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Abstract. We study the dynamic properties of rank-one Zd actions as a function of the
geometry of the shapes of the towers generating the action. Some basic properties require
only minimal restrictions on the geometry of the towers. Our main results concern the
directional entropy of rank-one Zd actions with rectangular tower shapes, where we show
that the geometry of the rectangles plays a significant role. We show that for each n ≤ d
there is an n-dimensional direction with entropy zero. We also show that if the growth
in eccentricity of the rectangular towers is sub-exponential, then all directional entropies
are zero. An example of D. Rudolph shows that, without a restriction on eccentricity, a
positive entropy direction is possible.

1. Introduction
Rank-one transformations play a central role in the theory of ergodic measure-preserving
transformations. Having first been identified as a distinct class by Chacon in [3], their
properties have been studied extensively (see for example [1, 6, 7, 11]). Rank-one
transformations have also served as an important tool for exploring the range of possible
behavior of measure-preserving transformations (see for example [3, 15, 22]). The idea of
rank-one can be easily generalized to measure-preserving actions of Zd . Informally, we
think of a rank-one action of Zd on a Lebesgue probability space (X, A, µ) as a limit of
actions defined on a sequence of Rohlin towers whose levels generate A. In the classical
case, i.e. the case d = 1, the most natural shapes for these towers are intervals. Even
in that case, however, it is possible to define rank-one more generally by allowing the
towers to have more exotic shapes. Thouvenot, for example, gives a definition of a class
of transformations called funny rank-one, in which the tower shapes are arbitrary Følner
sets [5]. Even in the case d = 1 the tower shapes do matter, because while all rank-one
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transformations with interval tower shapes are loosely Bernoulli [16], Ferenczi showed
that there exists a funny rank-one transformation that is not [5].

Many of the most basic properties of rank-one transformations extend to the Zd case,
d > 1, with essentially no restrictions on the tower shapes. These include ergodicity,
entropy zero, and simple spectrum (see §3). While for d > 1 it might appear that
rectangular tower shapes are the obvious analogues of the interval tower shapes of the
case d = 1, even within the class of rank-one Zd actions with rectangular towers there
remains some choice in the shapes of the towers. In particular, the dimensions of the
rectangles can grow to infinity at different rates. Because the choice of natural tower
shapes is less obvious for d > 1, we drop the terminology funny rank-one, and replace it
with adjectives describing the choices made in the tower shapes. If the sequence of towers
all are rectangular, we call the action rectangular rank-one.

If T is a rank-one Zd action with the property that the sequence of towers are rectangles
of uniform bounded eccentricity then T is loosely Bernoulli [8]. While it is not known
if there is a rectangular rank-one Zd action that is not loosely Bernoulli, the fact that the
proof in [8] does not readily extend to more general sequences of rectangles, together with
the one-dimensional result of Ferenczi, suggests that even within the class of rectangular
rank-one Zd actions, we have the possibility of different dynamical behavior.

In this paper we study the directional entropy of rectangular rank-one Zd actions with
various growth conditions on the tower shapes. Directional entropy was introduced by
Milnor in [12, 13], and has been studied extensively (see [2, 9, 17, 19, 24]). Here we
show that the shape of the towers plays a role in the possible directional entropies that can
occur. We first show that any rectangular rank-one Zd action has at least one zero-entropy
direction. On the other hand, Rudolph shows in [21] that given any h > 0, there exists a
rectangular rank-one Z2 action whose horizontal sub-action is Bernoulli with entropy h.
Our main result shows that when the rectangles satisfy a condition we call sub-exponential
eccentricity, the resulting action has directional entropy zero in every direction. More
generally, our result shows that for any sub-exponentially eccentric rank-one Zd action, the
`-dimensional entropy is zero for all ` < d, for all `-dimensional hyperplanes in Zd . We
note that in [4] the authors construct a family of examples of rank-one Zd actions which,
in our terminology, are bounded eccentricity rank-one actions. There, they compute the
entropy of every transformation in the action to be zero. In the terminology of directional
entropy, they show that their examples have directional entropy zero in every rational
direction.

In order to prove our main theorem we also establish a higher-dimensional
generalization of a result of Baxter [1], which may be of independent interest. We show
that given a rank-one Zd action, with a natural restriction on the tower shapes, there is an
isomorphic rank-one Zd action such that the towers have the same shapes as the original
action and the sequence of towers form a refining sequence of generators.

The organization of the paper is as follows. In §2 we establish the notation we use in
the paper. In §2.4 we introduce the idea of directional entropy and summarize some results
from the theory that we will use. In §3 we describe a hierarchy of types of rank-one actions
based on progressively more restrictive conditions on the sequence of towers. We also
establish properties of rank-one actions, highlighting their relationship to this hierarchy.
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In this section we also state the generalization of the result in [1] about refining sequences
of partitions, leaving the proof to §5. Finally in §4 we prove our main results about the
directional entropy of rank-one Zd actions.

2. Basic definitions and a review of directional entropy
2.1. Shapes. A shape R is a finite subset of Zd . Let |R| denote the cardinality of R. For
another shape S the inner S-boundary of R is defined by

∂S(R)=
⋃

Rc∩(S+Ev)6=∅

R ∩ (S + Ev).

A sequence R= {Rk} of shapes is a Følner sequence (see for example [25]) if for any
Ev ∈ Zd

lim
k→∞

|Rk4(Rk + Ev)|

|Rk |
= 0,

or equivalently if for any shape S,

lim
k→∞

|∂S(Rk)|

|Rk |
= 0.

This follows from the fact that ∂S(Rk)⊆
⋃
Ev∈S−S Rk4(Rk + Ev).

2.2. Partitions. Let (X, M, µ) be a Lebesgue probability space and let L be a finite
set. A partition P with alphabet L is a measurable function P : X→ L . Equivalently,
we think of P = {Pa = P−1(a) | a ∈ L} as a finite labeled collection of pairwise disjoint
measurable sets (called atoms) so that

⋃
a∈L Pa = X . We write P(x) for the unique atom

Pa ∈ P so that P(x)= a (i.e., P(x) := P−1(P(x))). For two partitions with alphabet L
we define

d(P, Q)=
∑
a∈L

µ(Pa4Qa).

It is well known that d is a complete metric on the space of all partitions with a fixed
alphabet (i.e., this space is essentially a closed subset of L1(X, µ)).

For a sequence Pk of partitions, where Lk is the alphabet of Pk , we say Pk→ ε if for
any A ∈M, there exists Ik ⊆ Lk such that

lim
k→∞

µ

((⋃
a∈Ik

Pa

)
4A

)
= 0.

Let P and Q be partitions with alphabets L and M . We say P ≤Q if each Pa ∈ P is
a union of elements of Q: Pa =

⋃
b∈I Qb for some I ⊆ M . We define P ∨Q to be the

partition with atoms P ∩ Q, where P ∈ P and Q ∈Q. The alphabet for P ∨Q is L × M .

2.3. Towers. Let T be a free measure-preserving Zd action on a Lebesgue probability
space (X, A, µ). Let R ⊆ Zd be a shape and let B ∈A, µ(B) > 0, satisfy

T Ev1 B ∩ T Ev2 B = ∅ for all Ev1, Ev2 ∈ R with Ev1 6= Ev2.
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Let E = (
⋃
Ev∈R T EvB)c. We call the partition P = {T EvA | Ev ∈ R} ∪ {E} a Rohlin tower, or

more specifically, a T -tower with shape-R and base B. The sets T EvB, Ev ∈ R are called
the levels of the tower and E is called the error set. The tower partition P is defined by
labeling the level T EvB with Ev, and labeling the set E with Eε = 1

2 (1, 1, . . . , 1). Thus the
alphabet of P is L = R ∪ {Eε}.

2.4. Directional entropy. In this section we state the definitions and results about the
entropy of partitions and directional entropy that are necessary for our work. We refer the
reader to [2, 9, 12, 13, 19] for a detailed development of the theory of directional entropy.

We define the entropy of a partition P with alphabet L by

H(P)=
∑
a∈L

−µ(Pa) log(µ(Pa)),

where we define 0 log(0)= 0.

LEMMA 2.1. [23, Lemma I.6.8] Suppose P is a partition with alphabet L. Let M ⊆ L
and let β = µ(

⋃
b∈M Pb). Then

−

∑
b∈M

µ(Pb) log µ(Pb)≤ β log |M | − β log β.

Let V be an n-dimensional subspace of Rd , with 1≤ n < d and let V⊥ be its orthogonal
complement. Choose an orthonormal basis for V and V⊥. Let Q be the corresponding unit
cube in V with the orthonormal basis vectors as sides and let Q′ be the corresponding unit
cube in V⊥, centered at E0. Let

S(V, t, m)= (t Q + m Q′) ∩ Zd , (1)

and for a partition P let
PV,t,m =

∨
Ew∈S(V,t,m)

T− EwP.

The following definitions are essentially due to Milnor [13], but closely match the
definitions given in [2].

First define

hn(T, V, P, m)= lim sup
t→∞

1
tn H(PV,t,m).

Then put
hn(T, V, P)= sup

m>0
hn(T, V, P, m), (2)

and
hn(T, V )= sup

P finite
hn(T, P, V ).

This is the n-dimensional directional entropy in the direction V .

Remark 2.2. Although the unit cubes Q and Q′ in (1) require a choice of basis in V
and V⊥, the entropy does not depend on this choice. Milnor [13] showed that the
supremum over m > 0 in (2) can be replaced by the supremum over all compact compact

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 20 Jan 2011 IP address: 98.231.221.118

Directional entropy, rank-one 289

sets M ⊆ V⊥. Now let volV denote normalized Lebesgue measure on V . Milnor [13] also
showed that if S(V, t, m) in (1) is replaced with (t K + m Q′) ∩ Zd , where K ⊆ V is any
compact set with volV (∂V K )= 0, and if we define

hn(K )= sup
P

sup
m>0

lim sup
t→∞

1
tn H(PV,t,m),

then hn(K )= volV (K ) · hn(T, V ). Boyle and Lind [2] define an n-frame to be a set
Ew1, Ew2, . . . , Ewn of n linearly independent (not necessarily orthonormal) vectors in Rd .
Let V be the n-dimensional subspace spanned by the frame, and let K ⊆ V be the
parallelepiped generated by the frame. Milnor [12, 13] and Boyle and Lind [2] study
hn( Ew1 ∧ Ew2 ∧ · · · ∧ Ewn), which is defined to be hn(K ) for S(V, t, m)= (t K + m Q′) ∩
Zd . Similarly, Park [19], and Kamiński and Park, [9] study h1( Ew).

The next two results are useful tools to compute directional entropy.

LEMMA 2.3. (Milnor [13])

hn(T, V, P, m)= lim
t→∞

1
tn H(PV,t,m)

and
hn(T, V, P)= lim

m→∞
hn(T, V, P, m).

LEMMA 2.4. [2, Proposition 6.15] Let 1≤ n ≤ d. If Pk ≤ Pk+1 and Pk→ ε then

hn(T, V )= lim
k→∞

hn(T, V, Pk).

Comment. The hypothesis ‘expansive’ is included in [2] but is not used in the proof.
We note that it is well-known that if V1 ⊆ V2 are subspaces of Rd with n1 =

dim(V1) < n2 = dim(V2)≤ d, then h(T, V2) > 0 implies h(T, V1)=∞. The following
straightforward observation is key to the structure of our later arguments.

LEMMA 2.5. Let Pk be a sequence of partitions with Pk ≤ Pk+1 and Pk→ ε. Let V be
an n-dimensional subspace of Rd . Suppose there exists a sequence t j →∞ so that for
all k, and for all m > 0,

lim
j→∞

1
(t j )n

H((Pk)V,t j ,m)= 0. (3)

Then hn(T, V )= 0.

Proof. This follows immediately from Lemmas 2.3 and 2.4. 2

3. Rank one
The most general definition of a rank-one action that we will consider is the following.

Definition 3.1. Let T be a free measure-preserving Zd action on a Lebesgue probability
space (X, A, µ). We say T is R rank-one if R= {Rk} is a sequence of shapes, and there
is a sequence Pk of T -towers of shape Rk such that Pk→ ε. We say T is rank-one if it is
R rank-one for some R.
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This definition places no restrictions on the shapes of the towers, except that implicitly
Pk→ ε implies |Rk | →∞. One classical result about rank-one transformations that does
not depend on the geometry of the tower shapes Rk is ergodicity.

PROPOSITION 3.2. If T is a rank-one action of Zd , then T is ergodic.

Proof. This is essentially the same as the well known proof for rank-one Z actions (see for
example [7]). Let A be an invariant set of positive measure. Since Pk→ ε we can, for any
ε > 0, find a tower Pk such that one of the levels of the tower is more than (1− ε)-covered
by A. The invariance of A guarantees that this property holds for the entire tower. Since ε
is chosen to be arbitrary, we conclude that A has arbitrarily large measure. 2

Given the generality of our definition it is natural to ask how strange the tower shapes
can actually be. While we do not address this question in detail in this paper, we will
give a simple example of a rank-one Z2 action with a one-dimensional tower. It turns
out, however, that this particular example is also rank-one with non-degenerate rectangular
tower shapes [10, 20].

Example 3.3. Consider the irrational rotation Rα . Since Rα is rank-one as a Z action, there
exists a sequence of towers Qk = {Rn

αBk | n = 0, 1, . . . , `k − 1} where Qk→ ε. Now
take Rβ where β, (β/α) /∈Q and define a free Z2 action on the circle by T (n,m) = Rn

αRm
β .

Let F = {[0, 1, . . . , `k] × {0}}. Then T is F rank-one.

In Definition 3.1 the towers have no a priori relationship to one another. In constructing
examples, though, the towers are usually obtained by ‘cutting and stacking’ procedures
which yield a refining sequence of tower partitions. In particular, each tower partition
is measurable with respect to all subsequent tower partitions. The following definition
incorporates this structure into the tower partitions.

Definition 3.4. We say T is stacking R rank-one, R= {Rk}, if T is R rank-one for a
sequence Pk of T -towers with shape Rk that also satisfies Pk+1 ≥ Pk .

Suppose T is a stacking R rank-one action with R= {Rk} such that ∪(Rk − Rk)= Zd .
Then it is easy to see that T is isomorphic to an action T1 constructed by a ‘cutting and
stacking’ construction using the shapes Rk (see for example [18] for a formal definition of
such a construction in the case where d = 2).

Two more classical results about rank-one transformations can be extended to the case
of rank-one Zd actions, d > 1, by adding only the stacking hypothesis.

THEOREM 3.5. If T is a stacking rank-one Zd action then T has simple spectrum.

Proof. The argument in Baxter [1] for the case d = 1 remains valid in the case d > 1.
For f ∈ L2(X, µ), let U EvT f (x)= f (T Evx). The cyclic subspace generated by f , denoted
H( f ), is the closure of the span of {U EvT f | Ev ∈ Zd

}. Simple spectrum means that there
exists f so that H( f )= L2(X, µ). Since T is stacking rank-one, there exist an infinite
sequence Fk = T Evk Bk of pairwise disjoint T -tower levels. Let f =

∑
χFk . Baxter’s

argument shows that this function f satisfies H( f )= L2(X, µ). The argument does not
depend on the dimension of the acting group. 2
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An immediate corollary is the following.

COROLLARY 3.6. If T is a stacking rank-one Zd action then hd(T )= 0.

Proof. Again, Baxter’s argument from [1] holds with no changes. If hd(T ) > 0, then by
Sinai’s theorem for Zd actions (see [14]) it follows that T has a Bernoulli factor T ′. Any
Bernoulli Zd action T ′ has countable Lebesgue spectrum, and in particular, non-simple
spectrum. This would imply that T has non-simple spectrum. 2

In the case d = 1, Baxter shows that rank-one transformations with interval tower
shapes are stacking rank-one transformations, also with interval tower shapes. The fairly
degenerate towers in Example 3.3 can also easily be chosen to be stacking. In order to
generalize Baxter’s proof to Zd , d > 1, however, we need to impose one extra condition on
the sequence R of shapes. The class of rank-one actions that we consider is the following.

Definition 3.7. We say a Zd action T is Følner rank-one if it is R rank-one for some Følner
sequence R of shapes.

The following result generalizes Baxter’s d = 1 result to the case of Følner rank-one
Zd actions, d > 1, adding one additional conclusion: the tower shapes can be exactly
preserved.

THEOREM 3.8. Let R= {Rk} be a Følner sequence in Zd with E0 ∈ Rk for all k. Let T be
an R= {Rk}-rank-one Zd action. Then there exists a sequence of T -towers Qk with shape
Rk so that Qk ≤Qk+1 for all k and Qk→ ε. In particular, T is stacking R rank-one.

The proof of Theorem 3.8 appears in §5.

4. Growth conditions and directional entropy
In this section we consider rectangular rank-one Zd actions. Let En = (n1, n2, . . . , nd) ∈

Zd . We say En ≥ Em if ni ≥ mi for all i = 1, . . . , d. In this case we define a shape, called a
rectangle, by [ Em, En] = {Ev ∈ Zd

| Em ≤ Ev ≤ En}. This definition of a rectangle is sufficiently
general to make the degenerate tower shapes in Example 3.3 rectangles. For this reason,
the definition (below) of rectangular rank-one actions includes an additional condition that
guarantees the rectangles will have the same dimension as the acting group. This condition
also provides a structure that is both natural from the point of ergodic theory and necessary
for some of our arguments.

Definition 4.1. We say T is rectangular rank-one if it is R rank-one for a Følner
sequence R of rectangles.

Note that sequence R= {R1, R2, . . .} of rectangles R j = [ Em j , En j ] in Zd is a Følner

sequence if and only if for any Ew > E0 one has Ew j = (w
j
1 , w

j
2 , . . . , w

j
d) := En j − Em j > Ew

for all k sufficiently large (we say Ew j →+∞). The following theorem is our first result
on directional entropy. Unlike the results to follow it, it requires no restrictions on the
geometry of the rectangles.

THEOREM 4.2. Let T be a rectangular rank-one Zd action. Then there is a one-
dimensional subspace V of Rd so that h1(T, V )= 0.
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On the other hand, given Rudolph’s example [21], we know that rectangular rank-one
actions with at least one positive-entropy direction do exist. In Rudolph’s construction, the
long sides of the rectangles grow super-exponentially as a function of the short sides. Our
next result shows that this is necessary: one cannot have directional entropy in the absence
of exponential growth of the longest side relative to the shortest side.

Given a sequence R of rectangles let

s j = min
i=1,...,d

w
j
i and ` j = max

i=1,...,d
w

j
i .

Definition 4.3. We say that a Følner sequence R of rectangles has sub-exponential
eccentricity if

lim sup
j→∞

log(` j )

s j
= 0. (4)

The following is our main result.

THEOREM 4.4. Let R be a Følner sequence of rectangles with sub-exponential
eccentricity. If T is an R rank-one Zd action, then hn(T, V )= 0 for each n-dimensional
subspace V , for all 1≤ n ≤ d.

The same geometric idea underlies the proofs of Theorems 4.2 and 4.4. In the next section
we describe the general setup and prove some key lemmas used in both proofs. This will
help make the role of sub-exponential growth in Theorem 4.4 clearer.

4.1. Geometric preliminaries. For any rectangular rank-one Zd action T , we can find
a Følner sequence R= {Rk} of rectangles, and towers Pk of shape Rk , such that Pk→ ε.
By Theorem 3.8 we may assume that Pk ≤ Pk+1.

Let V be an n-dimensional subspace of Rd . We will prove Theorems 4.2 and 4.4 by
establishing Lemma 2.5 for the sequence Pk . The details of the sequence t j →∞ will be
specified separately in each proof, but will always depend on the geometry of the rectangles
in R.

The alphabet of (Pk)V,t j ,m is (Rk ∪ {Ee})S(V,t j ,m). For j > k let us call a level
T EvB j of P j good if Ev /∈ ∂S(V,t j ,m)(R j ). The good levels have the property that
Ev + S(V, t j , m)⊆ R j . Define Y j ⊆ X to be the complement of the union of the good
levels of P j , together with the error set E j . Let

P∗j (x)=
{

P j (x) if x ∈ Y c
j , and

∗ if x ∈ Y j ,

and let Q j = P∗j ∨ (Pk)V,t j ,m . Clearly H((Pk)V,t j ,m)≤ H(Q j ), so it will suffice to prove

lim
j→∞

1
(t j )n

H(Q j )= 0. (5)

Let G j be the set of atoms of Q j that do not contain the symbol ∗. Then

H(Q j )=−
∑

P∈G j

µ(P) log µ(P) (6)

−

∑
P∈Gc

j

µ(P) log µ(P). (7)

We estimate (6) and (7) separately in the next two lemmas.
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LEMMA 4.5.

−

∑
P∈G j

µ(P) log µ(P)≤−log(1− µ(E j ))+
∑

log w j
i . (8)

Proof. We first observe that it will suffice to show

G j ⊆ {Pa ∈ P j | a ∈ R j\∂S(V,t j ,m)(R j )}. (9)

For this implies
|G j | ≤ |R j | − |∂S(V,t j ,m)(R j )| ≤ |R j |,

and (8) follows because for P ∈ G j ,

µ(P)=
1− µ(E j )

|R j |
≤

1
|R j |

and |R j | =

d∏
i=1

w
j
i .

To prove (9), let P ∈ G j . Since G j ⊆Q j , P = P1 ∩ P2 where P1 ∈ P∗j and P2 ∈

(Pk)V,t j ,m . It suffices to show P1 ⊆ P2 since this implies P = P1. Now P ∈ G j means
the label of P does not contain the symbol ∗. Thus P ⊆ Y c

j , and it follows that P is a
good level of P j . But the name (Pk)V,t j ,m(x)= b is constant on every good level. Since

P2 = (Pk)
−1
V,t j ,m

(b) is an atom, it follows that P1 ⊆ P2. 2

LEMMA 4.6.

−

∑
P∈Gc

j

µ(P) log µ(P)≤ 2µ(Y j )|S(V, t, m)| log |Rk | − µ(Y j ) log µ(Y j ). (10)

Proof. Lemma 2.1 gives that

−

∑
P∈Gc

j

µ(P) log µ(P)≤ µ(Y j ) log |Gc
j | − µ(Y j ) log µ(Y j ).

Since the alphabet of Q j restricted to Gc
j is {∗} × (Rk ∪ {Ee})S(V,t,m), we have

|Gc
j | ≤ (|Rk | + 1)|S(V,t,m)|

and the result follows. 2

We will also need the following geometric estimate.

LEMMA 4.7. Let V be an n-dimensional subspace of Rd , and let Q and Q′ be fixed cubes
as described above. Then for t, m > 0,

|S(V, t, m)| ≤ (t + 2d1/2)n(m + 2d1/2)d−n . (11)

Proof. Let CEv be the cube in Rd centered at Ev ∈ Zd and let

C(V, t, m)=
⋃

Ev∈S(V,t,m)

CEv.

Then |S(V, t, m)| = volRd (C(V, t, m)). Now let Q1 and Q′1 be the cubes in V and V⊥

obtained by attaching a thickness d1/2 frame all around Q and Q′. Clearly C(V, t, m)⊆
t Q1 + m Q′1. Now, since volV (t Q1)= (t + 2d1/2)n and volV⊥(m Q′1)= (m + 2d1/2)d−n ,
it follows that volRd (t Q1 + m Q′1)= (t + 2d1/2)n(m + 2d1/2)d−n . Thus

|S(V, t, m)| ≤ (t + 2d1/2)n(m + 2d1/2)d−n . 2

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 20 Jan 2011 IP address: 98.231.221.118

294 E. A. Robinson, Jr and A. A. Şahin

4.2. Proof of Theorem 4.2. Suppose, without loss of generality, that for all j ≥ 1,
the maximal dimension of R j is in the direction Ee1, i.e. Ew j

1 = ` j . Let V be the n = 1
dimensional subspace of Rd spanned by Ee1. We set

t j =

√
` j log(` j ), (12)

which implies

lim
j→∞

t j

` j
= 0, (13)

and

lim
j→∞

log(` j )

t j
= 0. (14)

We will prove (5).
By (11) and Lemma 4.6

−

∑
P∈Gc

j

µ(P) log µ(P)

≤ 2µ(Y j )(t j + 2d1/2)(m + 2d1/2)d−1 log |Rk | − µ(Y j ) log µ(Y j ).

Combining this with (6), (7) and Lemma 4.5 yields

1
t j

H(Q j ) ≤ −
log(1− µ(E j ))

t j
+

d∑
i=1

log(w j
i )

t j
+ 2µ(Y j )(m + 2d1/2)d−1

(
t j + 2d1/2

t j

)
× log |Rk | −

µ(Y j ) log µ(Y j )

t j
. (15)

The first term in (15) goes to zero since P j → ε. The second term is bounded above
by d log(` j )/t j , which goes to zero by (14). In the last term, µ(Y j ) log µ(Y j ) is bounded
and t j →∞. It remains to analyze the third term. First note that the third term is clearly
bounded above. Since, in this case, S(V, t j , m) is a parallelepiped with sides parallel to
the sides of R j we have the following estimate on the size of the boundary of a rectangle:

|∂S(V,t j ,m)(R j )| ≤ 2t j

d∏
k=2

wk
j + 2m

d∑
i=2

∏
k 6=i

wk
j . (16)

Combining this with the fact that ` j = w
1
j , we have

µ(Y j ) ≤

[
2t j

d∏
k=2

wk
j + 2m

d∑
i=2

∏
k 6=i

wk
j

]
1
|R j |
+ µ(E j )

=
2t j

` j
+

d∑
i=2

2m

wi
j

+ µ(E j ). (17)

It follows that lim j→∞ µ(Y j )= 0, using (13) for the first term of (17), the fact that
R= {R j } is a Følner sequence for the second, and the fact that P j → ε for the third. 2
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4.3. Proof of Theorem 4.4. Fix 1≤ n < d, and let V be an n-dimensional subspace
of Rd . Recall that ` j denotes the largest dimension, and s j the smallest dimension of R j .
It follows from (4), the assumption of sub-exponential eccentricity, that by passing to a
subsequence we can assume

lim
j→∞

log(` j )

s j
= 0. (18)

To prove the theorem using the same idea as in the proof of Theorem 4.2, we choose a
sequence of times t j →∞ that simultaneously satisfy

lim
j→∞

t j

s j
= 0, (19)

which replaces (13), and

lim
j→∞

log(` j )

t j
= 0, (20)

which is (14). In particular, these two limits require t j to grow faster than log(` j ) but
slower than s j , and it follows from (18) that t j =

√
s j log(` j ) will do. Again, we will

prove (5).
By Lemmas 4.6 and 4.7, we have

−

∑
P∈Gc

j

µ(P) log µ(P)

≤ 2µ(Y j )(t + 2d1/2)n(m + 2d1/2)d−n log |Rk | − µ(Y j ) log µ(Y j ).

This, together with (6), (7) and (8), implies

1
(t j )n

H(Q j ) ≤ −
log(1− µ(E j ))

(t j )n
+

d∑
i=1

log(w j
i )

(t j )n
+ 2µ(Y j )(m + 2d1/2)d−n

×

(
(t j + 2d1/2)n

(t j )n

)
log |Rk | −

µ(Y j ) log µ(Y j )

(t j )n
. (21)

As in the proof of Theorem 4.2, we estimate each of the four terms of (21) separately.
The arguments for the first and last terms are the same as before. Similarly, (20) is sufficient
to guarantee that the second term goes to zero. The key to estimating the third term is the
following estimate of the size of the boundary, which plays the same role that (16) played
in the last proof.

LEMMA 4.8. For j sufficiently large,

|∂S(V,t j ,m)(R j )| ≤ 4t j

d∑
i=1

∏
k 6=i

wk
j . (22)

Proof. It follows from the proof of Lemma 4.7 that for large enough t j the diameter δ of
S(V, t j , m) satisfies δ ≤ t j + 2d1/2 and for t j large enough, δ < 2t j . Let R j = [En j , Em j

],
and let R′j = [En

j
+ Eδ, Em j

− Eδ], where Eδ = (δ, δ, . . . , δ). Then

∂S(V,t j ,m)(R j )⊆ R j\R
′

j ⊆

d⋃
i=1

(L j
i ∪ H j

i ),
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where

L j
i = [n

j
i , n j

i + δ] ×
∏
k 6=i

[n j
k , m j

k ] and H j
i = [m

j
i − δ, m j

i ] ×
∏
k 6=i

[n j
k , m j

k ].

The lemma follows since |L j
i | = |H

j
i | = δ

∏
k 6= j w

k
j . 2

Using Lemma 4.8, we have

µ(Y j ) ≤ |∂S(V,t j ,m)(R j )|
1
|R j |
+ µ(E j )

=

d∑
i=1

4t j

w
j
i

+ µ(E j ). (23)

The first term goes to zero by (19) and the second since P j → ε. Since µ(Y j )→ 0, we
have (5), and this concludes the proof of Theorem 4.4. 2

5. The proof of Theorem 3.8
This proof follows the ideas in Baxter [1], together with an improvement in Lemma 5.3
needed for the Zd case. The proof applies more or less verbatim to Følner rank-one actions
of any amenable group G.

We begin with some definitions that will simplify our arguments. Given shapes R and J
in Zd we say that J is R-separated if

(R + Ev1) ∩ (R + Ev2)= ∅ for all Ev1, Ev2 ∈ J with Ev1 6= Ev2,

in which case R + J :=
⋃
Ev∈J R + Ev is a disjoint union. We say that a shape S is a stacking

of a shape R if there exists an R-separated set J so that R + J ⊆ S. We call J an R-
stacking set for S.

The purpose of a stacking is that it tells us how a tower of shape S can be put together
out of a tower of shape R. In particular, suppose R and S are shapes, with E0 ∈ R ⊂ S,
and suppose that J is an R-stacking set for S. Given a tower Q with shape S and
base B, let A =

⋃
Ev∈J T EvB. Then A is the base of tower Q J of shape R, defined by

Q J = {T EvA | Ev ∈ R}, such that Q J ≤Q.

LEMMA 5.1. Let Q and Q′ be towers of shape S. Let R be a shape such that J is an R
stacking set for S. Then

d(Q J , Q′J )≤ d(Q, Q′).

Proof. Let B and B ′ denote the bases of Q and Q′. By definition we have that A =∑
Ew∈J T EwB and A′ =

∑
Ew∈J T EwB ′ are the bases of Q J and Q′J . Then

d(Q J , Q′J ) =
∑
Ev∈R

µ(T EvA4T EvA′)+ µ(E4E ′)

= |R|µ(A4A′)+ µ(E4E ′)

= |R|µ

(⋃
Ew∈J

T EwB4
⋃
Ew∈J

T EwB ′
)
+ µ(E4E ′)

≤ |J ||R|µ(B4B ′)+ µ(E4E ′)≤ |S|µ(B4B ′)+ µ(E4E ′)

= d(Q, Q′). 2
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Let P be a tower of shape R. For A ∈A let I be the set of a ∈ R so that

µ(A ∩ Pa) >
1
2µ(Pa). (24)

Define A(P)=
⋃

a∈I Pa .

LEMMA 5.2. Suppose P and Q are towers of shapes R and S satisfying E0 ∈ R ⊂ S, such
that P ≤Q. Let A and B be the base sets of P and Q and suppose A(Q) 6= ∅. If J is the
maximal set of indices in S that satisfy⋃

Ev∈J

T EvB ⊂ A(Q) and J ∩ ∂R(S)= ∅,

then Q J is a tower of shape R with base A′ =
⋃
Ev∈J T EvB.

Proof. Since Q is a tower, it follows from (24) that the sets {T EvA′ | Ev ∈ R} are pairwise
disjoint. Thus J is R-separated and an R-stacking set for S. 2

Under the hypotheses of Lemma 5.2, we define P(Q)=Q J . Note that P(Q) and P
have the same shape R, and that P(Q)≤Q. The next lemma shows that if we know that the
levels in Q approximate the levels in P well (or equivalently, the levels in Q approximate
the base A of P well), then we also know that P(Q) is a good approximation of P .

LEMMA 5.3.

d(P(Q), P)≤ |R| · µ(A(Q)4A)+ |∂R(S)| · µ(B)+ |R|µ(EQ),

where EQ denotes the error set of Q.

Proof. Suppose J is the index set in S so that P(Q)=Q J . Then we have

d(P(Q), P) = |R|µ(A(Q)4A)

≤ |R|µ

(
(A(Q)4A) ∪

⋃
Ew∈J∩∂R(S)

T EwB ∪ EQ

)

= |R|µ(A(Q)4A)+ |R|µ

( ⋃
Ew∈J∩∂R(S)

T EwB ∪ EQ

)
≤ |R|µ(A(Q)4A)+ |R||J ∩ ∂R(S)|µ(B)+ |B|µ(EQ),

where we used the identity (A\C)4B ⊆ (A4B) ∪ C . The result follows since |∂R(S)| ≤
|R| |J ∩ ∂R(S)|, which is true since J is R-separated. 2

The next result shows that given a sequence of towers, we can construct a new sequence,
maintaining the shapes, such that each tower is well approximated by subsequent towers
far enough in the sequence.

LEMMA 5.4. Let R= {Rk} be a Følner sequence, and Pk be a sequence of towers of
shapes Rk , such that 0 ∈ Rk and Pk→ ε. Then for any k ≥ 1 and δ > 0 we have for all
sufficiently large ` > k that Rk ⊆ R` and d(Pk(P`), P`) < δ.
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Proof. Fix k ≥ 1 and use the Følner property to choose ` large enough that Rk ⊆ R`.
Let Ak be the base of Pk , and Ek the error set. In addition, since Pk→ ε, for all sufficiently
large ` we have

µ(Ak(P`)4Ak) <
δ

3|Rk |
and µ(E`) <

δ

3|Rk |
.

For such an ` the towers P = Pk and Q= P` satisfy the hypotheses of Lemma 5.2. Thus
we can apply Lemma 5.3 to conclude

d(Pk(P`), P`)≤ |Rk |µ(Ak(P`)4A)+ |∂Rk (R`)|µ(A`)+ |Rk |µ(E`). (25)

Since P` is a tower, for all ` we have µ(A`)≤ 1/|R`|. Hence we have

|∂Rk (R`)|µ(A`)≤
|∂Rk (R`)|

|R`|
(26)

and since R is a Følner sequence this can be made less than (δ/3) for all ` sufficiently
large. Using these estimates in (25) we have

d(Pk(P`), P`) < δ. 2

We are now ready for the proof of Theorem 3.8.

Proof of Theorem 3.8. Let δk > 0 satisfy
∑
δk <∞. Using Lemma 5.4, we can

then assume, by passing to a subsequence, that the sequence Pk of T -towers satisfies
ρ(Pk(Pk+1), Pk+1) < δk for all k.

We will now define a doubly infinite sequence of T -towers Pk,`, k ≥ 1, `≥ 0. We start
by putting, for each k, Pk,0 := Pk and

Pk,1 := Pk,0(Pk+1,0)= Pk(Pk+1).

Note that Pk,1 has shape Rk and satisfies Pk,1 ≤ Pk+1,0. By Lemma 5.2 there exists a
stacking set Ik ⊆ Rk+1\∂Rk (Rk+1), which, in particular, is Rk-separated.

Now suppose we have defined Pk,m for all k and for all 0≤ m < `. Then for k =
1, 2, . . . , we define

Pk,` = (Pk+1,`−1)Ik . (27)

By induction, Pk+1,`−1 is a tower of shape Rk+1, so, as in our previous discussion, (27) is
well defined. The result is a tower Pk,` of shape Rk satisfying Pk,` ≤ Pk+1,`−1.

Repeatedly using Lemma 5.1 and equation (27), we have by induction that

ρ(Pk,`, Pk,`+m)≤

`+m−1∑
j=`

δ j .

This shows that Pk,` is a Cauchy sequence in ` for each k, and we define Qk = lim` Pk,`.
It follows that Qk is a partition of shape Rk . Also Qk = (Qk+1)Ik , so that Qk ≺Qk+1.
Moreover, d(Qk, Pk) <

∑
j≥k δk→ 0. This implies Qk→ ε, since

µ(A(Qk)4A) ≤ µ(A(Qk)4A(Pk))+ µ(A(Pk)4A)

≤ d(Qk, Pk)+ µ(A(Pk)4A). 2
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