ENTROPY-ZERO f-EXPANSIONS

E. Arthur (Robbie) Robinson

The George Washington

June 15, 2010

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

2 Iteration algorithm

3 Ergodic theory and symbolic dynamics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

ENTROPY-ZERO *f*-EXPANSIONS OUTLINE

The New Math

FIGURE: Mullen-Hall Elementary School, Falmouth, Massuahusetts, USA.

In 1963, during the Cold War, my third grade math teacher was trained in the "New Math" and taught us base 2 and base 5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some examples

2 ITERATION ALGORITHM

3 Ergodic theory and symbolic dynamics

CONTINUED FRACTIONS

Any $x \in (0,1]$ is given as an expansion of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \frac{1}{d_3 + \cdots}}}.$$

where $d = .d_1d_2d_3...$ is an arbitrary infinite sequence of positive integers. (We say $d_n \in D = \mathbb{N}$, the digit set.) This can be written

$$x = f(d_1 + f(d_2 + f(d_3 + \dots))),$$

where $f(x) = \frac{1}{x}$.

CONTINUED FRACTIONS

Any $x \in (0,1]$ is given as an expansion of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \frac{1}{d_3 + \dots}}}.$$

where $d = .d_1d_2d_3...$ is an arbitrary infinite sequence of positive integers. (We say $d_n \in \mathcal{D} = \mathbb{N}$, the digit set.) This can be written

$$x = f(d_1 + f(d_2 + f(d_3 + \dots))),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $f(x) = \frac{1}{x}$.

CONTINUED FRACTIONS

Any $x \in (0,1]$ is given as an expansion of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \frac{1}{d_3 + \dots}}}.$$

where $d = .d_1 d_2 d_3 ...$ is an arbitrary infinite sequence of positive integers. (We say $d_n \in D = \mathbb{N}$, the digit set.) This can be written

$$x = f(d_1 + f(d_2 + f(d_3 + \dots))),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $f(x) = \frac{1}{x}$.

Base-r expansions

Let $r \in \mathbb{N}$, r > 1. Any $x \in [0, 1)$ is given as an expansion of the form

$$x = \sum_{n=1}^{\infty} \frac{d_n}{r^n},$$

where $d = .d_1d_2d_3...$ is a sequence from $\mathcal{D} = \{0, 1, ..., r-1\}$. This can be written

$$x = f(d_1 + f(d_2 + f(d_3 + \dots))),$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

where $f(x) = \frac{x}{r}$.

BASE-r EXPANSIONS

Let $r \in \mathbb{N}$, r > 1. Any $x \in [0, 1)$ is given as an expansion of the form

$$x = \sum_{n=1}^{\infty} \frac{d_n}{r^n},$$

where $d = .d_1d_2d_3...$ is a sequence from $\mathcal{D} = \{0, 1, ..., r-1\}$. This can be written

$$x = f(d_1 + f(d_2 + f(d_3 + \dots))),$$

where $f(x) = \frac{x}{r}$.

ENTROPY-ZERO f-EXPANSIONS SOME EXAMPLES

BASE-r (CONTINUED)

Here is an alternative way to write this

$$x = \frac{d_1 + \frac{d_2 + \frac{d_3 + \dots}{r}}{r}}{r}$$

BASE-r (CONTINUED -2)

Let $N(d: \boldsymbol{w})$ the number of digits d in word $\boldsymbol{w} \in \mathcal{D}^* = \bigcup_{n \ge 1} \mathcal{D}^n$. For $x \in [0, 1)$ let $\boldsymbol{d} = .d_1 d_2 d_3 \dots$ and let $\boldsymbol{d}_n = d_1 d_2 \dots d_n \in \mathcal{D}^n$. For a.e. x we can recover r, the base, by

$$1/r = \lim_{n \to \infty} \frac{1}{n} N(d : \boldsymbol{d}_n).$$

Let C(n, d) be the number of words of length n in d. Then for a.e. x

$$r = \lim_{n \to \infty} \frac{1}{n} \log C(n, d).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

β -EXPANSIONS

Any $x \in [0,1)$ can be written in the form

$$x = \sum_{n=1}^{\infty} \frac{d_n}{\beta^n},$$

where $d = .d_1d_2d_3...$ is a sequence from $\{0,1\}$, such that the sub-sequence 11 never occurs.

Again

This works for any $\beta > 1$, with $\mathcal{D} = [0, \beta) \cap \mathbb{N}$, (in general, with a more complicated restriction on forbidden sub-words).

β -EXPANSIONS

Any $x \in [0,1)$ can be written in the form

$$x = \sum_{n=1}^{\infty} \frac{d_n}{\beta^n},$$

where $d = .d_1d_2d_3...$ is a sequence from $\{0,1\}$, such that the sub-sequence 11 never occurs.

Again

$$x = \frac{d_1 + \frac{d_2 + \frac{d_3 + \dots}{\beta}}{\beta}}{\beta}.$$

This works for any $\beta > 1$, with $\mathcal{D} = [0, \beta) \cap \mathbb{N}$, (in general, with a more complicated restriction on forbidden sub-words).

Again each $d \in \mathcal{D}$ and a.e. $x \in [0, 1)$,

 $\lim_{n\to\infty}\frac{1}{n}N(d:\boldsymbol{d}_n),$

(in general, the value of the limit depends on β in a complicated way.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Also, for a.e. x $\beta = \lim_{n \to \infty} \frac{1}{n} \log C(n, d).$

(this works for any $\beta > 1$).

STURMIAN SEQUENCES

Let $\mathcal{D} = \{0, 1\}$. A Sturmian sequence

$$\boldsymbol{d} = .d_1 d_2 d_3 \dots \in \mathcal{D}^{\mathbb{N}}$$

is a sequence so that

$$C(n, \boldsymbol{d}) = n + 1.$$

Strumian sequences were introduced by Morse and Hedlund (1940) who proved the following result:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FORMULA

THEOREM (MORSE, HEDLUND: 1940)

Every Sturmian sequence d is given by

$$d_n = \lfloor \alpha(n+1) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor,$$

(or $\tilde{d}_n = \lceil \alpha(n+1) + \beta \rceil - \lceil \alpha n + \beta \rceil$)

for some $\alpha \in [0,1) \setminus \mathbb{Q}$ and $\beta \in [0,1)$.

A Sturmian sequence (or either kind) satisfies the uniqueness condition:

$$d = d' \implies \alpha = \alpha' \text{ and } \beta = \beta'.$$

Question: How can α and β be determined from d?

DENSITY

It is well know that any Sturmian sequence d satisfies

$$\alpha = \lim_{n \to \infty} \frac{1}{n} N(1 : \boldsymbol{d}_n),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is there a similar formula for β ?

Here is one answer (see Arnoux, Ferenczi and Hubert (1999)). Define two substitutions.

$$\sigma_0 0 = 0$$
 $\sigma_1 0 = 01$
 $\sigma_0 1 = 10$ $\sigma_1 1 = 1$

DENSITY

It is well know that any Sturmian sequence d satisfies

$$\alpha = \lim_{n \to \infty} \frac{1}{n} N(1 : \boldsymbol{d}_n),$$

Is there a similar formula for β ?

Here is one answer (see Arnoux, Ferenczi and Hubert (1999)). Define two substitutions.

$$\sigma_0 0 = 0$$
 $\sigma_1 0 = 01$
 $\sigma_0 1 = 10$ $\sigma_1 1 = 1$

Assume x is such that $d_n = \tilde{d}_n$ for $n \in \mathbb{Z}$ (a similar result holds in the opposite case).

Theorem (Arnoux, Ferenczi and Hubert (1999))

There are sequences $e_n \in \mathbb{N} \cup \{0\}$ and $a_n \in \mathbb{N}$ so that

 $\boldsymbol{d} = 0^{e_1} \ \sigma_0^{a_1}(1^{e_1}) \ (\sigma_0^{a_1}\sigma_1^{a_2})(o^{e_3}) \ (\sigma_0^{a_1}\sigma_1^{a_2}\sigma_0^{a_3})(1^{e_4}) \dots$

Then

and . . .

Assume x is such that $d_n = \tilde{d}_n$ for $n \in \mathbb{Z}$ (a similar result holds in the opposite case).

THEOREM (ARNOUX, FERENCZI AND HUBERT (1999))

There are sequences $e_n \in \mathbb{N} \cup \{0\}$ and $a_n \in \mathbb{N}$ so that

$$\boldsymbol{d} = 0^{e_1} \sigma_0^{a_1}(1^{e_1}) (\sigma_0^{a_1} \sigma_1^{a_2}) (o^{e_3}) (\sigma_0^{a_1} \sigma_1^{a_2} \sigma_0^{a_3}) (1^{e_4}) \dots$$

Then

$$\alpha = \frac{1}{(a_1 + 1) + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

and . . .

THEOREM $(\ldots \text{CONTINUED})$

$$\beta = 1 + (1 - \alpha) \left(-e_1 + \sum_{n=1}^{\infty} (-1)^{n+1} e_{n+1} \alpha_1 \alpha_2 \dots \alpha_n \right)$$

where

$$\alpha_n = \frac{1}{a_n + \frac{1}{a_{n+1} + \cdots}}.$$

• The formula for β is an example of Ostrowski numeration.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The formula for *d* is an example of telescope form.
- The idea behind the proof is Rauzy induction.
- Similar results are due to Sidorov and Vershik (1993).

Theorem $(\ldots \text{ continued})$

$$\beta = 1 + (1 - \alpha) \left(-e_1 + \sum_{n=1}^{\infty} (-1)^{n+1} e_{n+1} \alpha_1 \alpha_2 \dots \alpha_n \right)$$

where

$$\alpha_n = \frac{1}{a_n + \frac{1}{a_{n+1} + \cdots}}.$$

• The formula for β is an example of Ostrowski numeration.

- The formula for d is an example of telescope form.
- The idea behind the proof is Rauzy induction.
- Similar results are due to Sidorov and Vershik (1993).

2 ITERATION ALGORITHM

3 Ergodic theory and symbolic dynamics

THE COEFFICIENT ALGORITHM

In the cases of both continued fractions (f(x) = 1/x) and radix representations $(f(x) = x/b, b = r \in \mathbb{N} \text{ or } b = \beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$d = .d_1 d_2 d_3 \dots$$

of $x \in (0, 1)$. Put $x_1 = x$.

- $d_n = \lfloor f^{-1}(x_n) \rfloor.$
- $x_{n+1} = f^{-1}(x_n) d_n$.

Stop if $f^{-1}(x_n)$ is undefined and say x has a finite expansion.

THE COEFFICIENT ALGORITHM

In the cases of both continued fractions (f(x) = 1/x) and radix representations $(f(x) = x/b, b = r \in \mathbb{N} \text{ or } b = \beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$d = .d_1 d_2 d_3 \dots$$

of $x \in (0, 1)$. Put $x_1 = x$.

• $d_n = \lfloor f^{-1}(x_n) \rfloor.$

• $x_{n+1} = f^{-1}(x_n) - d_n$.

Stop if $f^{-1}(x_n)$ is undefined and say x has a finite expansion.

THE COEFFICIENT ALGORITHM

In the cases of both continued fractions (f(x) = 1/x) and radix representations $(f(x) = x/b, b = r \in \mathbb{N} \text{ or } b = \beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$\boldsymbol{d} = .d_1d_2d_3\ldots$$

of $x \in (0, 1)$. Put $x_1 = x$.

- $d_n = \lfloor f^{-1}(x_n) \rfloor.$
- $x_{n+1} = f^{-1}(x_n) d_n$.

Stop if $f^{-1}(x_n)$ is undefined and say x has a finite expansion.

The coefficient algorithm

In the cases of both continued fractions (f(x) = 1/x) and radix representations $(f(x) = x/b, b = r \in \mathbb{N} \text{ or } b = \beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$\boldsymbol{d} = .d_1d_2d_3\ldots$$

of $x \in (0, 1)$. Put $x_1 = x$.

- $d_n = \lfloor f^{-1}(x_n) \rfloor.$
- $x_{n+1} = f^{-1}(x_n) d_n$.

Stop if $f^{-1}(x_n)$ is undefined and say x has a finite expansion.

f-representations

Several authors (Kakeya (1924), Bissinger, (1944), Everett (1946), Rényi (1957), Parry (1964)) observed that f(x) = 1/x and f(x) = x/r can be replaced by different monotonic functions.

Rényi (1957) observed that a map of the interval:

$$T(x) = f^{-1}(x) \mod 1.$$

can be used to obtain the digits

$$d_n = \lfloor f^{-1}(T^{n-1}(x)) \rfloor$$

by iteration.

FIGURE: Continued fractions: f(x) = 1/x

FIGURE: The Gauss map $T(x) = 1/x \mod 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE: Base 3: f(x) = x/3 (r = 3).

FIGURE: The "period tripling" map $T(x) = 3x \mod 1$.

・ロト・日本・モン・モン・モー うへぐ

FIGURE: β -expansions: $f(x) = x/\beta$, $b = \beta = \frac{1+\sqrt{5}}{2}$

FIGURE: The β -transformation : $T(x) = \beta x \mod 1$. Non-independent digits implies second branch not full (i.e., not onto).

◆ロト ◆昼 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

BASIC HYPOTHESES

It will be useful to switch the viewpoint to T rather than f. The following hypotheses are essentially those of Parry (1957).

• Let
$$\mathcal{D} \subseteq \mathbb{N}$$
, $\#(\mathcal{D}) = 2$.

- Let $\Delta(d) = [c_d, c_{d+1}) \subseteq [0, 1]$
 - $c_d < c_{d+1} \ \forall d.$
 - such that $\inf c_d = 0$, $\sup c_d = 1$.
- Let $I = \bigcup_{d \in \mathcal{D}} \Delta(d)$.
 - $\bullet \ I \in \{[0,1],(0,1],[0,1),(0,1)\}.$
- Let $T: I \to [0,1]$ be strictly monotone on each $\Delta(d)$.
 - Type A/ Type B if all $T|_{\Delta(d)}$ decreasing/ increasing,
 - Else, mixed type.

• $T: B \to B$ where $B = \{x: T^{n-1}(x) \in I \ \forall n \in \mathbb{N}\}.$

An example of what Schweiger (1995) calls a fibered system.

The function f

- Let $\xi: I \to \mathcal{D}$ be $\xi(x) = d$ if $x \in \Delta(d)$.
- Also think of $\xi = \{\Delta(d) : d \in D\}$ as a finite or countable partition.
- Define $T^*(x) = T(x) + \xi(x)$. Then $T^*: I \to \mathbb{R}$ is strictly monotone.
- Let $f : \mathbb{R} \to I$ be $f(x) = (T^*)^{-1}(x)$, extended to \mathbb{R} to be (non-strictly) monotone (i.e., piecewise constant on the gaps).

Entropy-zero f-expansions

ITERATION ALGORITHM

FIGURE: Base -3: f(x) = 1 - x/3.

FIGURE: Reverse period tripling $T(x) = 4 - 3x \mod 1$.

Entropy-zero f-expansions

Iteration Algorithm

FIGURE: Arctangent expansions: $f(x) = \arctan(x)$, $D = (-\infty, \infty)$.

FIGURE: Tangent map: $T(x) = \tan(x) \mod [-\pi/2, \pi/2].$

・ロト・西ト・ヨト・ヨト・日・ つへぐ

REPRESENTATIONS AND EXPANSIONS

For $x \in B$ define the *f*-representation

$$\delta(x) = \boldsymbol{d} = .d_1 d_2 d_3 \cdots \in \mathcal{D}^{\mathbb{N}}$$

by $d_n = \xi(T^{n-1}(x))$.

For any $d = .d_1 d_2 d_3 \cdots \in \mathcal{D}^{\mathbb{N}}$, define the *f*-expansion

$$\varepsilon(\boldsymbol{d}) = f(d_1 + f(d_2 + f(d_3 \dots))).$$

In particular,

$$\varepsilon(\mathbf{d}) = \lim_{n \to \infty} f(d_1 + f(d_2 + \dots + f(d_n))),$$

provided the limit exists (we say the f-expansion converges)

REPRESENTATIONS AND EXPANSIONS

For $x \in B$ define the *f*-representation

$$\delta(x) = \boldsymbol{d} = .d_1 d_2 d_3 \cdots \in \mathcal{D}^{\mathbb{N}}$$

by $d_n = \xi(T^{n-1}(x)).$

For any $d = .d_1 d_2 d_3 \cdots \in \mathcal{D}^{\mathbb{N}}$, define the *f*-expansion

$$\varepsilon(\boldsymbol{d}) = f(d_1 + f(d_2 + f(d_3 \dots))).$$

In particular,

$$\varepsilon(\boldsymbol{d}) = \lim_{n \to \infty} f(d_1 + f(d_2 + \dots + f(d_n))),$$

provided the limit exists (we say the f-expansion converges).

Kakeya's Theorem

Say *f*-representations satisfy uniqueness if $\delta(x) = \delta(y)$ implies x = y for $x, y \in B$, i.e., δ is 1:1 on *B*.

Say *f*-expansions are valid if $x = \varepsilon(\delta(x))$ for all $x \in B$.

Theorem (Kakeya, 1924)

Let T be Type A or B, and suppose |T'(x)| > 1 almost everywhere. Then f-expansions are valid.

Bissinger (1944), Everett (1946), and Rényi (1957), and Parry(1964) have similar results, with the hypotheses |f'(x)| < 1, replaced by |f(x) - f(y)| < |x - y| (or a little more).

Kakeya's Theorem

Say *f*-representations satisfy uniqueness if $\delta(x) = \delta(y)$ implies x = y for $x, y \in B$, i.e., δ is 1:1 on *B*.

Say *f*-expansions are valid if $x = \varepsilon(\delta(x))$ for all $x \in B$.

THEOREM (KAKEYA, 1924)

Let T be Type A or B, and suppose |T'(x)| > 1 almost everywhere. Then f-expansions are valid.

Bissinger (1944), Everett (1946), and Rényi (1957), and Parry(1964) have similar results, with the hypotheses |f'(x)| < 1, replaced by |f(x) - f(y)| < |x - y| (or a little more).

Entropy-zero f-expansions

Ergodic theory and symbolic dynamics

2 Iteration algorithm

8 Ergodic theory and symbolic dynamics

4 Entropy zero

▲□▶ ▲圖▶ ▲画▶ ▲画▶ ▲画 ● ● ●

The f-shift

We say *f*-expansions have independent digits if each $T|_{\Delta(d)}$ is onto (each fiber is full in the terminology of Schweiger).

Give $\mathcal{D}^{\mathbb{N}}$ the product topology (compact if \mathcal{D} is finite, Polish otherwise), and let S be the left-shift map.

Let $X_0 = \{\delta(x) : x \in B\}$ and let $X = \overline{X_0}$. Then X is called the *f*-shift.

Lemma (Renyi, 1957)

If f has independent-digits, then $X = \mathcal{D}^{\mathbb{N}}$ (the full shift).

More generally, let \mathcal{L}_n be the set of all words of length n in X. Then $\mathcal{L} = \bigcup \mathcal{L}_n$ is called the language of the shift X.

SHIFTS

If $\#(\mathcal{D}) < \infty$, the complexity of X is defined

$$C(n,X) = \#(\mathcal{L}_n),$$

and topological entropy is given by

$$h_{\text{top}}(X) = \lim_{n \to \infty} \frac{1}{n} \log C(n, X).$$

- If $X = \mathcal{D}^{\mathbb{N}}$ and $\#(\mathcal{D}) = r < \infty$, then $C(n, X) = r^n$, and $h_{top}(X) = \log r$.
- If X a β -shift, $\#(\mathcal{D}) = \lfloor \beta \rfloor$, and $h_{top}(X) = \log \beta$.
- If X a Sturmian shift, $\#(\mathcal{D}) = 2$, then C(n, X) = n + 1, and $h_{top}(X) = 0$.

Ergodic theory

- A Borel probability measure γ on B is T-invariant if $\gamma(T^{-1}E) = \gamma(E)$ for every Borel set E.
- A Borel measure γ is absolutely continuous if there $\rho(x) \ge 0$, $\rho \in L^1(B, \lambda)$ (λ =Lebesgue) so that $\gamma(E) = \int_E \rho(x) d\lambda$.
- An absolutely continuous measure is equivalent to Lebesgue measure if $\rho(x) > 0$ a.e. Call this Lebesgue-equivalent.

• T is ergodic if TE = E implies $\gamma(E) = 0$ or $\gamma(E) = 1$.

Ergodic theory

If T has ergodic Lebesgue-equivalent invariant measure, then the Birkhoff ergodic theorem implies f-representations are normal: For $x \in B$ let $\delta(x) = \mathbf{d} = .d_1d_2d_3...$ Fix $d \in \mathcal{D}$. Then For λ a.e. $x \in B$

$$\lim_{n \to \infty} \frac{1}{n} N(d : \boldsymbol{d}_n) = \gamma(\Delta(d)) = \int_{\Delta(d)} \rho(x) \, d\mu.$$

(Similar formulas hold for d replaced by longer words).

Ergodic theory

If T has ergodic Lebesgue-equivalent invariant measure, then the Birkhoff ergodic theorem implies f-representations are normal: For $x \in B$ let $\delta(x) = \mathbf{d} = .d_1d_2d_3...$ Fix $d \in \mathcal{D}$. Then For λ a.e. $x \in B$

$$\lim_{n \to \infty} \frac{1}{n} N(d : \boldsymbol{d}_n) = \gamma(\Delta(d)) = \int_{\Delta(d)} \rho(x) \, d\mu.$$

(Similar formulas hold for d replaced by longer words).

PARTITIONS

Define

$$\Delta(d_1d_2\dots d_n) = \bigcap_{j=1}^n T^{-j+1}\Delta(d_j).$$

In ergodic theory, these are called *n*-cylinders, and $\delta(x) = .d_1d_2...$ is called the ξ -name of x.

Lemma

 $\Delta(d_1d_2...d_n) \neq \emptyset$ iff $d_1d_2,...d_n \in \mathcal{L}$, and in this case it is an interval $[a,b) \subseteq I$, called a fundamental interval.

Denote the partition into non-empty n-cylinders by

$$\xi^{(n)} = \xi \vee T^{-1}\xi \vee \cdots \vee T^{-n+1}\xi = \bigvee_{j=0}^{n-1} T^{-j}\xi$$

ヘロト 人間ト 人造ト 人造ト 一道

GENERATORS

Let
$$|\xi^{(n)}| = \max\{\lambda(\Delta) : \Delta \in \xi^{(n)}\}.$$

LEMMA

f-expansions are valid if and only if $\lim_{n\to\infty} |\xi^{(n)}| = 0$.

In ergodic theory ξ is called a 1-sided generator. This is usually denoted something like $\xi^{(n)}\to\epsilon.$

If T is invertible, ξ is called a 2-sided generator if

$$T^n \xi \vee T^{n-1} \xi \vee \dots \vee \xi \vee \dots \vee T^{-n} \xi \to \epsilon$$

ENTROPY

The entropy of a (finite or countable) partition $\eta = \{E_1, E_2, ...\}$ is $H(\nu) = -\sum_{E \in \nu} \gamma(E) \log \gamma(E)$.

DEFINITION

If γ is an invariant probability measure for T, the metric entropy is defined

$$h_{\gamma}(T) = \sup_{\eta} h_{\gamma}(T,\eta),$$

where

$$h_{\gamma}(T,\eta) = \lim_{n \to \infty} \frac{1}{n} H(\eta^{(n)}).$$

THEOREM (KOLMOGOROV-SINAI, 1958)

If η is a generator then $h_{\gamma}(T) = h(T, \eta)$.

ERGODIC THEORY AND SYMBOLIC DYNAMICS

INDEPENT-DIGITS CASE

Suppose f satisfies Type A or B, has has independent digits, satisfies |f(x) - f(y)| < |x - y| (and a little more along these lines), and satisfies one additional (difficult to verify) hypotheses. Rényi (1957) proved T has a Lebesgue-equivalent ergodic invariant measure.

- Gauss measure is ergodic invariant for continued fractions. It is given by $\rho(x) = \frac{1}{\log 2} \frac{1}{1+x}$, (Gauss, c 1800)
- Lebesgue measure is ergodic for base-r ($T(x) = rx \mod 1$).

ADLER'S THEOREM

Theorem (Adler, 1973)

Suppose T satisfies

- Type A or B, with independent digits (i.e., $T|_{\Delta(d)}$ onto)
- **2** $T|_{\Delta(d)}$ is C^2 for each d,
- There is $n \in \mathbb{N}$ so that $\inf |(T^n)'(x)| > 1$,

$$using_{x,y,z\in\Delta(d)} |T''(x)/(T'(y)T'(z))| < \infty, \, \forall d \in \mathcal{D}.$$

Then

- f-expansions are valid (ξ is a generator),
- ∃ ergodic Lebesgue-equivalent invariant measure (normal).
- T has a Bernoulli "natural extension" (this implies $h_{\gamma}(T) > 0$).

β -expansions (Renyi, 1957)

Let $\beta > 1$, $\beta \notin \mathbb{N}$. Let $\mathcal{D} = \{0, 1, \dots, \lfloor \beta \rfloor\}$. Then the β -transformation $T(x) = \beta x \mod 1$, has non-independent digits.

THEOREM (RÉNYI)

The β -transformation T has an ergodic Lebesgue-equivalent ergodic invariant measure.

Note: $\gamma \neq \lambda$.

COROLLARY

 β -expansions are valid, and for a.e. x the β -expansion is normal.

Some properties of β -expansions

- Parry (1960) found an explicit formula for density $\rho(x)$.
- Rényi (1957), Parry (1960), Schmidt (1980), determined structure of the β -shift X (in terms of the β -representation for x = 1, denoted $\mathbf{1} = .d_1d_2d_3...$, where $d_n = \xi(T^{n-1}(1))$).
 - X SFT if $\mathbf{1} = .d_1 d_2 d_3 \dots d_n 0000 \dots$
 - If β is a Pisot number, X is sofic.
- T has a Bernoulli "natural extension" (Smorodinski, 1973)

•
$$h_{\gamma}(T) = h_{top}(X) = \beta > 0.$$

ENTROPY-ZERO f-EXPANSIONS

Ergodic theory and symbolic dynamics

LASOTA-YORKE APPROACH

THEOREM (LASOTA-YOURKE, 1973)

Suppose T satisfies

The partition ξ is finite. (There is no independent digits assumption),

②
$$T$$
 is C^2 on $\overline{\Delta(d)}$ for each d ,

3 There is $n \in \mathbb{N}$ so that $\inf |(T^n)'(x)| > 1$ on $\bigcup \operatorname{int}(\Delta(d))$.

Then T has an absolutely continuous invariant measure.

Lyapunov exponents

If γ is an invariant measure for T, then (Oseledec, 1978)the Lyapunov exponent

$$\ell(x) = \lim_{n \to \infty} \frac{1}{n} \log |(f^n)'(x)|.$$

Let $\ell_+(x) = \max(0, \ell)$ then $h_{\gamma}(T) \leq \int_I \ell_+(x) d\gamma$ (Margulis, 1968). If γ is Lebesgue-equivalent, and $\ell_+(x) > 0$ a.e., $h_{\gamma}(T) = \int_I \ell_+(x) d\gamma$ (Katok, 1980). If γ is ergodic and Lebesgue-equivalent, $\ell_+(x) = \ell_+ \gamma$ are is

If γ is ergodic and Lebesgue-equivalent, $\ell_+(x)=\ell_+~\gamma$ a.e. is constant, and

$$h_{\gamma}(T) = \ell_+ > 0.$$

2 ITERATION ALGORITHM

3 Ergodic theory and symbolic dynamics

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

PARRY'S THEOREM

Parry (1964) notes that validity is a dynamical rather than analytic property.

Let $O_+(x) = \{T^n(x) : n \ge 0\}$. Say T is topologically transitive if $O_+(x)$ is dense in B for some $x \in B$.

THEOREM (PARRY, 1964)

If T is Type B and topologically transitive, then f-expansions are valid.

Parry (1964) studies $T(x) = \beta x + \alpha \mod 1$. The case $\alpha = 0$ (Rényi, 1957; Parry, 1960) is the β -transformation.

ENTROPY ZERO

FIGURE: $\beta x + \alpha$ expansions: $f(x) = (x - \alpha)/\beta$.

FIGURE: Map: $T(x) = \beta x + \alpha \mod 1$. Here, $\alpha = \sqrt{2} - 1$ and $\beta = \sqrt[2]{3}$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

The irrational rotation

The case $\beta = 0$, $\alpha \in [0,1) \backslash \mathbb{Q}$ gives the irrational rotation map.

 $T(x) = x + \alpha \mod 1$

Put

$$\xi(x) = \begin{cases} 0 & \text{ if } x \in [0, 1 - \alpha) \\ 1 & \text{ if } x \in [1 - \alpha, 1) \end{cases}$$

Parry mentions this case in passing, noting that expansions are valid, but saying it has been "studied elsewhere" (he cites Weyl, 1916).

The *f*-representations $\delta(x) = d = .d_1d_2d_3...$

$$d_n = \lfloor (n+1)\alpha + x \rfloor - \lfloor n\alpha + x \rfloor = \xi(T^{n-1}(x)).$$

give Sturmian sequences.

PROPERTIES OF IRRATIONAL ROTATION

- |T'(x)| = 1 almost everywhere.
- T is invertible.
- Lebesgue measure is the unique *T*-invariant measure (unique ergodicity).
- $O_+(x)$ dense for all x, called minimal. Implies topologically transitive.

•
$$h_{\text{top}}(X) = h_{\lambda}(T) = 0.$$

By Parry's theorem, Sturmian sequences are valid f-representations:

$$x = \epsilon(\delta(x)) = f(d_1 + f(d_2 + f(d_3 + \dots))).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entropy zero

FIGURE: $f(x) = x - \alpha$ for $\alpha \le x < \alpha + 1$.

FIGURE: Irrational map: $T(x) = x + \alpha_{\mathbb{F}}$, where \mathbb{F} and \mathbb{F} and \mathbb{F}

AN EXAMPLE OF CONVERGENCE

Let
$$\alpha = \frac{1+\sqrt{5}}{2} - 1$$
. Let $x = .322$. Then

Here are the first 20 convergents: 0, $3 - \sqrt{5} + \frac{1}{2}(1 - \sqrt{5}), \ 3 - \sqrt{5} + \frac{1}{2}(1 - \sqrt{5}), \ 3 - \sqrt{5} + \frac{1}{2}(1 - \sqrt{5}), \ 7 - 3\sqrt{5}, \ 7 - 3\sqrt{5},$

All belong to $\mathbb{N} + \alpha \mathbb{N}$ (in this case $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$).

GRAPH OF CONVERGENCE

The first 1000 has only a few values: $7 - 3\sqrt{5}, \frac{1}{2}(61 - 27\sqrt{5}), 92 - 41\sqrt{5}, \frac{1}{2}(1027 - 459\sqrt{5}) \dots$

FIGURE: List Plot of first 1000 convergents

INTERVAL EXCHANGES

- Irrational rotations maps are interval exchange transformations T (IET's) with 2 intervals.
- All IET's have Lebesgue measure λ invariant, and $h_{\lambda}(T) = 0$.
- A.e. interval exchange T (if based on a good permutation) is minimal and uniquely ergodic. In this case the corresponding *f*-expansions are valid and a.e x has normal *f*-expansions.
- However, ∃ IET T that are minimal but not unique ergodic. Parry's theorem implies f-expansions are valid, but normality may fail. (There is an bound on the number of ergodic invariant measures ≤ k - 2 where k=# intervals).

FIGURE: Map T is a 3-interval exchange

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 - わらぐ

Homeomorphisms of the circle

- View a homeomorphism as a map $T:[0,1)\to [0,1)$ with one discontinuity.
- Assume the rotation number α is irrational. Poincare (1885) proved T is semi-conjugate to a rotation by α .
 - If T is conjugate to rotation, f-expansions valid. (In this case there is a Lebesgue-equivalent invariant measure).
 - **2** If not, there is a wandering interval: $J = [a, b) \subseteq [0, 1)$ so that $T^n(J), n \in \mathbb{Z}$ are pairwise disjoint. Thus T is not topologically conjugate, and (one can show) f-expansions are not valid.

INFINITE INTERVAL EXCHANGES

Consider an "abstract" invertible ergodic measure preserving transformation τ on a Lebesgue probability space (Y, ν) , and suppose $h_{\nu}(\tau) < \infty$.

One can construct model T of τ as an exchange of infinitely many intervals (i.e., so T and τ are isomorphic).

In particular there is a sequence of intervals $I_k = [c_k, c'_k)$, $k \in \mathbb{N}$, and $L_k = [e_k, e'_k)$ so that

•
$$e'_k - e_k = c'_k - c_k$$
 for all k ,
• $T|_{I_k}(x) = x + (e_k - c_k)$, and
• $\cup_{k \in \mathbb{N}} I_k = \bigcup_{k \in \mathbb{N}} L_k = [0, 1)$.

INFINITE INTERVAL EXCHANGES (CONTINUED)

We want T to satisfy the Basic Hypotheses. For this we need to do the following.

- Choose $\mathcal{D} \subseteq \mathbb{Z}$ (infinite), and for $d \in \mathcal{D}$, let s(d) be the successor of d in \mathcal{D} (\mathcal{D} is well-ordered).
- Ohoose a bijection

$$d \mapsto k_d : \mathcal{D} \to \mathbb{N}$$

so that $c_{k_{s(d)}} = c'_{k_d}$ This may or may not be possible.

Note that $T^\prime(x)=1$ a.e., so we should use Parry's Theorem instead of Kakeya's.

FIGURE: Map T is a 3-interval exchange

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Entropy constraint

Call such a T a good model for τ on (Y, ν) . Let $\xi = \{[c_{k_d}, c_{k_{s(d)}})\}$. Note that T'(x) = 1 a.e.

Entropy theory places a strong limit on what we can really get.

LEMMA

If τ has a good model then $h_{\nu}(\tau) = 0$.

Proof.

T is isomorphic to τ and ξ is a one sided generator. A theorem in entropy theory says if T is invertible and has a 1-sided generator, then $h_{\lambda}(T) = 0$

References

- Adler, Roy L., *f*-expansions revisited. Recent advances in topological dynamics, Springer Lecture Notes in Math., **318**, (1973). 1–5.
- Arnoux, P., Ferenczi, S., and Hubert, P. Trajectories of rotations, Acta Arithmetica, **87**, (1999), 209–216.
- Bissinger, B. H., A generalization of continued fractions. Bull. Amer. Math. Soc. **50**, (1944). 868–876.
- Everett, C. J., Representations for real numbers. Bull. Amer. Math. Soc. **52**, (1946). 861–869.
- Kakeya, S., On the generalized scale of notation, Japan J. Math, 1, (1926), 95-108.
- Morse, Marston, Hedlund, Gustav A., Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. **62**, (1940). 1–42.
- Parry, W., On the β-expansions of real numbers. Acta Math.
 Acad. Sci. Hungar. 11 (1960) 401–416.

References (cont.)

- Parry, W. Representations for real numbers. Acta Math. Acad. Sci. Hungar. **15** (1964) 95–105.
- Rényi, A. Representations for real numbers and their ergodic properties., Acta Math. Acad. Sci. Hungar **8** (1957), 477–493.
- Schmidt, K, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math Soc., **12** (1980), 269–278.
- Schweiger, F., Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, (1995)
- Smorodinski, M. β-automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hungar. 24 (1973), 273-278
- Vershik, A. M. and Sidorov, N. A., Arithmetic expansions associated with the rotation of a circle and continued fractions. St. Petersburg Math. J. **5** (1994), 1121–1136.