ENTROPY-ZERO f-EXPANSIONS

E. Arthur (Robbie) Robinson

The George Washington

June 15, 2010
(1) Some examples
(2) Iteration ALGORITHM
(3) ERGODIC THEORY AND SYMBOLIC DYNAMICS

4 Entropy ZERo

The New Math

Figure: Mullen-Hall Elementary School, Falmouth, Massuahusetts, USA.

In 1963, during the Cold War, my third grade math teacher was trained in the "New Math" and taught us base 2 and base 5 .
(1) Some examples
(2) ITERATION ALGORITHM
(3) ERGODIC THEORY AND SYMBOLIC DYNAMICS
(4) Entropy ZERO

Continued fractions

Any $x \in(0,1]$ is given as an expansion of the form

$$
x=\frac{1}{d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\cdots}}} .
$$

where $d=. d_{1} d_{2} d_{3} \ldots$ is an arbitrary infinite sequence of positive integers. (We say $d_{n} \in \mathcal{D}=\mathbb{N}$, the digit set.) This can be written

CONTINUED FRACTIONS

Any $x \in(0,1]$ is given as an expansion of the form

$$
x=\frac{1}{d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\cdots}}} .
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is an arbitrary infinite sequence of positive integers. (We say $d_{n} \in \mathcal{D}=\mathbb{N}$, the digit set.)
where $f(x)=\frac{1}{x}$.

Continued fractions

Any $x \in(0,1]$ is given as an expansion of the form

$$
x=\frac{1}{d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\cdots}}} .
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is an arbitrary infinite sequence of positive integers. (We say $d_{n} \in \mathcal{D}=\mathbb{N}$, the digit set.)
This can be written

$$
x=f\left(d_{1}+f\left(d_{2}+f\left(d_{3}+\ldots\right)\right)\right)
$$

where $f(x)=\frac{1}{x}$.

BASE-r EXPANSIONS

Let $r \in \mathbb{N}, r>1$. Any $x \in[0,1)$ is given as an expansion of the form

$$
x=\sum_{n=1}^{\infty} \frac{d_{n}}{r^{n}}
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is a sequence from $\mathcal{D}=\{0,1, \ldots, r-1\}$. This can be written
where $f(x)=\frac{x}{r}$.

BASE-r EXPANSIONS

Let $r \in \mathbb{N}, r>1$. Any $x \in[0,1)$ is given as an expansion of the form

$$
x=\sum_{n=1}^{\infty} \frac{d_{n}}{r^{n}}
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is a sequence from $\mathcal{D}=\{0,1, \ldots, r-1\}$.
This can be written

$$
x=f\left(d_{1}+f\left(d_{2}+f\left(d_{3}+\ldots\right)\right)\right),
$$

where $f(x)=\frac{x}{r}$.

BASE-r (cONTINUED)

Here is an alternative way to write this

$$
x=\frac{d_{1}+\frac{d_{2}+\frac{d_{3}+\ldots}{r}}{r}}{r}
$$

BASE-r (CONTINUED - 2)

Let $N(d: \boldsymbol{w})$ the number of digits d in word $\boldsymbol{w} \in \mathcal{D}^{*}=\cup_{n \geq 1} \mathcal{D}^{n}$. For $x \in[0,1)$ let $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ and let $\boldsymbol{d}_{n}=d_{1} d_{2} \ldots d_{n} \in \mathcal{D}^{n}$.
For a.e. x we can recover r, the base, by

$$
1 / r=\lim _{n \rightarrow \infty} \frac{1}{n} N\left(d: \boldsymbol{d}_{n}\right)
$$

Let $C(n, \boldsymbol{d})$ be the number of words of length n in \boldsymbol{d}. Then for a.e. x

$$
r=\lim _{n \rightarrow \infty} \frac{1}{n} \log C(n, \boldsymbol{d})
$$

β-EXPANSIONS

Any $x \in[0,1)$ can be written in the form

$$
x=\sum_{n=1}^{\infty} \frac{d_{n}}{\beta^{n}},
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is a sequence from $\{0,1\}$, such that the sub-sequence 11 never occurs.

Again

This works for any $\beta>1$, with $\mathcal{D}=[0, \beta) \cap \mathbb{N}$, (in general, with a more complicated restriction on forbidden sub-words).

β-EXPANSIONS

Any $x \in[0,1)$ can be written in the form

$$
x=\sum_{n=1}^{\infty} \frac{d_{n}}{\beta^{n}},
$$

where $\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$ is a sequence from $\{0,1\}$, such that the sub-sequence 11 never occurs.

Again

This works for any $\beta>1$, with $\mathcal{D}=[0, \beta) \cap \mathbb{N}$, (in general, with a more complicated restriction on forbidden sub-words).

Counting

Again each $d \in \mathcal{D}$ and a.e. $x \in[0,1)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N\left(d: \boldsymbol{d}_{n}\right)
$$

(in general, the value of the limit depends on β in a complicated way.)

Also, for a.e. x

$$
\beta=\lim _{n \rightarrow \infty} \frac{1}{n} \log C(n, \boldsymbol{d}) .
$$

(this works for any $\beta>1$).

Sturmian sequences

Let $\mathcal{D}=\{0,1\}$. A Sturmian sequence

$$
\boldsymbol{d}=. d_{1} d_{2} d_{3} \cdots \in \mathcal{D}^{\mathbb{N}}
$$

is a sequence so that

$$
C(n, \boldsymbol{d})=n+1
$$

Strumian sequences were introduced by Morse and Hedlund (1940) who proved the following result:

Formula

Theorem (Morse, Hedlund: 1940)

Every Sturmian sequence \boldsymbol{d} is given by

$$
\begin{aligned}
d_{n} & =\lfloor\alpha(n+1)+\beta\rfloor-\lfloor\alpha n+\beta\rfloor \\
\left(\text { or } \tilde{d}_{n}\right. & =\lceil\alpha(n+1)+\beta\rceil-\lceil\alpha n+\beta\rceil)
\end{aligned}
$$

for some $\alpha \in[0,1) \backslash \mathbb{Q}$ and $\beta \in[0,1)$.
A Sturmian sequence (or either kind) satisfies the uniqueness condition:

$$
\boldsymbol{d}=\boldsymbol{d}^{\prime} \Longrightarrow \alpha=\alpha^{\prime} \text { and } \beta=\beta^{\prime} .
$$

Question: How can α and β be determined from \boldsymbol{d} ?

Density

It is well know that any Sturmian sequence \boldsymbol{d} satisfies

$$
\alpha=\lim _{n \rightarrow \infty} \frac{1}{n} N\left(1: \boldsymbol{d}_{n}\right),
$$

Is there a similar formula for β ?
Here is one answer (see Arnoux, Ferenczi and Hubert (1999)) Define two substitutions.

Density

It is well know that any Sturmian sequence \boldsymbol{d} satisfies

$$
\alpha=\lim _{n \rightarrow \infty} \frac{1}{n} N\left(1: \boldsymbol{d}_{n}\right),
$$

Is there a similar formula for β ?
Here is one answer (see Arnoux, Ferenczi and Hubert (1999)). Define two substitutions.

$$
\begin{aligned}
\sigma_{0} 0=0 & \sigma_{1} 0=01 \\
\sigma_{0} 1=10 & \sigma_{1} 1=1
\end{aligned}
$$

One Answer

Assume x is such that $d_{n}=\tilde{d}_{n}$ for $n \in \mathbb{Z}$ (a similar result holds in the opposite case).

Theorbm (Arnoux, Fbrenczi and Hubdrt (1999))
There are sequences $e_{n} \in \mathbb{N} \cup\{0\}$ and $a_{n} \in \mathbb{N}$ so that

Then
and

ONE ANSWER

Assume x is such that $d_{n}=\tilde{d}_{n}$ for $n \in \mathbb{Z}$ (a similar result holds in the opposite case).

Theorem (Arnoux, Ferenczi and Hubert (1999))

There are sequences $e_{n} \in \mathbb{N} \cup\{0\}$ and $a_{n} \in \mathbb{N}$ so that

$$
\boldsymbol{d}=0^{e_{1}} \sigma_{0}^{a_{1}}\left(1^{e_{1}}\right)\left(\sigma_{0}^{a_{1}} \sigma_{1}^{a_{2}}\right)\left(o^{e_{3}}\right)\left(\sigma_{0}^{a_{1}} \sigma_{1}^{a_{2}} \sigma_{0}^{a_{3}}\right)\left(1^{e_{4}}\right) \ldots
$$

Then

$$
\alpha=\frac{1}{\left(a_{1}+1\right)+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}} .
$$

and ...

One answer

Theorem (... continued)

$$
\beta=1+(1-\alpha)\left(-e_{1}+\sum_{n=1}^{\infty}(-1)^{n+1} e_{n+1} \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)
$$

where

$$
\alpha_{n}=\frac{1}{a_{n}+\frac{1}{a_{n+1}+\cdots}}
$$

- The formula for β is an example of Ostrowski numeration. - The formula for \boldsymbol{d} is an example of telescope form.
- The idea behind the proof is Rauzy induction.
- Similar results are due to Sidorov and Vershik (1993).

ONE ANSWER

Theorem (. . CONTINUED)

$$
\beta=1+(1-\alpha)\left(-e_{1}+\sum_{n=1}^{\infty}(-1)^{n+1} e_{n+1} \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)
$$

where

$$
\alpha_{n}=\frac{1}{a_{n}+\frac{1}{a_{n+1}+\cdots}}
$$

- The formula for β is an example of Ostrowski numeration.
- The formula for \boldsymbol{d} is an example of telescope form.
- The idea behind the proof is Rauzy induction.
- Similar results are due to Sidorov and Vershik (1993).
(1) Some examples
(2) Iteration algorithm
(3) ERGODIC THEORY AND SYMBOLIC DYNAMICS
(4) Entropy ZERO

The coefficient Algorithm

In the cases of both continued fractions $(f(x)=1 / x)$ and radix representations $(f(x)=x / b, b=r \in \mathbb{N}$ or $b=\beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$
\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots
$$

of $x \in(0,1)$. Put $x_{1}=x$.

The coefficient Algorithm

In the cases of both continued fractions $(f(x)=1 / x)$ and radix representations $(f(x)=x / b, b=r \in \mathbb{N}$ or $b=\beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$
\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots
$$

of $x \in(0,1)$. Put $x_{1}=x$.

- $d_{n}=\left\lfloor f^{-1}\left(x_{n}\right)\right\rfloor$.

The coefficient Algorithm

In the cases of both continued fractions $(f(x)=1 / x)$ and radix representations $(f(x)=x / b, b=r \in \mathbb{N}$ or $b=\beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$
\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots
$$

of $x \in(0,1)$. Put $x_{1}=x$.

- $d_{n}=\left\lfloor f^{-1}\left(x_{n}\right)\right\rfloor$.
- $x_{n+1}=f^{-1}\left(x_{n}\right)-d_{n}$.

The coefficient Algorithm

In the cases of both continued fractions $(f(x)=1 / x)$ and radix representations $(f(x)=x / b, b=r \in \mathbb{N}$ or $b=\beta \notin \mathbb{N})$, there is an iterative algorithm to find the representation

$$
\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots
$$

of $x \in(0,1)$. Put $x_{1}=x$.

- $d_{n}=\left\lfloor f^{-1}\left(x_{n}\right)\right\rfloor$.
- $x_{n+1}=f^{-1}\left(x_{n}\right)-d_{n}$.

Stop if $f^{-1}\left(x_{n}\right)$ is undefined and say x has a finite expansion.

f-REPRESENTATIONS

Several authors (Kakeya (1924), Bissinger, (1944), Everett (1946), Rényi (1957), Parry (1964)) observed that $f(x)=1 / x$ and $f(x)=x / r$ can be replaced by different monotonic functions.

Rényi (1957) observed that a map of the interval:

$$
T(x)=f^{-1}(x) \bmod 1 .
$$

can be used to obtain the digits

$$
d_{n}=\left\lfloor f^{-1}\left(T^{n-1}(x)\right)\right\rfloor
$$

by iteration.

Figure: Continued fractions: $f(x)=1 / x$

Figure: The Gauss map $T(x)=1 / x \bmod 1$.

Figure: Base 3: $f(x)=x / 3(r=3)$.

Figure: The "period tripling" map $T(x)=3 x \bmod 1$.

Figure: β-expansions: $f(x)=x / \beta, b=\beta=\frac{1+\sqrt{5}}{2}$

Figure: The β-transformation : $T(x)=\beta x \bmod 1$. Non-independent digits implies second branch not full (i.e., not onto).

BASIC HYPOTHESES

It will be useful to switch the viewpoint to T rather than f. The following hypotheses are essentially those of Parry (1957).

- Let $\mathcal{D} \subseteq \mathbb{N}, \#(\mathcal{D})=2$.
- Let $\Delta(d)=\left[c_{d}, c_{d+1}\right) \subseteq[0,1]$
- $c_{d}<c_{d+1} \forall d$.
- such that $\inf c_{d}=0, \sup c_{d}=1$.
- Let $I=\cup_{d \in \mathcal{D}} \Delta(d)$.
- $I \in\{[0,1],(0,1],[0,1),(0,1)\}$.
- Let $T: I \rightarrow[0,1]$ be strictly monotone on each $\Delta(d)$.
- Type A/ Type B if all $\left.T\right|_{\Delta(d)}$ decreasing/ increasing,
- Else, mixed type.
- $T: B \rightarrow B$ where $B=\left\{x: T^{n-1}(x) \in I \forall n \in \mathbb{N}\right\}$.

An example of what Schweiger (1995) calls a fibered system.

The function f

- Let $\xi: I \rightarrow \mathcal{D}$ be $\xi(x)=d$ if $x \in \Delta(d)$.
- Also think of $\xi=\{\Delta(d): d \in \mathcal{D}\}$ as a finite or countable partition.
- Define $T^{*}(x)=T(x)+\xi(x)$. Then $T^{*}: I \rightarrow \mathbb{R}$ is strictly monotone.
- Let $f: \mathbb{R} \rightarrow I$ be $f(x)=\left(T^{*}\right)^{-1}(x)$, extended to \mathbb{R} to be (non-strictly) monotone (i.e., piecewise constant on the gaps).

Figure: Base $-3: f(x)=1-x / 3$.

Figure: Reverse period tripling $T(x)=4-3 x \bmod 1$.

Figure: Arctangent expansions: $f(x)=\arctan (x), D=(-\infty, \infty)$.

Figure: Tangent map: $T(x)=\tan (x) \bmod [-\pi / 2, \pi / 2]$.

Representations and expansions

For $x \in B$ define the f-representation

$$
\delta(x)=\boldsymbol{d}=. d_{1} d_{2} d_{3} \cdots \in \mathcal{D}^{\mathbb{N}}
$$

by $d_{n}=\xi\left(T^{n-1}(x)\right)$.
For any $\boldsymbol{d}=. d_{1} d_{2} d_{3} \cdots \in \mathcal{D}^{\mathbb{N}}$, define the f-expansion

$$
\varepsilon(\boldsymbol{d})=f\left(d_{1}+f\left(d_{2}+f\left(d_{3} \ldots\right)\right)\right)
$$

In particular,

provided the limit exists (we say the f-expansion converges).

Representations and expansions

For $x \in B$ define the f-representation

$$
\delta(x)=\boldsymbol{d}=. d_{1} d_{2} d_{3} \cdots \in \mathcal{D}^{\mathbb{N}}
$$

by $d_{n}=\xi\left(T^{n-1}(x)\right)$.
For any $\boldsymbol{d}=. d_{1} d_{2} d_{3} \cdots \in \mathcal{D}^{\mathbb{N}}$, define the f-expansion

$$
\varepsilon(\boldsymbol{d})=f\left(d_{1}+f\left(d_{2}+f\left(d_{3} \ldots\right)\right)\right)
$$

In particular,

$$
\varepsilon(\boldsymbol{d})=\lim _{n \rightarrow \infty} f\left(d_{1}+f\left(d_{2}+\cdots+f\left(d_{n}\right)\right)\right)
$$

provided the limit exists (we say the f-expansion converges).

Kakeya's Theorem

Say f-representations satisfy uniqueness if $\delta(x)=\delta(y)$ implies $x=y$ for $x, y \in B$, i.e., δ is $1: 1$ on B.

Say f-expansions are valid if $x=\varepsilon(\delta(x))$ for all $x \in B$.

```
Thborem (Kakeya, 1924)
Let T be Type A or B, and suppose }|\mp@subsup{T}{}{\prime}(x)|>1 almos
everywhere. Then f-expansions are valid.
```

Bissinger (1944), Everett (1946), and Rényi (1957), and Parry(1964) have similar results, with the hypotheses replaced by $|f(x)-f(y)|<|x-y|$ (or a little more)

Kakeya's Theorem

Say f-representations satisfy uniqueness if $\delta(x)=\delta(y)$ implies
$x=y$ for $x, y \in B$, i.e., δ is $1: 1$ on B.
Say f-expansions are valid if $x=\varepsilon(\delta(x))$ for all $x \in B$.

Theorem (Kakeya, 1924)

Let T be Type A or B, and suppose $\left|T^{\prime}(x)\right|>1$ almost everywhere. Then f-expansions are valid.

Bissinger (1944), Everett (1946), and Rényi (1957), and Parry(1964) have similar results, with the hypotheses $\left|f^{\prime}(x)\right|<1$, replaced by $|f(x)-f(y)|<|x-y|$ (or a little more).
(1) Some examples
(2) ItERATION ALGORITHM
(3) ERGODIC THEORY AND SYMBOLIC DYNAMICS
(4) Entropy ZERO

THE f-SHIFT

We say f-expansions have independent digits if each $\left.T\right|_{\Delta(d)}$ is onto (each fiber is full in the terminology of Schweiger).
Give $\mathcal{D}^{\mathbb{N}}$ the product topology (compact if \mathcal{D} is finite, Polish otherwise), and let S be the left-shift map.

Let $X_{0}=\{\delta(x): x \in B\}$ and let $X=\overline{X_{0}}$. Then X is called the f-shift.

Lemma (Renyi, 1957)

If f has independent-digits, then $X=\mathcal{D}^{\mathbb{N}}$ (the full shift).
More generally, let \mathcal{L}_{n} be the set of all words of length n in X. Then $\mathcal{L}=\cup \mathcal{L}_{n}$ is called the language of the shift X.

SHIFTS

If $\#(\mathcal{D})<\infty$, the complexity of X is defined

$$
C(n, X)=\#\left(\mathcal{L}_{n}\right),
$$

and topological entropy is given by

$$
h_{\text {top }}(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log C(n, X) .
$$

- If $X=\mathcal{D}^{\mathbb{N}}$ and $\#(\mathcal{D})=r<\infty$, then $C(n, X)=r^{n}$, and $h_{\text {top }}(X)=\log r$.
- If X a β-shift, $\#(\mathcal{D})=\lfloor\beta\rfloor$, and $h_{\text {top }}(X)=\log \beta$.
- If X a Sturmian shift, $\#(\mathcal{D})=2$, then $C(n, X)=n+1$, and $h_{\mathrm{top}}(X)=0$.

ERGODIC THEORY

- A Borel probability measure γ on B is T-invariant if $\gamma\left(T^{-1} E\right)=\gamma(E)$ for every Borel set E.
- A Borel measure γ is absolutely continuous if there $\rho(x) \geq 0$, $\rho \in L^{1}(B, \lambda)$ ($\lambda=$ Lebesgue) so that $\gamma(E)=\int_{E} \rho(x) d \lambda$.
- An absolutely continuous measure is equivalent to Lebesgue measure if $\rho(x)>0$ a.e. Call this Lebesgue-equivalent.
- T is ergodic if $T E=E$ implies $\gamma(E)=0$ or $\gamma(E)=1$.

ERGODIC THEORY

If T has ergodic Lebesgue-equivalent invariant measure, then the Birkhoff ergodic theorem implies f-representations are normal: For $x \in B$ let $\delta(x)=\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$. Fix $d \in \mathcal{D}$. Then For λ a.e. $x \in B$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N\left(d: \boldsymbol{d}_{n}\right)=\gamma(\Delta(d))=\int_{\Delta(d)} \rho(x) d \mu
$$

(Similar formulas hold for d replaced by longer words).

ERGODIC THEORY

If T has ergodic Lebesgue-equivalent invariant measure, then the Birkhoff ergodic theorem implies f-representations are normal: For $x \in B$ let $\delta(x)=\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$. Fix $d \in \mathcal{D}$. Then For λ a.e. $x \in B$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N\left(d: \boldsymbol{d}_{n}\right)=\gamma(\Delta(d))=\int_{\Delta(d)} \rho(x) d \mu
$$

(Similar formulas hold for d replaced by longer words).

Partitions

Define

$$
\Delta\left(d_{1} d_{2} \ldots d_{n}\right)=\bigcap_{j=1}^{n} T^{-j+1} \Delta\left(d_{j}\right)
$$

In ergodic theory, these are called n-cylinders, and $\delta(x)=. d_{1} d_{2} \ldots$ is called the ξ-name of x.

LEMMA

$\Delta\left(d_{1} d_{2} \ldots d_{n}\right) \neq \emptyset$ iff $d_{1} d_{2}, \ldots d_{n} \in \mathcal{L}$, and in this case it is an interval $[a, b) \subseteq I$, called a fundamental interval.

Denote the partition into non-empty n-cylinders by

$$
\xi^{(n)}=\xi \vee T^{-1} \xi \vee \cdots \vee T^{-n+1} \xi=\bigvee_{j=0}^{n-1} T^{-j} \xi
$$

GENERATORS

Let $\left|\xi^{(n)}\right|=\max \left\{\lambda(\Delta): \Delta \in \xi^{(n)}\right\}$.

Lemma

f-expansions are valid if and only if $\lim _{n \rightarrow \infty}\left|\xi^{(n)}\right|=0$.
In ergodic theory ξ is called a 1 -sided generator. This is usually denoted something like $\xi^{(n)} \rightarrow \epsilon$.

If T is invertible, ξ is called a 2 -sided generator if

$$
T^{n} \xi \vee T^{n-1} \xi \vee \cdots \vee \xi \vee \cdots \vee T^{-n} \xi \rightarrow \epsilon
$$

ENTROPY

The entropy of a (finite or countable) partition $\eta=\left\{E_{1}, E_{2}, \ldots\right\}$ is $H(\nu)=-\sum_{E \in \nu} \gamma(E) \log \gamma(E)$.

Definition

If γ is an invariant probability measure for T, the metric entropy is defined

$$
h_{\gamma}(T)=\sup _{\eta} h_{\gamma}(T, \eta)
$$

where

$$
h_{\gamma}(T, \eta)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\eta^{(n)}\right) .
$$

Theorem (Kolmogorov-Sinai, 1958)

If η is a generator then $h_{\gamma}(T)=h(T, \eta)$.

INDEPENT-DIGITS CASE

Suppose f satisfies Type A or B , has has independent digits, satisfies $|f(x)-f(y)|<|x-y|$ (and a little more along these lines), and satisfies one additional (difficult to verify) hypotheses. Rényi (1957) proved T has a Lebesgue-equivalent ergodic invariant measure.

- Gauss measure is ergodic invariant for continued fractions. It is given by $\rho(x)=\frac{1}{\log 2} \frac{1}{1+x}$, (Gauss, c 1800)
- Lebesgue measure is ergodic for base- $r(T(x)=r x \bmod 1)$.

ADLER'S THEOREM

Theorem (Adler, 1973)

Suppose T satisfies
(1) Type A or B, with independent digits (i.e., $\left.T\right|_{\Delta(d)}$ onto)
(2) $\left.T\right|_{\Delta(d)}$ is C^{2} for each d,
(3) There is $n \in \mathbb{N}$ so that $\inf \left|\left(T^{n}\right)^{\prime}(x)\right|>1$,
(c) $\sup _{x, y, z \in \Delta(d)}\left|T^{\prime \prime}(x) /\left(T^{\prime}(y) T^{\prime}(z)\right)\right|<\infty, \forall d \in \mathcal{D}$.

Then

- f-expansions are valid (ξ is a generator),
- \exists ergodic Lebesgue-equivalent invariant measure (normal).
- T has a Bernoulli "natural extension" (this implies $\left.h_{\gamma}(T)>0\right)$.

β-EXPANSIONS (RENYI, 1957)

Let $\beta>1, \beta \notin \mathbb{N}$. Let $\mathcal{D}=\{0,1, \ldots,\lfloor\beta\rfloor\}$. Then the
β-transformation $T(x)=\beta x \bmod 1$, has non-independent digits.

Theorem (RÉNyi)

The β-transformation T has an ergodic Lebesgue-equivalent ergodic invariant measure.

Note: $\gamma \neq \lambda$.

Corollary

β-expansions are valid, and for a.e. x the β-expansion is normal.

SOME PROPERTIES OF β-EXPANSIONS

- Parry (1960) found an explicit formula for density $\rho(x)$.
- Rényi (1957), Parry (1960), Schmidt (1980), determined structure of the β-shift X (in terms of the β-representation for $x=1$, denoted $1=. d_{1} d_{2} d_{3} \ldots$, where $\left.d_{n}=\xi\left(T^{n-1}(1)\right)\right)$.
- X SFT if $\mathbf{1}=. d_{1} d_{2} d_{3} \ldots d_{n} 0000 \ldots$
- If β is a Pisot number, X is sofic.
- T has a Bernoulli "natural extension" (Smorodinski, 1973)
- $h_{\gamma}(T)=h_{\text {top }}(X)=\beta>0$.

LASOTA-YORKE APPROACH

Theorem (Lasota-Yourke, 1973)

Suppose T satisfies
(1) The partition ξ is finite. (There is no independent digits assumption),
(2) T is C^{2} on $\overline{\Delta(d)}$ for each d,
(3) There is $n \in \mathbb{N}$ so that $\inf \left|\left(T^{n}\right)^{\prime}(x)\right|>1$ on $\cup \operatorname{int}(\Delta(d)$.

Then T has an absolutely continuous invariant measure.

LYAPUNOV EXPONENTS

If γ is an invariant measure for T, then (Oseledec, 1978)the Lyapunov exponent

$$
\ell(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(x)\right| .
$$

Let $\ell_{+}(x)=\max (0, \ell)$ then $h_{\gamma}(T) \leq \int_{I} \ell_{+}(x) d \gamma$ (Margulis, 1968).
If γ is Lebesgue-equivalent, and $\ell_{+}(x)>0$ a.e.,
$h_{\gamma}(T)=\int_{I} \ell_{+}(x) d \gamma$ (Katok, 1980).
If γ is ergodic and Lebesgue-equivalent, $\ell_{+}(x)=\ell_{+} \gamma$ a.e. is constant, and

$$
h_{\gamma}(T)=\ell_{+}>0 .
$$

(1) SOME EXAMPLES
(2) ItERATION ALGORITHM
(3) ERGODIC THEORY AND SYMBOLIC DYNAMICS

4 Entropy ZERO

Parry's Theorem

Parry (1964) notes that validity is a dynamical rather than analytic property.
Let $O_{+}(x)=\left\{T^{n}(x): n \geq 0\right\}$. Say T is topologically transitive if $O_{+}(x)$ is dense in B for some $x \in B$.

Theorem (Parry, 1964)

If T is Type B and topologically transitive, then f-expansions are valid.

Parry (1964) studies $T(x)=\beta x+\alpha \bmod 1$. The case $\alpha=0$
(Rényi, 1957; Parry, 1960) is the β-transformation.

Figure: $\beta x+\alpha$ expansions: $f(x)=(x-\alpha) / \beta$.

Figure: Map: $T(x)=\beta x+\alpha \bmod 1$. Here, $\alpha=\sqrt{2}-1$ and $\beta=\sqrt[2]{3}$

THE IRRATIONAL ROTATION

The case $\beta=0, \alpha \in[0,1) \backslash \mathbb{Q}$ gives the irrational rotation map.

$$
T(x)=x+\alpha \bmod 1
$$

Put

$$
\xi(x)= \begin{cases}0 & \text { if } x \in[0,1-\alpha) \\ 1 & \text { if } x \in[1-\alpha, 1)\end{cases}
$$

Parry mentions this case in passing, noting that expansions are valid, but saying it has been "studied elsewhere" (he cites Weyl, 1916).

The f-representations $\delta(x)=\boldsymbol{d}=. d_{1} d_{2} d_{3} \ldots$

$$
d_{n}=\lfloor(n+1) \alpha+x\rfloor-\lfloor n \alpha+x\rfloor=\xi\left(T^{n-1}(x)\right) .
$$

give Sturmian sequences.

PROPERTIES OF IRRATIONAL ROTATION

- $\left|T^{\prime}(x)\right|=1$ almost everywhere.
- T is invertible.
- Lebesgue measure is the unique T-invariant measure (unique ergodicity).
- $O_{+}(x)$ dense for all x, called minimal. Implies topologically transitive.
- $h_{\text {top }}(X)=h_{\lambda}(T)=0$.

By Parry's theorem, Sturmian sequences are valid f-representations:

$$
x=\epsilon(\delta(x))=f\left(d_{1}+f\left(d_{2}+f\left(d_{3}+\ldots\right)\right)\right)
$$

Figure: $f(x)=x-\alpha$ for $\alpha \leq x<\alpha+1$.

Figure: Irrational map: $T(x)=x+\alpha$,

An example of convergence

Let $\alpha=\frac{1+\sqrt{5}}{2}-1$. Let $x=.322$. Then
$\boldsymbol{d}=.0110110101101011011010110110101101011011010110101 \ldots$
Here are the first 20 convergents:
$0,3-\sqrt{5}+\frac{1}{2}(1-\sqrt{5}), 3-\sqrt{5}+\frac{1}{2}(1-\sqrt{5}), 3-\sqrt{5}+\frac{1}{2}(1-$
$\sqrt{5}), 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-$
$3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-$ $3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5}, 7-3 \sqrt{5} \ldots$

All belong to $\mathbb{N}+\alpha \mathbb{N}$ (in this case $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$).

Graph of convergence

The first 1000 has only a few values:
$7-3 \sqrt{5}, \frac{1}{2}(61-27 \sqrt{5}), 92-41 \sqrt{5}, \frac{1}{2}(1027-459 \sqrt{5}) \ldots$

Figure: List Plot of first 1000 convergents

Interval Exchanges

- Irrational rotations maps are interval exchange transformations T (IET's) with 2 intervals.
- All IET's have Lebesgue measure λ invariant, and $h_{\lambda}(T)=0$.
- A.e. interval exchange T (if based on a good permutation) is minimal and uniquely ergodic. In this case the corresponding f-expansions are valid and a.e x has normal f-expansions.
- However, \exists IET T that are minimal but not unique ergodic. Parry's theorem implies f-expansions are valid, but normality may fail. (There is an bound on the number of ergodic invariant measures $\leq k-2$ where $k=\#$ intervals).

Figure: Map T is a 3-interval exchange

Homeomorphisms of The circle

- View a homeomorphism as a map $T:[0,1) \rightarrow[0,1)$ with one discontinuity.
- Assume the rotation number α is irrational. Poincare (1885) proved T is semi-conjugate to a rotation by α.
(1) If T is conjugate to rotation, f-expansions valid. (In this case there is a Lebesgue-equivalent invariant measure).
(2) If not, there is a wandering interval: $J=[a, b) \subseteq[0,1)$ so that $T^{n}(J), n \in \mathbb{Z}$ are pairwise disjoint. Thus T is not topologically conjugate, and (one can show) f-expansions are not valid.

INFINITE INTERVAL EXCHANGES

Consider an "abstract" invertible ergodic measure preserving transformation τ on a Lebesgue probability space (Y, ν), and suppose $h_{\nu}(\tau)<\infty$.

One can construct model T of τ as an exchange of infinitely many intervals (i.e., so T and τ are isomorphic).

In particular there is a sequence of intervals $I_{k}=\left[c_{k}, c_{k}^{\prime}\right), k \in \mathbb{N}$, and $L_{k}=\left[e_{k}, e_{k}^{\prime}\right)$ so that

- $e_{k}^{\prime}-e_{k}=c_{k}^{\prime}-c_{k}$ for all k,
- $\left.T\right|_{I_{k}}(x)=x+\left(e_{k}-c_{k}\right)$, and
- $\cup_{k \in \mathbb{N}} I_{k}=\cup_{k \in \mathbb{N}} L_{k}=[0,1)$.

INFINITE INTERVAL EXCHANGES (CONTINUED)

We want T to satisfy the Basic Hypotheses. For this we need to do the following.
(1) Choose $\mathcal{D} \subseteq \mathbb{Z}$ (infinite), and for $d \in \mathcal{D}$, let $s(d)$ be the successor of d in \mathcal{D} (\mathcal{D} is well-ordered).
(2) Choose a bijection

$$
d \mapsto k_{d}: \mathcal{D} \rightarrow \mathbb{N}
$$

so that $c_{k_{s(d)}}=c_{k_{d}}^{\prime}$
This may or may not be possible.
Note that $T^{\prime}(x)=1$ a.e., so we should use Parry's Theorem instead of Kakeya's.

Figure: Map T is a 3-interval exchange

Entropy Constraint

Call such a T a good model for τ on (Y, ν). Let $\xi=\left\{\left[c_{k_{d}}, c_{k_{s(d)}}\right)\right\}$. Note that $T^{\prime}(x)=1$ a.e.
Entropy theory places a strong limit on what we can really get.

LEMMA

If τ has a good model then $h_{\nu}(\tau)=0$.

Proof.

T is isomorphic to τ and ξ is a one sided generator. A theorem in entropy theory says if T is invertible and has a 1 -sided generator, then $h_{\lambda}(T)=0$

References

- Adler, Roy L., f-expansions revisited. Recent advances in topological dynamics, Springer Lecture Notes in Math., 318, (1973). 1-5.
- Arnoux, P., Ferenczi, S., and Hubert, P. Trajectories of rotations, Acta Arithmetica, 87, (1999), 209-216.
- Bissinger, B. H., A generalization of continued fractions. Bull. Amer. Math. Soc. 50, (1944). 868-876.
- Everett, C. J., Representations for real numbers. Bull. Amer. Math. Soc. 52, (1946). 861-869.
- Kakeya, S., On the generalized scale of notation, Japan J. Math, 1, (1926), 95-108.
- Morse, Marston, Hedlund, Gustav A., Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62, (1940). 1-42.
- Parry, W., On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.

References (cont.)

- Parry, W. Representations for real numbers. Acta Math. Acad. Sci. Hungar. 15 (1964) 95-105.
- Rényi, A. Representations for real numbers and their ergodic properties., Acta Math. Acad. Sci. Hungar 8 (1957), 477-493.
- Schmidt, K, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math Soc., 12 (1980), 269-278.
- Schweiger, F., Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, (1995)
- Smorodinski, M. β-automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hungar. 24 (1973), 273-278
- Vershik, A. M. and Sidorov, N. A., Arithmetic expansions associated with the rotation of a circle and continued fractions. St. Petersburg Math. J. 5 (1994), 1121-1136.

