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INTRODUCTION

CUTTING AND STACKING

Elementary method to construct examples in ergodic theory.

Classical version: invertible Lebesgue measure preserving
transformation 7" : [0,1) — [0, 1).

Equivalently, a measure preserving Z action (MPZA).
Easily generalizes to Z% or R¢ to produce MPZA or MPRIA.

@ More general than substitutions.

(]
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INTRODUCTION

ENTROPY

o Kolmogorov-Sinai, 1959: entropy h(T') of a measure
preserving transformation T'. Average “information” per time
step.

o Straightforward generalization to d-dimensional entropy h(T)
of MPZIA T.

o Adler-Konheim-McAndrew, 1965: Topological
entropy hiop(T)) of continuous map (or Z¢ action) 7.
Exponential growth in “complexity” h(T) < htop(T).

o Milnor, 1986: directional entropy h,,(V,T) of MPZIA, T.
Here V' C R? subspace, dim(V) = n.
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FINITE RANK, 7Z CASE

VON NEUMAN’S “ADDING MACHINE”
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FINITE RANK, 7Z CASE

ILLUSTRATED AS BLOCK CONCATINATION
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Picture shows base step and induction step, illustrating the
combinatorial data needed for the construction:

Wi=0, Wni=W,W,.

The tower is turned on its side, with individual levels blurred.
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As T:[0,1) — [0,1)
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FINITE RANK, 7Z CASE

ASs TOEPLITZ SEQUENCE

Action together with partition equals process.

4
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FINITE RANK, 7Z CASE

CHACON’S TRANSFORMATION

wi = il
<

O\ W = Wa [ W W |

Here the combinatorial data is W; =0 and W1 = W, W, 1W,,.
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FINITE RANK, 7Z CASE

CHACON’S TRANSFORMATION
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RANK 1

Definition. T is rank 1 if it can be constructed by cutting and
stacking with one large tower in each step.

o Left over interval called a spacer.

Rank 1 implies (uniquely) ergodic. (Also minimal if number of
adjacent spacers is bounded.)

o Adding machine has discrete spectrum. Chacon'’s
transformation has continuous spectrum (i.e., is weakly
mixing.)

@ Any ergodic T with discrete spectrum is rank 1 (e.g.,
irrational rotation transformation).
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FINITE RANK, 7Z CASE

RANK 1 MIXING

@ (Smorodinski)-Adams (1998) version (see also Ornstein
(1968)).

v =
=
D

Recurrence relation: W1 =0, Wy, = W 1W,12 ... W, 19
Mixing provided ¢, * oo sufficiently fast.




THE MORSE DYNAMICAL SYSTEM
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MORSE SEQUENCES
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FINITE RANK, 7Z CASE

FINITE RANK

In this example, there are 2 towers at each step. We say 1" has
rank < 2.

@ A. del Junco showed this T" is not rank 1. Thus T is rank 2.

@ The spectrum of T is simple, and mixed (both discrete and

continuous).
o Can similarly definerank < r, rank 7, and finite rank.

THEOREM (SEE QUEFFELEC, (1987/2010))

A substitution on r letters is rank < r.
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FINITE RANK, 7Z CASE

RANK, SPECTRUM AND ENTROPY

THEOREM (BAXTER, 1971)

Finite rank implies h(T') = 0.

e Rank n implies spectral multiplicity M7 < n (Chacon, 1970).

@ Positive entropy (h(T") > 0) implies M7 = +o0 (Bernoulli
factor) (Sinai's Theorem).
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THE FORMAL DEFINITION

ROHLIN TOWERS

@ Let T: X — X be a MPZA on a probability space (X, B, u).
o If B,TB,T?B,...,T" ' B are pairwise disjoint, we call it
Rohlin tower with height i and base B.

o The error is = (U}Z)T#B)".
o Call ¢ ={B,TB,...,T" B, E} a Rohlin partition.

THEOREM (ROHLIN’S LEMMA )

If T' is ergodic, then for any h € N and € > 0, there is a height h
Rohlin tower with u(E) < e.
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THE FORMAL DEFINITION

RANK 1

o Let &, be a sequence of partitions. Say &, separates (&, — €)
if for any A € B there is A, <&, so that u(AAA,) — 0.

T is rank 1 if there is a sequence &, of Rohlin towers so that
&y — €.

Cutting and stacking definition of Rank 1 implies this one: &, — ¢
follows from diam(B,,) — 0.

THEOREM (BAXTER,1971)

&, may be chosen so that &, < &,11 and B, +1 C B,,.

Thus all these T may be obtained by cutting and stacking.
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THE FORMAL DEFINITION

“FUNNY” RANK 1

(]

Call a finite R C Z a shape.
Suppose ((B) > 0 and T*BNT!B = () for all k,/ € R,
k# L.
Call ¢ = {E,T*B : k € R} a funny Rohlin tower.
o Inrank 1, R={0,1,...,h — 1}.

@ Define funny rank 1 analogously.

(]

Shape matters! Rank 1 implies “loosely Bernoulli” (Katok, 1977,
Ornstein-Rudolph-Weiss 1982), but funny rank 1 does not
(Ferenczi, 1985).
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THE Z= CASE

ACTIONS OF Z¢

Let (X, B, 1) be a probability space.

Let 11,75 : X — X be MPZAs that commute: 11Ty = T5T7.
For n = (n1,n2) € Z?, define MPZ?A T™ = T{"T52.

o Similar definition for MPZIA, (i.e., Ty, T, ..., T; commute).
e Call a finite R C Z% a shape.

Definition. A shape-R Rohlin tower consists of disjoint sets
T"B,n € R. The partition { = {E,T"B : n € R} is a Rohlin
partition.
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7% RANK 1

A MPZIA T is rank 1 if there is a sequence &, of shape R,, Rohlin
partitions so that &, — €.

PROPOSITION (R-SAHIN, 2010)

Rank 1 (any shape) implies ergodic and simple spectrum.

COROLLARY

Rank 1 (any shape) implies h(T') = 0.
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7% RANK 1

DEFINITION

Suppose T' is a MPZAA there are shapes RJ, and positive measure
sets By, for j =1,...,7 and n € N, so that

& ={T"B),:ne R} j=1,... nUu{X\U, UHGR%T“B%}

is a partition, and §; — . We say T' is rank < r for shapes
(RL.R2,... RI}.

Rank r if rank < r and not rank <r — 1.

PROPOSITION

Rank < r implies Mp < r and h(T) = 0, but not necessarily
ergodic.
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THE Z= CASE

FOLNER SEQUENCES

A sequence R = {Ry.} of shapes in Z? is a Fglner sequence (van
Hove sequence) if for any n € Z?

A
lim | R A(Ry, + n)|

=0
k—o00 |Rk| ’

@ A natural choice is rectangles
Rk: [0,...,wk—1] X [0,...,hk—1],

where wg, hy — oo.
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TYPES OF RANK 1

@ Rank 1: no shape restriction.

@ Fglner rank 1: R,, a Fglner sequence.

PROPOSITION (R-SAHIN, 2010)

If Fglner, can get &, < &,+1 with the same R = {R,}.

e Cutting and stacking works!

@ Rectangular rank 1: rectangles
o Geometric restrictions (on rectangular Rank 1):

e Bounded eccentricity: 1/K < wy/h < K.
e Subexponential eccentricity: log(wy)/hr — 0 (wg > hg).
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CHACON Z2 ACTIONS

Weak mixing, not strong mixing, & “MSJ" (R-Park, 1991).

Note. w,/h, = 1: “bounded” eccentricity.
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RUDOLPH’S EXAMPLE

Wi

Wh + Awp,
<>

One of
(AWn)(mn)
blocks.

Nn of these blocks in a row.

- >
m - m
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THE Z= CASE

RUDOLPH’S EXAMPLE (CONTINUED)
A block consisting
of all possible
(Awn)(Ahy))™

rows, in some
particular order.

There are

(((Awn)(@ha))):

of these.
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THE Z= CASE

RUDOLPH’S EXAMPLE (CONTINUED)

(Aw )(Ahn)(wWn hAw,)
o Al (((Awn)(Ahn))N">!
blocks (every possible order)

stacked. Wh 41
o woi1 = ((Awy)(Ahy))M x —
(wn, + Awy,).
® hpy1 =

(((Awa) (AR )™ )1

((Awn)(Ahy)) "
(hn + Ahy).

I+ul"|
Il
TCHEE B HTRE RS HE
H((YV)(M V) (YT + )
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THE Z= CASE

PROPERTIES OF RUDOLPH’S EXAMPLE

@ Requires appropriate choice of Aw,, — 0o, Ah,, — oo and
N,, — oo.

o Side lengths
Wnt1 = ((Awn)(Ahy))™ (wy, + Awy,), and

o = (((Bw0n) (Ah)) ™™ )1 (D) (D)™ (i + Ay

o Sides satisfy log(hy,)/w, — 00. Super exponential
eccentricity.

THEOREM (RUDOLPH, 1978)

Horizontal Ty is Bernoulli shift with arbitrary finite entropy
0 < h(Th) < 0.
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DIRECTIONAL ENTROPY

REVIEW d-DIMENSIONAL ENTROPY

Before defining directional entropy, we briefly review the ordinary
(d-dimensional) entropy of a MPZIA T.

o Let & be a finite partition. The entropy of ¢ is
H(§) = = 2_ sce 1(A) log p(A).

o Define &, = \/ T7%¢
nelo0,...,n)4
o The &-entropy of T is
h(T,€) = lim —5H(E").
@ The entropy of 1" is given by
h(T) = sup¢ h(T,§).

This gives usual entropy of transformation 7" when d = 1.
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PRELIMINARIES FOR DIRECTIONAL ENTROPY

o Subspace V C R?, n = dim(V) < d.
e QCV,Q CV= unit cubes, and
e S(V,t,m) = (tQ + mQ’) (we call it a window.)

/

Y
/ $(V.1

QI
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DIRECTIONAL ENTROPY (MILNOR, 1986)
Let T be a MPZ4A, with ¢ a finite partition, and dim (V) = n.

o typmi= \/ T
nesS(Vit,m)

1
o h,(T,V,&,m) := limsup — H ({vie.m)-
t—oo " ”
o hy(T,V,§) := sup hy(T,V,§,m)
m>0

DEFINITION (MILNOR, 1986)

If 1 <n < d, n-dimensional directional entropy in direction V is
hn(T, V) = supg hn(T,€,V).

If n = d, then hy(T,V) = h(T), (where V = R%).
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DIRECTIONAL ENTROPY (Z? CASE)

o h(V,T) < oo for some V, implies ho(T) = 0.
o Ledrappier's Z? shift T has hy(T,V) > 0 for all V.
o K. Park (unpublished, c 1987) Chacon MPZ?A T has
hi(T,V) =0 for all V.
o (T, V) = l(p, @)l 'H(TP), V = (p, )R, p/q € Q.
o Rudolph rank 1 Z? has hy(V,T) > 0 where V = e;R.
o (K. Park, 1999) If V' = VR, ||v|| =1, then
hi(T,V) = h(F®) for the unit R? suspension F'* of T.
o (K. Park, 1999) The function h(v) = h(T,VvR), ||v|]| =1, is
upper semicontinuous, and {v : h(v) = 0} is Gs.
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THEOREMS

The first result has no assumptions beyond rectangular rank 1.

THEOREM 1. (R-SAHIN, 2010)

Let T be a rectangular rank-1 MPZYA. Then there is a
1-dimensional subspace V. C R? so that hy (T, V) = 0.

With addition hypotheses on the eccentricity, we can say more.

THEOREM 2. (R-SAHIN, 2010)

Let T be a rectangular rank-1 MPZ®A with subexponential
eccentricity. If V C R% js an n-dimensional subspace, 1 < n <d,
then hy,(T,V) = 0.
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TWO LAMMAS

LEMMA (MILNOR, 1988)

The formulas that define directional entropy simplify to

1
hn(T7 ‘/7 57 m) = tllgolo t_nH(gv,t,m)r and

THEOREM (BOYLE-LIND, 1997)
If & < &kr1 and &, — € then
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DIRECTIONAL ENTROPY AND RANK 1

ZERO-ENTROPY LEMMA

LEMMA
Suppose &, < &1 and &, — €. Ift; — 0o, and

Jll>nolo (t]%H((gk)V,tj,m) =0,

for all k and all m > 0, then h,(T,V) = 0.

We will use this lemma in the proofs of both theorems.
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PROOFS (SET-UP)

We do the case d = 2.

Let V C R? be a 1-dimensional subspace (to be specified later for

Theorem 1), and let & be a sequence of shape-Rj Rohlin towers
for T

Assume WOLOG:
o & < &ki1 (Baxter's Theorem),
o Ry is wy X hy where hy, < wy, for all k.

Note. There are no eccentricity assumptions in Theorem 1.
Let ¢; — oo be a slowly increasing sequence, to be specified later.

Ultimate Goal. For fixed m, k, show that H((x)vt;m)/t; — 0.
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PROOFS (LABELS)

o Let j > k.

o Call a level T"B; in §; good if S(V,t;,m) C R; — n.
o Let G; C 7?2 be the set of good levels.

Let Fj = (Uneg, T"B;)°.

And, recall Ej = (Unegr, T" Bj)°.
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DIRECTIONAL ENTROPY AND RANK 1

PROOFs (GOOD LEVELS)

Rj D —
N & = »
N |£

L1 [ ]
© -
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PROOFS (NEW PARTITIONS)

& ={T"Bj:n€ G} U{F;}.

;i = (k)1t;m V ;-

Note that (§k)7,t;,m < nj-

Thus H((€)1:0,m) < H(1,).

So it suffices to show H(n;)/t; — 0.
(This will achieve our Ultimate Goal.)

(]
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PROOFS (RELATIONS AMONG PARTITIONS)

Key observation: Each of the sets T"B; for n € G; belong to
the partition 7);.

“Goodness” insures the partition (fk)V,tj,m is “constant” on levels
T"Bj, for n € G;. In other words, each T™B; is a subset of some
A€ (&k)vit;m-

Hnj)/t; = —4 D n(A)logu(4)
Aen;

= —& | Do @By log w(T™Bj)+) . u(A)log u(A)
nEGj AEn;.

= _t_lj |G;|(Bj) log pu(B;) —Z w(A)log pu(A)
Aen;
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PROOFS (LEFT TERM GOAL)

—5|Gilu(Bj) log u(Bj) < —¢-|Rj|u(B;)log u(B;)

"y il — i —
- - (%57) Gl e (o)
j w;hy; wjh;
log(w;h;) —log(1 — € )
) t] 9

where €; = u(Ej).

Left Term Goal. Show log(w;h;)/t; — 0. (Insubstantial entropy
from (uniformly covered) good set)
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LOCAL ENTROPY LEMMA

THEOREM (SHIELDS, 1996)

Suppose & is a partition, £’ C & and = p(UacerA). Then

= > u(A)log p(4) < Blogle’| — flog .

Aeg’
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PrROOFs (RIGHT TERM)

o €] < (IRe] +1)IStsmL.

o log|¢| = [S(V, t;,m)| log(|Re| + 1) < 2|S(V,t;,m)|log | R.
o \S(V,tj,m)| < Qtjm.

o log |Ri| = K.

Thus
log |€}] < 2Ktjm.
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PrROOFs (RIGHT TERM GOAL)

Also
B = u(F;) = |Bj\Gj|u(B;) + p(Ej) < h- +€]'
L
So by the local entropy lemma

—£ > w(A)log u(A) < 2Km (‘Bﬂ\}?ﬂ' o ej) _ Blogp

Ace Uil t
(tj/t; cancels in the first term). Since 8 < 1, (BlogB)/t; — 0.

Gj
Right Term Goal. [BAG;| | 0. (This is essentially that
5%

measure of bad part, 5 — 0.)
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PROOF OF THEOREM 1 (LEFT TERM GOAL)

@ Assume wj > h; for all j.
o Take V = e1R.
log(wy)

0 t;
o We want t; — oo so that — 0and - — 0.

tj wj

Define tj = /Wy 10g wWj.

log(;‘;jhj) < 210%3(_“”) — 0. Left Term Goal Achieved.
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DIRECTIONAL ENTROPY AND RANK 1

PROOF OF THEOREM 1 (RIGHT TERM GOAL)

We have, |R;\G;| < hjt; + mw;.

[R\G;| _ t;  m
w;h; wj  hy

1 . - -
_ V"“”Jw;)gwﬂ = /8% _, 0. Right Term Goal

i h7
since - w;
Achieved. El
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PROOF OF THEOREM 2 (LEFT TERM GOAL)

o Take V C R?, dim(V) = 1.
@ Assume w; > h; and define t; = \/h;logw;.

log w; _ log w; _ log w; 5o
% w; log(w;) w;
. ti _ hjlogw; _ log w; S0
h; h; h;
(by subexponential eccentricity).
1 il 21 ;
og(w;h;) < og(w;) o

tj tj

Left Term Goal achieved.
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DIRECTIONAL ENTROPY AND RANK 1

PROOF OF THEOREM 2 (RIGHT TERM GOAL)

We have, |R;\G;| < hj(t; +m)cos€ + w;(t; + m)sin6.

w; X ((tj+m)sinB)

o 2 l:]%
:ll_lIZI

Rj\GJ

R\G; t; i
|75\ ]’= J+m0089+ ]+msin9—>0,
w;hy; w h;

i .
since —JJ — 0, (and ;—Jj, fr» i — 0.) Right Term Goal achieved.
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RANK r

Here is what we can prove in rank r. For simplicity, we discuss only
the case T is an ergodic rectangular rank < 2 MPZ2A. Let R. be
wl x hl and R2 be w2 x h2.

Theorem A. If w} > hl and w2 > h2 for infinitely many n then
there exists V' so that hy(7,V) =0 (i.e., h(T1) = 0).

Theorem B. Under the same hypotheses as above, if
log(w})/hy — 0, and log(w?2)/h2 — 0, then hy(T,V) = 0 for all
1-dimensional V.

Theorem C. If w}: > hl and w2 < h2 for all n, and
log(w})/hL — 0, and log(h2)/w? — 0, then hy (T, V) = 0 for all
1-dimensional V.
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EXAMPLES FROM APERIODIC ORDER

@ As mentioned before, a substitution on r letters has rank < r.
This is also true for a substitution tiling with 7 distinct
prototiles. The eccentricity is bounded. This implies a
substitution tiling system has all directional entropies zero.

@ Another way to prove this is to note that the complexity of a
substitution tiling satisfies ¢(n) < Kn® (where e = d in the
self similar case).

o A. Julien (2009) proved c¢(n) < Kn® for a cut and project
tiling where the acceptance domain is polyhedral and “almost
canonical”. This implies all directional entropies zero.

@ More generally a model set with a topologically and measure
theoretically regular acceptance domain has discrete spectrum,
so is rank 1. This implies all directional entropies zero.
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OTHER EXAMPLES

o Ledrappier's shift has ¢(n) = Ke?" (exponential complexity in
smaller dimension). It has positive directional entropy in every
direction.

o Radin showed that any uniquely ergodic Z? SFT has
c(n) < Ke'™. Can it have positive directional entropy.

@ Not for the examples that come from substitutions and model
sets!
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LOOSELY BERNOULLI

Say MPZYA T with hy(T) = 0 is entropy zero loosely Bernoulli
(LB) if a suspension of T' (to a MPR?A) can be time changed to a
suspension of some R discrete spectrum (action by rotations on a
compact group).

THEOREM (JOHNSON-SAHIN, 1998)

A rectangular rank 1 MPZ?A T with bounded eccentricity is
loosely Bernoulli.

@ This T can be chosen to have 77 be non LB.

@ Johnson-Sahin (1998) prove that the same result holds for
rank r > 1 provided towers have uniformly bounded
eccentricity.
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LOOSELY BERNOULLI

THEOREM (R-SAHIN 20117)

If T is a loosely Bernoulli MPZEA with hy(T) = 0 then
hn (T, V) =0 for all V.

Implications:
o Ledrappier’s shift is not loosely LB (a “folk theorem™).
@ Rudolph’s rank 1 is not LB.
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EXTRAS

7% ROHLIN LEMMA

@ Say the Rohlin lemma holds for a shape R C Z% if for any
ergodic Z% action T, and € > 0, there exists B € B so that
X is partitioned by £ = {E,T"B :n € R} and
1 (UnerT"B) > 1 —e.

o A shape R tiles Z% if there exists C' C Z¢ so that
{T™R :n € C} is a partition of Z".

THEOREM (ORNSTEIN-WEISS, 1980)

A Rohlin lemma holds for a shape R if and only if R tiles 7.
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