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1. Introduction

Sturmian sequences were introduced by Morse and Hedlund [10] as the sequences
that code the orbits of the geodesic flow on a flat 2-torus. In this paper, we restrict
our attention to (1-sided) aperiodic Sturmian sequences, which may be defined to
be those sequences d = .d1d2d3 · · · ∈ {0, 1}N that have exactly n+1 distinct factors
(subsequences u = djdj+1 . . . dj+n−1) of length n. This property is often expressed
by saying that a Sturmian sequence d has complexity function cd(n) = n + 1. If
ce(n) is he complexity function of a sequence e ∈ {0, 1}N, it is known (see [5],
Chapter 6) that ce(k) = k for some k if and only if e is eventually periodic. Thus
Sturmian sequences are the least complex among aperiodic sequences.

A sequence d = .d1d2d3 · · · ∈ {0, 1}N is said to be balanced if for any i, j, ` ≥ 1∣∣∣∣∣∣
i+`−1∑
k=i

dk −
j+`−1∑
k=j

dk

∣∣∣∣∣∣ ≤ 1.

It can be shown that a sequence is balanced if and only if it is Sturmian, and from
this, one can prove (see [5], Chapter 6) that the limit

(1) α = lim
n→∞

1

n

∞∑
k=1

dk

exists, and α is irrational. The number α is called the slope of d.
Morse and Hedlund [10] showed that if d = .d1d2d3 . . . is a Sturmian sequence

with slope α ∈ (0, 1)\Q, then there is a unique x ∈ [0, 1), called the intercept, so
that d either has the form

(2) dn = bα(n+ 1) + xc − bαn+ xc,
for all n ∈ N, or

(3) dn = dα(n+ 1) + xe − dαn+ xe.
Note that (2) and (3) are the same unless nα + x = 0 mod 1 for some n > 1, in
which case they disagree in exactly one or two adjacent digits.

Given a Sturmian sequence d, one can easily determine its slope α using (1).
The goal of this paper is to exhibit a similarly simple formula for the intercept x.
In particular, the intercept x can be obtained using a well know generalization of
continued fraction and radix expansions, called an f -expansions. Another way to
say this is that a Sturmian sequence d = .d1d2d2 · · · ∈ {0, 1}N can be regarded
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as type “binary expansion” of its intercept x. We refer to this as the Sturmian α
expansion of x .

After a brief discussion of f -expansions in general, we discuss general some prop-
erties of Sturmian α-expansions. In particular, Sturmian α-expansions differs signif-
icantly from nearly all other the familiar numeration systems, including continued
fraction expansions and β-expansions — two examples we use to draw this contrast.
We conclude by mentioning a few other examples that have properties similar to
Sturmian α-expansions.

2. f-expansions

Let f : R → [0, 1] be a continuous monotonic function with f(R) = [0, 1]. An
f -expansion is an expression of the form

(4) x = f(d1 + f(d2 + f(d3 + . . . ))),

where the digits dk are integers. We call d = .d1d2d3 . . . the digit sequence of the
expansion (4). In particular, the expression (4) means that xn → x, where

(5) xn = f(d1 + f(d2 + · · ·+ f(dn))).

This idea goes back to Kakeya [7], who observed in 1926 that examples of f -
expansions include1 both regular continued fractions and base β radix expansions
β > 1. In particular, regular continued fractions

x = f(d1 + f(d2 + f(d3 + . . . ) ))) =
1

d1 +
1

d2 +
1

d3 + · · ·

,

correspond to the case f(x) = 1/x, whereas base-β radix expansions

x = f(d1 + f(d2 + f(d3 + . . . ) ))) =

d1 +

d2 +
d3 + . . .

β

β

β
=

∞∑
k=1

dk
βk

correspond to f(x) = x/β.
Although more than one digit sequence in (4) may yield the same number x ∈

[0, 1) (just as 0.099 · · · = 0.100 . . . in base 10), there is a standard algorithm that
takes x and produces a digit particular digit sequence d = .d1d2d3 . . . that we
call the proper f -expansion of x. As Rényi [14] observed in 1951, this algorithm is
perhaps best described in terms of a dynamical system. Using the given function f ,
we define an almost everywhere map T : [0, 1)→ [0, 1), called the f -transformation,
by

(6) Tx = f−1(x) mod 1.

We also define a labeled interval partition a.e. on [0, 1), by which simply mean an
integer valued function on [0, 1) defined ξ(x) = bf−1(x)c. The “interval partition”
here is the partition of [0, 1) into the nonempty intervals ∆(d) = [a, b) = {x :
ξ(x) = d} where the function ξ is constant. These sets ∆(d) are called fundamental

1The same observation was made independently by Bissinger [2] for f increasing and Everett
[4] for f decreasing.
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intervals. Assuming x is such that Tn−1x exists for all n ∈ N, the proper digit
sequence d = .d1d2d3 . . . is defined by

(7) dn = ξ(Tn−1x), n ∈ N.

If the proper digit sequence d = .d1d2d3 . . . is used in (4) we call it the proper
f -expansion of x. Note that dn ∈ D where D := ξ([0, 1)) is called the digit set.

For continued fractions, the f -transformation is the Gauss map Tx = 1/x mod 1,
and D = N. (In cases like this, where some of the digits dn are multi-digit numbers
when written in base 10, it will sometimes be convenient to write the digit sequence
as d = [d1, d2, d3, . . . ] rather than d = .d1d2d3 . . . .) For base-β radix expansions,
the f -transformation Tx = βx mod 1 is called the β-transformation, and D =
{0, 1, . . . dβe − 1}. The case β ∈ N gives the usual radix expansions (e.g., base 2,
base 10).

We say f -expansions have unique proper digits if the proper digit sequence map
x 7→ d is injective, and we say f -expansions are valid if for each x, such that Tnx
exists for all n ≥ 0, the proper f -expansion converges to x. A typical approach to
this problem is the following (see [7] and also [17]).

Theorem 1 (Kakeya’s theorem). Assume f is strictly monotone on an interval
(a, b) ⊆ R with

−∞ ≤ a < a+ 1 < b ≤ +∞,
and(8)

f((a, b)) = [0, 1].

If the f -transformation T satisfies

(9) |T ′(x)| > 1 a.e.,

then f has unique proper digits and f -expansions are valid.

Note that (9) is equivalent to

(10) |f ′(x)| < 1 a.e. on (a, b).

Similar results due to Bissinger [2] and Everett [4] require that f satisfies a Lipshitz
condition with constant K < 1 instead of (10).

3. Sturmian α-expansions

Let us fix an irrational number α ∈ [0, 1)\Q and consider as the irrational
rotation transformation Tx = x + α mod 1. This can be interpreted as the f -
transformation (6) for the function

(11) f(x) =


0 if x < α

x− α if α ≤ x ≤ α+ 1

1 if x > α+ 1.

The corresponding labeled partition is given by

ξ(x) =

{
0 if 0 ≤ x < 1− α
1 if 1− α < x ≤ 1,

with digit set D = {0, 1}.
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It is easy to see that for the function f , defined by (11), the proper digit sequence
d = .d1d2d3 . . . for x ∈ [0, 1) is equal to the Sturmian sequence d given by (2)
with slope α and intercept x. These are our Sturmian α-expansions. The irrational
rotation transformation T clearly fails to satisfy Kakeya’s hypotheses (9). However,
we can still obtain the following result2.

Theorem 2. Sturmian α-expansions have unique proper digit sequences, and are
valid.

Proof. Given x ∈ [0, 1), let x 7→ d = .d1d2d3 . . . be the proper digit sequence map,
and let dn(x) = d1d2 . . . dn. Let ξ(n) be the partition of [0, 1) into those subintervals
[ank , b

n
k ), k = 1, 2, . . . , of [0, 1), on which dn(x) is constant. We claim that for each

n = 1, 2, . . . , there are |ξ(n)| = n + 1 such intervals, and if they are arranged so
that bnk+1 = ank , then the cut points an1 , a

n
2 , . . . , a

n
n+1 are the first n+ 1 points orbit

O+
T−1(0) = {T−n+10 : n ∈ N} of 0 under the irrational rotation transformation

T−1x = x+ (1− α) mod 1.
The claim is true for n = 1, so assume it holds for n. It is well known that

O+
T−1(0) is dense in [0, 1) (since T−1 is an is an irrational rotation, see [19]), so

T−(n+1)0 is in the interior of [an` , b
n
` ) for some `. We then have

[an+1
k , bn+1

k ) =


[ank , b

n
k ) if 1 ≤ k < `,

[ank , T
−(n+1)0) if k = `,

[T−(n+1)0, bnk ) if k = `+ 1,

[ank−1, b
n
k−1) if `+ 1 < k ≤ n+ 1,

so the claim holds for n+ 1.
By the claim, the cutpoints of ξ(n) satisfy {an1 , an2 , . . . , ann+1} = {T−k0 : k =

0, . . . , n} for all n. Let ||ξ(n)|| = max{b − a : ∆ = [a, b) ∈ ξ(n)}. Since O+
T−1(x)

is dense, it follows that ||ξ(n)|| → 0. This shows Sturmain base-α expansions have
unique proper digit sequences.

For x ∈ [0, 1) and n ∈ N we have

(12) x ∈ [an(x), bn(x)) := [ank , b
n
k ) ∈ ξ(n)

for some unique k = k(n). We claim that

an(x) = f(d1 + f(d2 + · · ·+ f(dn)))

and

bn(x) = f(d1 + f(d2 + · · ·+ f(dn + 1)))

Indeed, [f(d1), f(d1 + 1)) = [f(0), f(1)) = [0, 1 − α) = [a1(x), b1(x)) if d1 = 0 and
[f(d1), f(d1 + 1)) = [f(1), f(2)) = [1− α, 1) = [a1(x), b1(x)) if d1 = 1, so the claim
holds for n = 1. We proceed by induction. Note that

[an(x), bn(x)) = [a1(x), b1(x)) ∩ T−1[an−1(x′), bn−1(x′))

where x′ = Tx. By induction,

an−1(x′) = f(d2 + f(d3 + · · ·+ f(dn)))

and

bn−1(x′) = f(d2 + f(d3 + · · ·+ f(dn + 1))).

2This fact was noted in passing by Parry in [12].
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Thus

an(x) = T−1(an−1(x′)) ∩ [a1(x), b1(x))

= f(d1 + an−1(x′))

= f(d1 + f(d2 + · · ·+ f(dn))),

and

bn(x) = T−1(bn−1(x′)) ∩ [a1(x), b1(x))

= f(d1 + bn−1(x′))

= f(d1 + f(d2 + · · ·+ f(dn + 1))).

Finally, since ||ξ(n)|| → 0, it follows that xn = an(x) → x, so Sturmian base-α
are valid. �

As an example, let the base α =
√

2− 1. Then for x = 1/2

d = .0101001010100101001010100101001010010101001010010101000 . . . ,

admittedly, not a very intuitive expansion for 1/2. The first 30 partial convergents
(partial f -expansions) are shown in Table 1. Note that (in general) the convergents

n xn ∼ xn n xn ∼ xn n xn ∼ xn
1 0 .00000 11 16− 11

√
2 .44365 21 16− 11

√
2 .44365

2 3− 2
√

2 .17157 12 16− 11
√

2 .44365 22 16− 11
√

2 .44365

3 3− 2
√

2 .17157 13 16− 11
√

2 .44365 23 33− 23
√

2 .47309

4 6− 4
√

2 .34315 14 16− 11
√

2 .44365 24 33− 23
√

2 .47309

5 6− 4
√

2 .34315 15 16− 11
√

2 .44365 25 33− 23
√

2 .47309

6 6− 4
√

2 .34315 16 16− 11
√

2 .44365 26 33− 23
√

2 .47309

7 6− 4
√

2 .34315 17 16− 11
√

2 .44365 27 33− 23
√

2 .47309

8 6− 4
√

2 .34315 18 16− 11
√

2 .44365 28 33− 23
√

2 .47309

9 6− 4
√

2 .34315 19 16− 11
√

2 .44365 29 33− 23
√

2 .47309

10 6− 4
√

2 .34315 20 16− 11
√

2 .44365 30 33− 23
√

2 .47309

Table 1. First 20 convergents of x = 1/2 = .5 in the Sturmian

expansion base α =
√

2− 1.

xn lie in the set Z+αZ (Z[
√

2] in the example). Table 1 suggests that convergence
is very slow. This is reinforced by Figure 1, which shows a plot of the first 1000
convergents. Note that x1000 = 1105 − 781

√
2 ∼ .49921, still correct to only three

decimal places. Figure 1 and Table 1 both suggest that there are long intervals of
n where the convergents xn remain constant.

As a second example, again for α =
√

2− 1, let x = 16− 11
√

2 ∼ .44365. Then
we get

d = .0101001010100101001010010101001010010101001010010100101 . . .

A calculation shows that x1 = 0, x2 = x3 = 3 − 2
√

2 x4 = · · · = x9 = 6 − 4
√

2
and x10 = x11 = x12 = · · · = 16 − 11

√
2. So the convergents reach x after a finite

number of steps (and never change) even though the representation d is infinite.
These facts are explained by the following proposition.
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Figure 1. A listplot of the first 1000 convergents of x = 1/2 = .5

in the Sturmian base α =
√

2− 1.

Proposition 3. Fix α ∈ [0, 1)\Q, and for x ∈ [0, 1), define

xn = min
(
({0} ∪ {T−k0 : k = 1, . . . , n}) ∩ [0, x)

)
and

xn = min
(
({T−k0 : k = 1, . . . , n} ∪ {1}) ∩ (x, 1]

)
,

so that x ∈ [xn, xn) for all n ∈ N. Then there exist strictly increasing sequences
nk, nk ∈ N so that

xn = T−nk0 for n ∈ [nk, nk+1)

and

xn = T−nk0 for n ∈ [nk, nk+1).

Moreover, if an(x) and bn(x) are defined as in (12), then [an(x), bn(x)) = [xn, xn).

Note that xn = xn. We are now in a position to give a qualitative description of
the long intervals in N on which the convergents are constant. By Proposition 3,
these are the intervals [nk, nk+1). At step nk there are nk +1 intervals in ξ(nk), one

of which, [a
nk
x , b

nk
x ) contains x. Thus O+

T−1(x) will visit every other interval in ξ(nk)

at least once before its first return to [a
nk
x , b

nk
x ). Thus, nk+1 will be a least twice

nk. We will discuss the relation between Sturmian α-expansions and Ostrowski
numeration (see [5], Chapter 5) in a later paper [15].

Now let us consider Sturmian α-expansions for digit sequences c ∈ DN that are
not necessarily proper. In particular, given any c = .c1c2c3 · · · ∈ {0, 1}N let

ε(c) = f(c1 + f(c2 + f(c3 + . . . ))).

Let ≺ denote lexicographic order on {0, 1}N. That is, c ≺ e, e = .e1e2e3 . . . , if and
only if for some n ≥ 1, c1 . . . cn = e1 . . . en, cn+1 = 0 and en+1 = 1.

Lemma 4. If f is given by (11), then for any c = .c1c2c3 · · · ∈ {0, 1}N, the f -
expansion ε(c) = f(c1 + f(c2 + f(c3 + . . . ))) converges. Moreover, if c ≺ e then
ε(c) ≤ ε(e).

Proof. Since f is nondecreasing, xn+1 ≥ xn, and moreover, xn ≤ 1 since f(x) ≤ 1.
Thus ε(c) converges.
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Suppose c1 = 0 and e1 = 1 so that c ≺ e. Since f(c2 + f(c3 + . . . )) ≤ 1 and
f(e2 + f(e3 + . . . )) ≥ 0, it follows that c1 + f(c2 + . . . ) ≤ e1 + f(e2 + . . . ), and so
f(c1 + f(c2 + . . . )) ≤ f(e1 + f(e2 + . . . )).

Now suppose c ≺ e. Let n > be such that c1c2 . . . cn−1 = e1e2 . . . en−1, cn = 0
and en = 1. By the previous paragraph f(cn+f(cn+1+. . . )) ≤ f(en+f(en+1+. . . )).
Since f is increasing it follows that f(c1 + · · · + f(cn + f(cn+1 + . . . ))) ≤ f(e1 +
· · ·+ f(en + f(en+1 + . . . )). �

4. Ergodic properties of Sturmian α-expansions

As Rényi observed in his landmark paper [14], many properties of f -expansions
reflect the “ergodic” properties of the corresponding f -transformation T . In this
section, we compare the irrational rotation map Tx = x+α mod 1 to the Gauss map
Tx = 1/x mod 1 and the β-transformations Tx = βx mod 1. A T -invariant prob-
ability measure µ on [0, 1) is a Borel measure so that µ([0, 1)) = 1 and µ(T−1E) =
µ(E) for every Borel set E. A measure µ is an absolutely continuous if there is
a density ρ(x) ≥ 0 on [0, 1) with µ(E) =

∫
E
ρ(x) dx, and “Lebesgue-equivalent ”

if ρ(x) > 0 a.e. (i.e., ρ(x) = dµ/dx is the Radon-Nikodym derivative of µ). A
measure is ergodic if µ(TE∆E) = 0 implies µ(A) = 0 or 1.

All of the transformations we are discussing have an ergodic Lebesgue-equivalent
invariant probability measure (“ELEM” for short). For the Gauss map, the density
for this measure, called the Gauss measure, is given by ρ(x) = 1

log 2
1

1+x . For β-

transformations T with β ∈ N, Lebesgue measure itself is invariant (i.e., ρ(x) = 1).
When β 6∈ N, ρ(x) is a step function, and µ is called the Parry measure (see [14]
and [11]). Finally, if T is an irrational rotation transformation the ELEM is, again,
Lebesgue measure.

For all three of these transformations, the existence of a ELEM implies that for
the corresponding proper f -representation d, almost every x ∈ [0, 1) is a normal
number. In particular, for u ∈ Dn let

Ln(u,d) = |{j ∈ [1, . . . , n] : d|[j,...j+|u|−1] = u}|
denote the number of occurrences of u in the first n places in d. A standard
argument using Birkhoff ergodic theorem (see e.g.[19]) shows that for almost every
x ∈ [0, 1), for any u ∈ Dn,

(13) lim
n→∞

1

n
Ln(u,d) =

∫
∆(d1)∩T−1∆(d2)∩···∩T−n+1∆(dn)

ρ(x) dx.

Thus, in a typical proper f -expansion, every finite sequence of digits occurs with a
well defined frequency (which may sometimes be zero).

Beyond these simple facts, however, irrational rotation transformations T is very
different from either the Gauss map or any β-transformation, and this this leads to
some unusual properties for Sturmian α-expansions. To begin with, both the Gauss
map and the β-transformations have other ergodic invariant measures besides their
ELEMs. On the other hand, Lebesgue measure is the unique invariant measure for
an irrational rotation T . This property is known as unique ergodicity. One corollary
of unique ergodicity is that the ergodic theorem (13) converges for all x (see [19])
rather than just almost everywhere. Thus every x ∈ [0, 1) is a normal number for
Sturmian α-expansions.

Another consequence of unique ergodicity is O+
T (x) is dense for every x. A

minimal map T has no periodic or eventually periodic points. This means that there
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are no periodic or eventually periodic proper Sturmian α-expansions. In contrast,
periodic points are dense for both the Gauss map and β-transformations. For both
continued fractions and β-expansions, periodic expansions have important number
theoretic consequences. However, even though there are no periodic expansions for
Sturmian α-expansions, minimality implies that all proper digit sequences for have
the following “almost periodicity” property. Suppose a finite sequence u ∈ {0, 1}n
occurs in the proper Sturmian α-expansion c of some y. Then there is a constant
K > 0 (K = K(u, α)) so that u occurs within K of an arbitrary location in
the proper Sturmian α-expansion d of any x. Qualitatively, all proper Sturmian
α-expansions look pretty much alike.

A special case of eventual periodicity for β-expansions occurs when the proper
expansion of x ends in zeros. In base β = 2, for example, such numbers are the
dyadic rationals. We say the β-expansion of x is finite. Note that the β-expansion
of x is a finite sum in this case. A similar situation can be imposed on continued
fractions by defining T0 = ξ(0) = f(0) = 0 and allowing 0 ∈ D. In this case,
a number x ∈ [0, 1) has a finite continued fraction expansion if and only if it is
rational.

At first it appears that there is no analogous situation for Sturmian expansions,
since no proper Sturmian expansions end in infinitely many zeros. On the other
hand, let x ∈ O+(0) and let d = .d1d2d3 . . . be the proper Sturmian expansion
of x. Then there exists n0 ∈ N so that x = f(d1 + f(d2 + · · · + f(dn))) for
n ≥ n0 (namely, Tn00 = x). Moreover, it is easy to see that the digit sequence
d′ = .d1d2 . . . dn0

0000 . . . gives an improper Sturmian α-expansion of x. It follows
that there are uncountably many d′′ ∈ {0, 1}N satisfying d′ ≺ d′′ ≺ d that are all
Sturmian α-expansions of x. So in this sense Sturmian α-expansions can be highly
non-unique.

5. Entropy and Generators

Let T be a measure preserving transformation of [0, 1), with µ the invariant
Borel probability measure. Let ξ be a finite or countable partition of [0, 1) into
positive measure Borel sets C. In general, we do not assume µ is an ELEM or that
ξ is a labeled interval partition. We say a Borel set A satisfies A ≤ ξ if A is a
union of elements C ∈ ξ. Let ξ ∨ ξ′ := {C ∩ C ′ : C ∈ ξ, C ′ ∈ ξ′, µ(C ∩ C ′) > 0}.
Define ξ(n) = ξ ∨ Tξ ∨ · · · ∨ T−n+1ξ, and if T is invertible, also define ξ(−n,n) :=
T−nξ∨· · ·∨ξ∨· · ·∨Tnξ. A partition ξ is called a 1-sided generator T if for any Borel
set A, and n ∈ N, there exists An ∈ ξ(n) so that µ(An∆A)→ 0. If T is invertible,
ξ is a 2-sided generator if there is an An ≤ ξ(−n,n) such that µ(An∆A)→ 0.

Let T be an f -transformation with an ELEM µ and let ξ be the corresponding
partition into fundamental intervals. It follows from the Lebesgue Density Theorem
that ξ is a 1-sided generator if and only if ||ξ(n)|| → 0. This is equivalent to unique
proper digits, and holds for all three transformations under consideration.

The entropy of a finite partition ξ is given by H(ξ) = −
∑
C∈ξ µ(C) log(C). Note

that H(ξ) ≤ log(|ξ|). The entropy of T with respect to ξ is defined by hµ(T, ξ) =

limn→∞
1
nH(ξ(n)), and entropy of T is defined by hµ(T ) = supH(ξ)<∞ hµ(T, ξ).

In practice, the supremum in the definition of entropy often makes it difficult to
apply directly, but the Kolmogorov-Sinai theorem, says the supremum is achieved,
hµ(T ) = hµ(T, ξ), provided ξ is a (1- or 2-sided) generator.
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In the case of an irrational rotation transformation T , we have |ξ(n)| = cd = n+1
(for any x), so H(ξ(n)) ≤ log(n + 1). Since ξ is (1-sided)a generator for T (by
Theorem 2), the Kolmogorov-Sinai theorem implies hµ(T ) = 0. The Kolmogorov-
Sinai theorem also shows (using Kakeya’s theorem) that for the β-transformation
T , when β ∈ N, hµ(T ) = log β. This theorem does not apply directly when β 6∈ N,
or to the Gauss map. On the other hand, for a lot of f -transformations T , entropy
is given by Rohlin’s entropy formula:

(14) hµ(T ) =

∫ 1

0

log |T ′(x)| dµ.

In particular (14) gives the well known result hµ(T ) = π2/(6 log 2) for the the Gauss
map (with Gauss measure) and gives hµ(T ) = log β for all β-transformations T .
Note that the entropy is positive in both of these cases.

The validity of Rohlin’s formula (14) can be deduced under various hypotheses
(see e.g., [16],[13]), which always seem, at least implicitly, to include Kakeya’s
hypothesis (9). This suggests that (14) is valid only in the case hµ(T ) > 0 We note,
however, that for Rohlin’s entropy formula gives the correct answer hµ(T ) = 0
for irrational rotation transformations T , if only by coincidence, since they satisfy
T ′(x) ≡ 1.

The fact that irrational rotation transformations T have zero entropy contributes
to the strangeness of Sturmian α-expansions. As our calculation above, using
the Kolmogorov-Sinai theorem shows, zero entropy is due to the low complexity
cd(n) = n + 1 of Sturmian sequences. Thus entropy zero is closely related to the
slow convergence Sturmian α-expansions. Heuristically, each additional digit in a
Sturmian α-expansion contributes very little new information about the number x.
However, even more significant is fact that irrational rotation transformations T
are invertible, whereas β-transformations and the Gauss map are not.

It follows from the invertibility of an irrational rotation transformation T that
the Sturmian α-expansion of any x extends to a two-sided sequence

d = . . . d−2d−1d0.d1d2 . . . ,

where dn = ξ(Tn−1x). Since the digits to the right of the “radix point” completely
determine x, it follows that the digits to the left contribute no new information.
Equivalently, a typical one-sided Sturmian sequence has a unique two-sided exten-
sion. The only exceptions to this (which are countable in number) occur when
x = nα mod 1 for n > 1. In such a case there are exactly two left-extensions,
which differ on exactly two adjacent digits.

For β-expansions, allowing finitely many (nonzero) digits to the left of the radix
point gives an expansion of any x ∈ R. In particular, the β-expansion of the
digit sequence d = d−Nd−N+1 . . . d0.d1d2 . . . is x =

∑∞
k=−N dkβ

−k. For continued
fractions, expansions of all x ∈ R are obtained with a single non-zero digit to the
left of the radix-point. The digits for the expansion

x = d0 +
1

d1 +
1

d2 +
1

d3 + · · ·

.

are usually written d = [d0; d1, d2, d3, . . . ]. In both cases, this works because the
corresponding f -transformation T is not invertible.
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To interpret continued fraction and β-expansions with more non-zero digits to
the left of the radix point, however, one needs to consider the natural extension
of T . This is the smallest invertible measure preserving transformation T̃ having
T as a factor. For example, if Tx = 2x mod 1 on [0, 1) (the f -transformation
for ordinary base 2 expansions), the natural extension is the Lebesgue measure

preserving map T̃ : [0, 1)2 → [0, 1)2, defined T̃ (x, y) = (2x mod 1, (b2xc + y)/2).
This Lebesgue measure preserving mapping, called the baker’s transformation, is
isomorphic to the 2-sided Bernoulli shift with entropy log 2. It is known that the
natural extensions for any β-transformations is isomorphic to a Bernoulli shift, as
is the natural extension of the Gauss map (see [3]).

Since an irrational rotation transformation T is already invertible, it is its own
natural extension. There is no new information to be obtained by an extension to a
bijection. Entropy theory provides another way to understand this phenomenon. A
well-known theorem says that any invertible map T with a 1-sided generator (like
the irrational rotation transformation) must have entropy zero (see [19]). Thus, no

finite partition can be a 1-sided generator for any invertible transformation T̃ with
positive entropy. It is easy to see that the partition ξ̃ = {[0, 1/2)× [0, 1), [1/2, 1)×
[0, 1)} is a 2-sided generator for the baker’s transformation T̃ , since ξ̃(−n,n) is the

partition of [0, 1)2 into 2−n × 2−n squares). But ξ̃(n) is the partition of [0, 1)2

into 2−n × 1 squares, and the factor corresponding to this partition is just Tx =
2x mod 1. Thus ξ̃ is not a 1-sided generator for T̃ .

6. Generalizations

Let ξ and ξ′ be partitions of [0, 1) into finitely or countably many intervals of
the form ∆ = [a, b). Assume, moreover, that there is a nondecreasing function
ξ : [0, 1)→ Z that is constant on each ∆ ∈ ξ, and is unequal on different ∆,∆′ ∈ ξ.
The existence of such a function is automatic if |ξ| = d < ∞, in which case we
usually take D := ξ([0, 1)) = {0, 1, . . . , d− 1}. It is a more substantial restriction if
|ξ| = ∞. In particular, the only limit points of the set of endpoints of ∆ ∈ ξ can
be 0 and 1 (and at least one must be a limit point).

Let µ denote Lebesgue measure, and suppose τ : ξ → ξ′ is such that µ(τ(∆)) =
µ(∆) for every ∆ ∈ ξ. Let T : [0, 1) → [0, 1) be the mapping so that T maps each
∆ ∈ ξ by translation to τ(∆). We call T an interval exchange transformation (IET)
if |ξ| < ∞, or an infinite interval exchange transformation. (IIET) if |ξ| = ∞, In
either case, T preserves Lebesgue measure.

Let F (x) = T (x) + ξ(x) and note that F : [0, 1) → R is increasing, continuous
on each ∆ ∈ ξ and continuous from the right on [0, 1). We define f(x) = F−1(x),

extended to continuous non-decreasing f : R→ [0, 1) with f(R) = [0, 1].
Let T be an IET or IIET. We call a ∈ [0, 1) a cut-point of ξ if it is the left

endpoint of some ∆ ∈ ξ. Given a cutpoint a, we define ξa to be all the intervals
in ∆ ∈ ξ so that x < a for x ∈ ∆. In particular, ξa is a partition of [0, a) into
intervals. We say T is reducible if there is an a ∈ [0, 1) that is a cut-point for both
ξ and ξ′, and such that τ(ξa) = ξ′a. If there are no such a, we say T is irreducible.
If T is reducible, T ([0, a)) = [0, a), and it cannot be minimal or ergodic.

If T is an irreducible IET, Keane [8] showed that T is minimal if and only if
the left endpoints of all the intervals ∆ ∈ ξ have infinite and distinct orbits (this is
abbreviated IDOC). He proved that if the lengths `0, `1, . . . `d−1 of the intervals in ξ
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are rationally independent then IDOC follows. The case |ξ| = 2 is just an irrational
rotation transformation T . If T is an IET, we call the f -expansions IET-expansions.

Proposition 5. If T is an irreducible IET with rationally independent interval
lengths (or that satisfies IDOC) then the corresponding IET-expansions are valid.

The proof of Proposition 5 is almost exactly the same as the proof of Theorem 2.
It depends on the fact that IDOC implies ||ξ(n)|| → 0.

Unique ergodicity for an irreducible IET T is a bit stronger (and more diffi-
cult to prove) than minimality, but it holds for almost every choice of lengths
`0, `1, . . . , `d−1 of intervals in ξ (see [18], [9]), as does weak (but never strong) mix-
ing, (see [1]). The entropy of an IET T is always zero. In summary, IET-expansions
have many of the same properties as Sturmian α-expansions, with at least one no-
table difference. An interval exchange transformation T can be minimal but not
uniquely ergodic. In such a case there will be non-normal numbers x for the ex-
pansions, as well as up to d different kinds of normal numbers (corresponding to,
possibly, d different ergodic invariant measures).

We conclude by considering expansions based on the well-known von Neumann
adding machine (or odometer) transformation T . Let an = 1−1/2n, bn = 1/2n, ξ =
{[an, an+1) : n = 0, 1, 2, . . . }, ξ′ = {[bn+1, bn) : n = 0, 1, 2, . . . }, and τ([an, an+1)) =
[bn+1, bn). Let T be the corresponding IIET, and define the labels ξ([an, an+1)) = n,
noting that |ξ| = ∞ and D = ξ([0, 1)) = N ∪ {0}. Define f : R → [0, 1) as the

extension of F−1, where F (x) = T (x) + ξ(x), so that f(R) = [0, 1]. We call the
corresponding f -expansions of x ∈ [0, 1) von Neumann expansions. The fact that
von Neumann expansions are valid follows from the unique ergodicity of T , which
is well known. In particular, the endpoints of the ∆ ∈ ξ have dense orbits, and this
can be used to show that ||ξ(n)|| → 0. The entropy of T is zero.

To find the von Neumann expansion of x ∈ [0, 1), we first identify x with its
ordinary binary expansion, i.e., x = .x1x2x3 . . . means x =

∑∞
k=1 xkβ

−k. It is easy
to see that

T (.x1x2x3 . . . ) =

{
.1x2x3x4 . . . if x1 = 0,

.00 . . . 01xn+1xn+2 if x1x2 . . . xn−1 = 11 . . . 1 and xn = 0.

So T adds .1 to .x1x2x3 . . . with right carry, which is why T is called an “adding
machine”. Moreover, ξ(.1n0xn+2xn+3 . . . ) = n, where n ≥ 0.

As an example, if x = 1/3 = .01010101 . . . , then

x = .0101010101010101010101 . . . 0
Tx = .1101010101010101010101 . . . 2
T 2x = .0011010101010101010101 . . . 0
T 3x = .1011010101010101010101 . . . 1
T 4x = .0111010101010101010101 . . . 0
T 5x = .1111010101010101010101 . . . 4
T 6x = .0000110101010101010101 . . . 0
T 7x = .1000110101010101010101 . . . 1

. . .

where the numbers in the right column are dn for n = 1, 2, 3, . . . . Thus we have
the digit sequence d = [0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, . . . ].

Notice the list x, Tx, T 2x . . . , the first column alternates 0 and 1, the second 00
and 11, third 0000 and 1111 (the first 0000 being truncated to 00), etc. Moreover,
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0s in earlier columns mask 1s in later columns This implies that every 2nd digit of
any von Neumann expansion d = [d1, d2, d3, . . . ] is a 0, ever 4th digit a 1, every
8th digit a 2, . . . , every 2n+1st digit an n. About 2n+1 digits of d determines
one binary digit of x. So like Sturmain α-expansions, von Neumann expansions
converge slowly.

As a final remark, we note that if we define e = .e1e2e3 . . . , by en = dn mod 2,
then the resulting sequence is a Toeplitz sequence (see [6]). For example, the Toeplitz
sequence corresponding to 1/3 is c = .00010001000101010001000 . . . . Since it is
possible to recover the von Neumann sequence from the Toeplitz sequence, the
map x 7→ c is injective. However, we don’t know if it is possible to recover x from
c by a simple formula like an f -expansion.
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