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Rank and directional entropy

Introduction

Cutting and Stacking

Elementary method to construct examples in ergodic theory.

Classical version: invertible Lebesgue measure preserving
transformation T : [0, 1)→ [0, 1).

Equivalently, a measure preserving Z action (MPZA).

Easily generalizes to Zd or Rd to produce MPZdA or MPRdA.

More general than substitutions.
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Introduction

Entropy

Kolmogorov-Sinai, 1959: entropy h(T ) of a measure
preserving transformation T . Average “information” per time
step.

Straightforward generalization to d-dimensional entropy h(T )
of MPZdA T .

Adler-Konheim-McAndrew, 1965: Topological
entropy htop(T ) of continuous map (or Zd action) T .
Exponential growth in “complexity” h(T ) ≤ htop(T ).

Milnor, 1986: directional entropy hn(V, T ) of MPZdA, T .
Here V ⊆ Rd subspace, dim(V ) = n.



Rank and directional entropy

Finite rank, Z case

1 Introduction

2 Finite rank, Z case

3 The formal definition

4 The Z2 case

5 Directional entropy

6 Directional entropy and rank 1

7 More. . .

8 Extras



Rank and directional entropy

Finite rank, Z case

Von Neuman’s “adding machine”

0 1/2 1
Step 0

0 1/2
Step 1

1/2 1
T

Step 3

T

T

Step n

...

...

T

...

Figure : Ergodic mpt T , but not aperiodic (. . .RBRB. . . ).
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Finite rank, Z case

Illustrated as block concatination

WnWn+1
... = Wn

W1 = 1

Picture shows base step and induction step, illustrating the
combinatorial data needed for the construction:

W1 = 0, Wn+1 = WnWn.

The tower is turned on its side, with individual levels blurred.
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Finite rank, Z case

As T : [0, 1)→ [0, 1)
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Finite rank, Z case

As Toeplitz sequence

Action together with partition equals process.

0.0 0.2 0.4 0.6 0.8 1.0
0
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2
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Finite rank, Z case

Chacon’s transformation

Wn 1Wn+1
... =

W1 = 0

Wn Wn

Here the combinatorial data is W1 = 0 and Wn+1 = WnWn1Wn.
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Finite rank, Z case

Chacon’s transformation

0 2/3 1
Step 0

0 2/9
Step 1

Step 2

8/9 1

0    0    1    0    0    0    1    0    1    0    0    1    0    
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Finite rank, Z case

Rank 1

Definition. T is rank 1 if it can be constructed by cutting and
stacking with one large tower in each step.

Left over interval called a spacer.

Theorem

Rank 1 implies (uniquely) ergodic. (Also minimal if number of
adjacent spacers is bounded.)

Adding machine has discrete spectrum. Chacon’s
transformation has continuous spectrum (i.e., is weakly
mixing.)

Any ergodic T with discrete spectrum is rank 1 (e.g.,
irrational rotation transformation).
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Finite rank, Z case

Rank 1 mixing

(Smorodinski)-Adams (1998) version (see also Ornstein
(1968)).

Wn 1Wn+1
... =

W1 = 0

WnWn 1 1 1 1 1 ...

...1 1 1 1 1 1Wn1 1 1 1 1......

Recurrence relation: W1 = 0, Wn+1 = Wn1Wn12 . . .Wn1qn .
Mixing provided qn ↗∞ sufficiently fast.
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Finite rank, Z case

The Morse dynamical system

WnWn+1
... = Wn

W1 = 0

W1 = 1

WnWn+1
... = Wn

1

1 1

1

0

00

0
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Finite rank, Z case

Morse sequences

0 1/2 1
Step 0

0 1/2
Step 1

3/4 1/4

Step 2 Step 3

T T T T

T T

0    1    1    0    1    0    0    1    1    0    0    1    0    1
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Finite rank, Z case

Finite Rank

In this example, there are 2 towers at each step. We say T has
rank ≤ 2.

A. del Junco showed this T is not rank 1. Thus T is rank 2.

The spectrum of T is simple, and mixed (both discrete and
continuous).

Can similarly definerank ≤ r, rank r, and finite rank.

Theorem (see Queffelec, (1987/2010))

A substitution on r letters is rank ≤ r.
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Finite rank, Z case

Rank, Spectrum and Entropy

Theorem (Baxter, 1971)

Finite rank implies h(T ) = 0.

Proof.

Rank n implies spectral multiplicity MT ≤ n (Chacon, 1970).

Positive entropy (h(T ) > 0) implies MT = +∞ (Bernoulli
factor) (Sinai’s Theorem).
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The formal definition

Rohlin Towers

Let T : X → X be a MPZA on a probability space (X,B, µ).

If B, TB, T 2B, . . . , T h−1B are pairwise disjoint, we call it
Rohlin tower with height h and base B.

The error is E =
(
∪h−1k=0T

kB
)c

.

Call ξ = {B, TB, . . . , T h−1B,E} a Rohlin partition.

Theorem (Rohlin’s Lemma)

If T is ergodic, then for any h ∈ N and ε > 0, there is a height h
Rohlin tower with µ(E) < ε.
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The formal definition

Rank 1

Let ξn be a sequence of partitions. Say ξn separates (ξn → ε)
if for any A ∈ B there is An ≤ ξn so that µ(A∆An)→ 0.

Definition

T is rank 1 if there is a sequence ξn of Rohlin towers so that
ξn → ε.

Cutting and stacking definition of Rank 1 implies this one: ξn → ε
follows from diam(Bn)→ 0.

Theorem (Baxter,1971)

ξn may be chosen so that ξn ≤ ξn+1 and Bn+1 ⊆ Bn.

Thus all these T may be obtained by cutting and stacking.
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The formal definition

“Funny” Rank 1

Call a finite R ⊆ Z a shape.

Suppose µ(B) > 0 and T kB ∩ T `B = ∅ for all k, ` ∈ R,
k 6= `.

Call ξ = {E, T kB : k ∈ R} a funny Rohlin tower.

In rank 1, R = {0, 1, . . . , h− 1}.
Define funny rank 1 analogously.

Shape matters! Rank 1 implies “loosely Bernoulli” (Katok, 1977,
Ornstein-Rudolph-Weiss 1982), but funny rank 1 does not
(Ferenczi, 1985).
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The Z2 case

Actions of Zd

Let (X,B, µ) be a probability space.

Let T1, T2 : X → X be MPZAs that commute: T1T2 = T2T1.

For n = (n1, n2) ∈ Z2, define MPZ2A Tn = Tn1
1 Tn2

2 .

Similar definition for MPZdA, (i.e., T1, T2, . . . , Td commute).

Call a finite R ⊆ Zd a shape.

Definition. A shape-R Rohlin tower consists of disjoint sets
TnB,n ∈ R. The partition ξ = {E, TnB : n ∈ R} is a Rohlin
partition.
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The Z2 case

Zd rank 1

Definition

A MPZdA T is rank 1 if there is a sequence ξn of shape Rn Rohlin
partitions so that ξn → ε.

Proposition (R-Sahin, 2010)

Rank 1 (any shape) implies ergodic and simple spectrum.

Corollary

Rank 1 (any shape) implies h(T ) = 0.
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The Z2 case

Zd rank r

Definition

Suppose T is a MPZdA there are shapes Rjn and positive measure
sets Bj

n, for j = 1, . . . , r and n ∈ N, so that

ξn = {TnBj
n : n ∈ Rjn, j = 1, . . . , n} ∪ {X\ ∪nj=1 ∪n∈Rj

n
TnBj

n}

is a partition, and ξi → ε. We say T is rank ≤ r for shapes
{R1

n, R
2
n, . . . , R

j
n}.

Rank r if rank ≤ r and not rank ≤ r − 1.

Proposition

Rank ≤ r implies MT ≤ r and h(T ) = 0, but not necessarily
ergodic.
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The Z2 case

Følner sequences

A sequence R = {Rk} of shapes in Z2 is a Følner sequence (van
Hove sequence) if for any n ∈ Z2

lim
k→∞

|Rk4(Rk + n)|
|Rk|

= 0,

A natural choice is rectangles

Rk = [0, . . . , wk − 1]× [0, . . . , hk − 1],

where wk, hk →∞.
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The Z2 case

Types of rank 1

Rank 1: no shape restriction.

Følner rank 1: Rn a Følner sequence.

Proposition (R-Sahin, 2010)

If Følner, can get ξn ≤ ξn+1 with the same R = {Rn}.

Cutting and stacking works!

Rectangular rank 1: rectangles

Geometric restrictions (on rectangular Rank 1):

Bounded eccentricity: 1/K ≤ wk/hk ≤ K.
Subexponential eccentricity: log(wk)/hk → 0 (wk ≥ hk).
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The Z2 case

Chacon Z2 actions

W 01 =

Wn+1
=

Wn WnWn

Wn

Wn Wn

Wn Wn Wn

1

Weak mixing, not strong mixing, & “MSJ” (R-Park, 1991).

Note. wn/hn = 1: “bounded” eccentricity.
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The Z2 case

Rudolph’s example

...

Wn

One of
(  wn)(  hn)
blocks.  

Nn of these blocks in a row. 
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The Z2 case

Rudolph’s example (continued)

A block consisting
of all possible
((∆wn)(∆hn))Nn

rows, in some
particular order.

There are(
((∆wn)(∆hn))Nn

)
!

of these.

...

...

...

...

...

...

...

...

...
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The Z2 case

Rudolph’s example (continued)

All
(

((∆wn)(∆hn))Nn

)
!

blocks (every possible order)
stacked.

wn+1 = ((∆wn)(∆hn))Nn ×
(wn + ∆wn).

hn+1 =(
((∆wn)(∆hn))Nn

)
!×

((∆wn)(∆hn))Nn ×
(hn + ∆hn).
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The Z2 case

Properties of Rudolph’s example

Requires appropriate choice of ∆wn →∞, ∆hn →∞ and
Nn →∞.

Side lengths
wn+1 = ((∆wn)(∆hn))Nn (wn + ∆wn), and

hn+1 =
(

((∆wn)(∆hn))Nn

)
! ((∆wn)(∆hn))Nn (hn + ∆hn).

Sides satisfy log(hn)/wn →∞. Super exponential
eccentricity.

Theorem (Rudolph, 1978)

Horizontal T1 is Bernoulli shift with arbitrary finite entropy
0 < h(T1) <∞.
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Directional entropy

Review d-dimensional entropy

Before defining directional entropy, we briefly review the ordinary
(d-dimensional) entropy of a MPZdA T .

Let ξ be a finite partition. The entropy of ξ is

H(ξ) = −
∑

A∈ξ µ(A) logµ(A).

Define ξn =
∨

n∈[0,...,n)d
T−nξ

The ξ-entropy of T is

h(T, ξ) = lim
n→∞

1

nd
H(ξn).

The entropy of T is given by

h(T ) = supξ h(T, ξ).

This gives usual entropy of transformation T when d = 1.
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Directional entropy

Preliminaries for directional entropy

Subspace V ⊆ Rd, n = dim(V ) < d.

Q ⊆ V , Q′ ⊆ V ⊥ unit cubes, and

S(V, t,m) = (tQ+mQ′) (we call it a window.)

Q
Q'

V

S(V,t,m)
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Directional entropy

Directional entropy (Milnor, 1986)

Let T be a MPZdA, with ξ a finite partition, and dim(V ) = n.

ξV,t,m :=
∨

n∈S(V,t,m)

T−nξ.

hn(T, V, ξ,m) := lim sup
t→∞

1

tn
H(ξV,t,m).

hn(T, V, ξ) := sup
m>0

hn(T, V, ξ,m)

Definition (Milnor, 1986)

If 1 ≤ n < d, n-dimensional directional entropy in direction V is

hn(T, V ) = supξ hn(T, ξ, V ).

If n = d, then hd(T, V ) = h(T ), (where V = Rd).
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Directional entropy

Directional entropy (Z2 case)

h1(V, T ) <∞ for some V , implies h2(T ) = 0.

Ledrappier’s Z2 shift T has h1(T, V ) > 0 for all V .
K. Park (unpublished, c 1987) Chacon MPZ2A T has
h1(T, V ) = 0 for all V .

h1(T, V ) = ||(p, q)||−1h(T (q,p)), V = (p, q)R, p/q ∈ Q.

Rudolph rank 1 Z2 has h1(V, T ) > 0 where V = e1R.

(K. Park, 1999) If V = vR, ||v|| = 1, then
h1(T, V ) = h(F tv) for the unit R2 suspension F t of T .

(K. Park, 1999) The function h(v) = h(T,vR), ||v|| = 1, is
upper semicontinuous, and {v : h(v) = 0} is Gδ.
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Directional entropy and rank 1

Theorems

The first result has no assumptions beyond rectangular rank 1.

Theorem 1. (R-Sahin, 2010)

Let T be a rectangular rank-1 MPZdA. Then there is a
1-dimensional subspace V ⊆ Rd so that h1(T, V ) = 0.

With addition hypotheses on the eccentricity, we can say more.

Theorem 2. (R-Sahin, 2010)

Let T be a rectangular rank-1 MPZdA with subexponential
eccentricity. If V ⊆ Rd is an n-dimensional subspace, 1 ≤ n ≤ d,
then hn(T, V ) = 0.
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Directional entropy and rank 1

Two lammas

Lemma (Milnor, 1988)

The formulas that define directional entropy simplify to

hn(T, V, ξ,m) = lim
t→∞

1

tn
H(ξV,t,m), and

hn(T, V, ξ) = lim
m→∞

hn(T, V, ξ,m).

Theorem (Boyle-Lind, 1997)

If ξk ≤ ξk+1 and ξk → ε then

hn(T, V ) = lim
k→∞

hn(T, V, ξk).
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Directional entropy and rank 1

Zero-entropy lemma

Lemma

Suppose ξk ≤ ξk+1 and ξk → ε. If tj →∞, and

lim
j→∞

1

(tj)n
H((ξk)V,tj ,m) = 0,

for all k and all m > 0, then hn(T, V ) = 0.

We will use this lemma in the proofs of both theorems.
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Directional entropy and rank 1

Proofs (set-up)

We do the case d = 2.

Let V ⊆ R2 be a 1-dimensional subspace (to be specified later for
Theorem 1), and let ξk be a sequence of shape-Rk Rohlin towers
for T .
Assume WOLOG:

ξk ≤ ξk+1 (Baxter’s Theorem),

Rk is wk × hk where hk ≤ wk for all k.

Note. There are no eccentricity assumptions in Theorem 1.

Let tj →∞ be a slowly increasing sequence, to be specified later.

Ultimate Goal. For fixed m, k, show that H((ξk)V,tj ,m)/tj → 0.
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Directional entropy and rank 1

Proofs (labels)

Let j > k.

Call a level TnBj in ξj good if S(V, tj ,m) ⊆ Rj − n.

Let Gj ⊆ Z2 be the set of good levels.

Let Fj = (∪n∈GjT
nBj)

c.

And, recall Ej = (∪n∈RjT
nBj)

c.
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Directional entropy and rank 1

Proofs (Good Levels)
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Directional entropy and rank 1

Proofs (New partitions)

ξ∗j := {TnBj : n ∈ Gj} ∪ {Fj}.
ηj := (ξk)T,tj ,m ∨ ξ∗j .

Note that (ξk)T,tj ,m ≤ ηj .
Thus H((ξk)T,tj ,m) ≤ H(ηj).

So it suffices to show H(ηj)/tj → 0.

(This will achieve our Ultimate Goal.)
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Directional entropy and rank 1

Proofs (Relations among partitions)

Key observation: Each of the sets TnBj for n ∈ Gj belong to
the partition ηj .

“Goodness” insures the partition (ξk)V,tj ,m is “constant” on levels
TnBj , for n ∈ Gj . In other words, each TnBj is a subset of some
A ∈ (ξk)V,tj ,m.

H(ηj)/tj = − 1
tj

∑
A∈ηj

µ(A) logµ(A)

= − 1
tj

∑
n∈Gj

µ(TnBj) logµ(TnBj)+
∑
A∈η′j

µ(A) logµ(A)


= − 1

tj

|Gj |µ(Bj) logµ(Bj)−
∑
A∈η′j

µ(A) logµ(A)

 .
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Directional entropy and rank 1

Proofs (Left term Goal)

− 1
tj
|Gj |µ(Bj) logµ(Bj) ≤ − 1

tj
|Rj |µ(Bj) logµ(Bj)

= −
(
wjhj
tj

)(
1− εj
wjhj

)
log

(
1− εj
wjhj

)
≤ log(wjhj)− log(1− εj)

tj
,

where εj = µ(Ej).

Left Term Goal. Show log(wjhj)/tj → 0. (Insubstantial entropy
from (uniformly covered) good set)
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Directional entropy and rank 1

Local entropy lemma

Theorem (Shields, 1996)

Suppose ξ is a partition, ξ′ ⊆ ξ and β = µ(∪A∈ξ′A). Then

−
∑
A∈ξ′

µ(A) logµ(A) ≤ β log |ξ′| − β log β.

?
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Directional entropy and rank 1

Proofs (Right Term)

|ξ′j | ≤ (|Rk|+ 1)|S(V,tj ,m)|.

log |ξ′j | = |S(V, tj ,m)| log(|Rk|+ 1) ≤ 2|S(V, tj ,m)| log |Rk|.
|S(V, tj ,m)| ≤ 2tjm.

log |Rk| = K.

Thus
log |ξ′j | ≤ 2Ktjm.
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Directional entropy and rank 1

Proofs (Right Term Goal)

Also

β = µ(Fj) = |Bj\Gj |µ(Bj) + µ(Ej) ≤
|Bj\Gj |
wjhj

+ εj .

So by the local entropy lemma

− 1
tj

∑
A∈ξ′

µ(A) logµ(A) ≤ 2Km

(
|Bj\Gj |
wjhj

+ εj

)
− β log β

tj
.

(tj/tj cancels in the first term). Since β < 1, (β log β)/tj → 0.

Right Term Goal.
|Bj\Gj |
wjhj

→ 0. (This is essentially that

measure of bad part, β → 0.)
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Directional entropy and rank 1

Proof of Theorem 1 (Left Term Goal)

Assume wj ≥ hj for all j.

Take V = e1R.

We want tj →∞ so that
log(wj)

tj
→ 0 and

tj
wj
→ 0.

Define tj =
√
wj logwj .

log(wjhj)
tj

≤ 2 log(wj)
tj

→ 0. Left Term Goal Achieved.
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Directional entropy and rank 1

Proof of Theorem 1 (Right Term Goal)

We have, |Rj\Gj | ≤ hjtj +mwj .

|Rj\Gj |
wjhj

=
tj
wj

+
m

hj
→ 0,

since
tj
wj

=

√
wj logwj

wj
=
√

logwj

wj
→ 0. Right Term Goal

Achieved.
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Directional entropy and rank 1

Proof of Theorem 2 (Left Term Goal)

Take V ⊆ R2, dim(V ) = 1.

Assume wj ≥ hj and define tj =
√
hj logwj .

logwj

tj
=

logwj√
wj log(wj)

=

√
logwj

wj
→ 0

tj
hj

=

√
hj logwj

hj
=

√
logwj

hj
→ 0

(by subexponential eccentricity).

log(wjhj)

tj
≤ 2 log(wj)

tj
→ 0.

Left Term Goal achieved.
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Directional entropy and rank 1

Proof of Theorem 2 (Right Term Goal)

We have, |Rj\Gj | ≤ hj(tj +m) cos θ + wj(tj +m) sin θ.

|Rj\Gj |
wjhj

=
tj +m

wj
cos θ +

tj +m

hj
sin θ → 0,

since
tj
hj
→ 0, (and

tj
wj
, mhj ,

m
wj
→ 0.) Right Term Goal achieved.
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More. . .

Rank r

Here is what we can prove in rank r. For simplicity, we discuss only
the case T is an ergodic rectangular rank ≤ 2 MPZ2A. Let R1

n be
w1
n × h1n and R2

n be w2
n × h2n.

Theorem A. If w1
n ≥ h1n and w2

n ≥ h2n for infinitely many n then
there exists V so that h1(T, V ) = 0 (i.e., h(T1) = 0).

Theorem B. Under the same hypotheses as above, if
log(w1

n)/h1n → 0, and log(w2
n)/h2n → 0, then h1(T, V ) = 0 for all

1-dimensional V .

Theorem C. If w1
n ≥ h1n and w2

n ≤ h2n for all n, and
log(w1

n)/h1n → 0, and log(h2n)/w2
n → 0, then h1(T, V ) = 0 for all

1-dimensional V .
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More. . .

Examples from aperiodic order

As mentioned before, a substitution on r letters has rank ≤ r.
This is also true for a substitution tiling with r distinct
prototiles. The eccentricity is bounded. This implies a
substitution tiling system has all directional entropies zero.

Another way to prove this is to note that the complexity of a
substitution tiling satisfies c(n) ≤ Kne (where e = d in the
self similar case).

A. Julien (2009) proved c(n) ≤ Kne for a cut and project
tiling where the acceptance domain is polyhedral and “almost
canonical”. This implies all directional entropies zero.

More generally a model set with a topologically and measure
theoretically regular acceptance domain has discrete spectrum,
so is rank 1. This implies all directional entropies zero.
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More. . .

Other examples

Ledrappier’s shift has c(n) = Ke2n (exponential complexity in
smaller dimension). It has positive directional entropy in every
direction.

Radin showed that any uniquely ergodic Z2 SFT has
c(n) ≤ Ke`n. Can it have positive directional entropy.

Not for the examples that come from substitutions and model
sets!
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More. . .

Loosely Bernoulli

Say MPZdA T with hd(T ) = 0 is entropy zero loosely Bernoulli
(LB) if a suspension of T (to a MPRdA) can be time changed to a
suspension of some R discrete spectrum (action by rotations on a
compact group).

Theorem (Johnson-Sahin, 1998)

A rectangular rank 1 MPZ2A T with bounded eccentricity is
loosely Bernoulli.

This T can be chosen to have T1 be non LB.

Johnson-Sahin (1998) prove that the same result holds for
rank r > 1 provided towers have uniformly bounded
eccentricity.
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More. . .

Loosely Bernoulli

Theorem (R-Sahin 2011?)

If T is a loosely Bernoulli MPZdA with hd(T ) = 0 then
hn(T, V ) = 0 for all V .

Implications:

Ledrappier’s shift is not loosely LB (a “folk theorem”).

Rudolph’s rank 1 is not LB.
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Extras

Zd Rohlin lemma

Say the Rohlin lemma holds for a shape R ⊆ Zd if for any
ergodic Zd action T , and ε > 0, there exists B ∈ B so that
X is partitioned by ξ = {E, TnB : n ∈ R} and
µ (∪n∈RTnB) > 1− ε.
A shape R tiles Zd if there exists C ⊆ Zd so that
{TnR : n ∈ C} is a partition of Zn.

Theorem (Ornstein-Weiss, 1980)

A Rohlin lemma holds for a shape R if and only if R tiles Zd.
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