal)

$$
\begin{aligned}
-\frac{1}{t_{j}}\left|G_{j}\right| \mu\left(B_{j}\right) \log \mu\left(B_{j}\right) & \leq-\frac{1}{t_{j}}\left|R_{j}\right| \mu\left(B_{j}\right) \log \mu\left(B_{j}\right) \\
& =-\left(\frac{w_{j} h_{j}}{t_{j}}\right)\left(\frac{1-\epsilon_{j}}{w_{j} h_{j}}\right) \log \left(\frac{1-\epsilon_{j}}{w_{j} h_{j}}\right) \\
& \leq \frac{\log \left(w_{j} h_{j}\right)-\log \left(1-\epsilon_{j}\right)}{t_{j}}
\end{aligned}
$$

where $\epsilon_{j}=\mu\left(E_{j}\right)$.
Left Term Goal. Show $\log \left(w_{j} h_{j}\right) / t_{j} \rightarrow 0$. (Insubstantial entropy from (uniformly covered) good set)

LOCAL ENTROPY LEMMA

Theorem (Shields, 1996)

Suppose ξ is a partition, $\xi^{\prime} \subseteq \xi$ and $\beta=\mu\left(\cup_{A \in \xi^{\prime}} A\right)$. Then

$$
-\sum_{A \in \xi^{\prime}} \mu(A) \log \mu(A) \leq \beta \log \left|\xi^{\prime}\right|-\beta \log \beta
$$

Proofs (Right Term)

- $\left|\xi_{j}^{\prime}\right| \leq\left(\left|R_{k}\right|+1\right)^{\left|S\left(V, t_{j}, m\right)\right|}$.
- $\log \left|\xi_{j}^{\prime}\right|=\left|S\left(V, t_{j}, m\right)\right| \log \left(\left|R_{k}\right|+1\right) \leq 2\left|S\left(V, t_{j}, m\right)\right| \log \left|R_{k}\right|$.
- $\left|S\left(V, t_{j}, m\right)\right| \leq 2 t_{j} m$.
- $\log \left|R_{k}\right|=K$.

Thus

$$
\log \left|\xi_{j}^{\prime}\right| \leq 2 K t_{j} m
$$

Proofs (Right Term Goal)

Also

$$
\beta=\mu\left(F_{j}\right)=\left|B_{j} \backslash G_{j}\right| \mu\left(B_{j}\right)+\mu\left(E_{j}\right) \leq \frac{\left|B_{j} \backslash G_{j}\right|}{w_{j} h_{j}}+\epsilon_{j}
$$

So by the local entropy lemma

$$
-\frac{1}{t_{j}} \sum_{A \in \xi^{\prime}} \mu(A) \log \mu(A) \leq 2 K m\left(\frac{\left|B_{j} \backslash G_{j}\right|}{w_{j} h_{j}}+\epsilon_{j}\right)-\frac{\beta \log \beta}{t_{j}}
$$

$\left(t_{j} / t_{j}\right.$ cancels in the first term). Since $\beta<1,(\beta \log \beta) / t_{j} \rightarrow 0$.
Right Term Goal. $\frac{\left|B_{j} \backslash G_{j}\right|}{w_{j} h_{j}} \rightarrow 0$. (This is essentially that
measure of bad part, $\beta \rightarrow 0$.)

Proof of Theorem 1 (Left Term Goal)

- Assume $w_{j} \geq h_{j}$ for all j.
- Take $V=\mathbf{e}_{1} \mathbb{R}$.
- We want $t_{j} \rightarrow \infty$ so that $\frac{\log \left(w_{j}\right)}{t_{j}} \rightarrow 0$ and $\frac{t_{j}}{w_{j}} \rightarrow 0$.

Define $t_{j}=\sqrt{w_{j} \log w_{j}}$.
$\frac{\log \left(w_{j} h_{j}\right)}{t_{j}} \leq \frac{2 \log \left(w_{j}\right)}{t_{j}} \rightarrow 0$. Left Term Goal Achieved.

Proof of Theorem 1 (Right Term Goal)

We have, $\left|R_{j} \backslash G_{j}\right| \leq h_{j} t_{j}+m w_{j}$.

$$
\frac{\left|R_{j} \backslash G_{j}\right|}{w_{j} h_{j}}=\frac{t_{j}}{w_{j}}+\frac{m}{h_{j}} \rightarrow 0
$$

since $\frac{t_{j}}{w_{j}}=\frac{\sqrt{w_{j} \log w_{j}}}{w_{j}}=\sqrt{\frac{\log w_{j}}{w_{j}}} \rightarrow 0$. Right Term Goal
Achieved.

Proof of Theorem 2 (Left Term Goal)

- Take $V \subseteq \mathbb{R}^{2}, \operatorname{dim}(V)=1$.
- Assume $w_{j} \geq h_{j}$ and define $t_{j}=\sqrt{h_{j} \log w_{j}}$.
- $\frac{\log w_{j}}{t_{j}}=\frac{\log w_{j}}{\sqrt{w_{j} \log \left(w_{j}\right)}}=\sqrt{\frac{\log w_{j}}{w_{j}}} \rightarrow 0$
- $\frac{t_{j}}{h_{j}}=\frac{\sqrt{h_{j} \log w_{j}}}{h_{j}}=\sqrt{\frac{\log w_{j}}{h_{j}}} \rightarrow 0$
(by subexponential eccentricity).

$$
\frac{\log \left(w_{j} h_{j}\right)}{t_{j}} \leq \frac{2 \log \left(w_{j}\right)}{t_{j}} \rightarrow 0 .
$$

Left Term Goal achieved.

Proof of Theorem 2 (Right Term Goal)

We have, $\left|R_{j} \backslash G_{j}\right| \leq h_{j}\left(t_{j}+m\right) \cos \theta+w_{j}\left(t_{j}+m\right) \sin \theta$.

$$
\frac{\left|R_{j} \backslash G_{j}\right|}{w_{j} h_{j}}=\frac{t_{j}+m}{w_{j}} \cos \theta+\frac{t_{j}+m}{h_{j}} \sin \theta \rightarrow 0
$$

since $\frac{t_{j}}{h_{j}} \rightarrow 0$, (and $\frac{t_{j}}{w_{j}}, \frac{m}{h_{j}}, \frac{m}{w_{j}} \rightarrow 0$.) Right Term Goal achieved.
(2) Finite Rank, \mathbb{Z} CASE
(3) THE FORMAL DEFINITION
(4) The \mathbb{Z}^{2} CASE
(5) Directional entropy
(6) Directional entropy and rank 1
(7) MORE...

8) Extras

RANK r

Here is what we can prove in rank r. For simplicity, we discuss only the case T is an ergodic rectangular rank $\leq 2 \mathrm{MP}^{2} \mathrm{~A}$. Let R_{n}^{1} be $w_{n}^{1} \times h_{n}^{1}$ and R_{n}^{2} be $w_{n}^{2} \times h_{n}^{2}$.
Theorem A. If $w_{n}^{1} \geq h_{n}^{1}$ and $w_{n}^{2} \geq h_{n}^{2}$ for infinitely many n then there exists V so that $h_{1}(T, V)=0$ (i.e., $h\left(T_{1}\right)=0$).

Theorem B. Under the same hypotheses as above, if $\log \left(w_{n}^{1}\right) / h_{n}^{1} \rightarrow 0$, and $\log \left(w_{n}^{2}\right) / h_{n}^{2} \rightarrow 0$, then $h_{1}(T, V)=0$ for all 1-dimensional V.

Theorem C. If $w_{n}^{1} \geq h_{n}^{1}$ and $w_{n}^{2} \leq h_{n}^{2}$ for all n, and $\log \left(w_{n}^{1}\right) / h_{n}^{1} \rightarrow 0$, and $\log \left(h_{n}^{2}\right) / w_{n}^{2} \rightarrow 0$, then $h_{1}(T, V)=0$ for all 1-dimensional V.

Examples from aperiodic order

- As mentioned before, a substitution on r letters has rank $\leq r$. This is also true for a substitution tiling with r distinct prototiles. The eccentricity is bounded. This implies a substitution tiling system has all directional entropies zero.
- Another way to prove this is to note that the complexity of a substitution tiling satisfies $c(n) \leq K n^{e}$ (where $e=d$ in the self similar case).
- A. Julien (2009) proved $c(n) \leq K n^{e}$ for a cut and project tiling where the acceptance domain is polyhedral and "almost canonical". This implies all directional entropies zero.
- More generally a model set with a topologically and measure theoretically regular acceptance domain has discrete spectrum, so is rank 1. This implies all directional entropies zero.

OTHER EXAMPLES

- Ledrappier's shift has $c(n)=K e^{2 n}$ (exponential complexity in smaller dimension). It has positive directional entropy in every direction.
- Radin showed that any uniquely ergodic \mathbb{Z}^{2} SFT has $c(n) \leq K e^{\ell n}$. Can it have positive directional entropy.
- Not for the examples that come from substitutions and model sets!

Loosely Bernoulli

Say MPZ ${ }^{d} \mathrm{~A} T$ with $h_{d}(T)=0$ is entropy zero loosely Bernoulli (LB) if a suspension of T (to a $\mathrm{MPR}^{d} \mathrm{~A}$) can be time changed to a suspension of some R discrete spectrum (action by rotations on a compact group).

Theorem (Johnson-Sahin, 1998)

A rectangular rank $1 \mathrm{MPZ} \mathbb{Z}^{2} A T$ with bounded eccentricity is loosely Bernoulli.

- This T can be chosen to have T_{1} be non LB.
- Johnson-Sahin (1998) prove that the same result holds for rank $r>1$ provided towers have uniformly bounded eccentricity.

Loosely Bernoulli

Theorem (R-SAhin 2011?)

If T is a loosely Bernoulli MPZ ${ }^{d} A$ with $h_{d}(T)=0$ then
$h_{n}(T, V)=0$ for all V.
Implications:

- Ledrappier's shift is not loosely LB (a "folk theorem").
- Rudolph's rank 1 is not LB.

(1) Introduction

(2) Finite Rank, \mathbb{Z} CASE
(3) The formal definition
(4) ThE \mathbb{Z}^{2} CASE
(5) Directional entropy
(6) Directional entropy And Rank 1
(7) More...
(8) Extras

\mathbb{Z}^{d} Rohlin lemma

- Say the Rohlin lemma holds for a shape $R \subseteq \mathbb{Z}^{d}$ if for any ergodic \mathbb{Z}^{d} action T, and $\epsilon>0$, there exists $B \in \mathcal{B}$ so that X is partitioned by $\xi=\left\{E, T^{\mathbf{n}} B: \mathbf{n} \in R\right\}$ and $\mu\left(\cup_{\mathbf{n} \in R} T^{\mathbf{n}} B\right)>1-\epsilon$.
- A shape R tiles \mathbb{Z}^{d} if there exists $C \subseteq \mathbb{Z}^{d}$ so that $\left\{T^{\mathbf{n}} R: \mathbf{n} \in C\right\}$ is a partition of \mathbb{Z}^{n}.

Theorem (Ornstein-Weiss, 1980)

A Rohlin lemma holds for a shape R if and only if R tiles \mathbb{Z}^{d}.

