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Outline

The New Math

Figure: Mullen-Hall Elementary School, Falmouth, Massuahusetts,
USA.

In 1963, during the Cold War, my third grade math teacher was
trained in the “New Math” and taught us base 2 and base 5.
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Entropy-zero f -expansions

Some examples

Continued fractions

Any x ∈ (0, 1] is given as an expansion of the form

x =
1

d1 +
1

d2 +
1

d3 + · · ·

.

where d = .d1d2d3 . . . is an arbitrary infinite sequence of positive
integers. (We say dn ∈ D = N, the digit set.)
This can be written

x = f(d1 + f(d2 + f(d3 + . . . ))),

where f(x) = 1
x .
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Some examples

Base-r expansions

Let r ∈ N, r > 1. Any x ∈ [0, 1) is given as an expansion of the
form

x =

∞∑
n=1

dn
rn
,

where d = .d1d2d3 . . . is a sequence from D = {0, 1, . . . , r − 1}.

This can be written

x = f(d1 + f(d2 + f(d3 + . . . ))),

where f(x) = x
r .
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Base-r (continued)

Here is an alternative way to write this

x =
d1 +

d2 +
d3 + . . .

r
r

r
.



Entropy-zero f -expansions

Some examples

Base-r (continued – 2)

Let N(d : w) the number of digits d in word w ∈ D∗ = ∪n≥1Dn.
For x ∈ [0, 1) let d = .d1d2d3 . . . and let dn = d1d2 . . . dn ∈ Dn.
For a.e. x we can recover r, the base, by

1/r = lim
n→∞

1

n
N(d : dn).

Let C(n,d) be the number of words of length n in d. Then for
a.e. x

r = lim
n→∞

1

n
logC(n,d).



Entropy-zero f -expansions

Some examples

β-expansions

Any x ∈ [0, 1) can be written in the form

x =

∞∑
n=1

dn
βn
,

where d = .d1d2d3 . . . is a sequence from {0, 1}, such that the
sub-sequence 11 never occurs.

Again

x =

d1 +

d2 +
d3 + . . .

β

β

β
.

This works for any β > 1, with D = [0, β) ∩ N, (in general, with a
more complicated restriction on forbidden sub-words).



Entropy-zero f -expansions

Some examples

β-expansions

Any x ∈ [0, 1) can be written in the form

x =

∞∑
n=1

dn
βn
,

where d = .d1d2d3 . . . is a sequence from {0, 1}, such that the
sub-sequence 11 never occurs.

Again

x =

d1 +

d2 +
d3 + . . .

β

β

β
.

This works for any β > 1, with D = [0, β) ∩ N, (in general, with a
more complicated restriction on forbidden sub-words).



Entropy-zero f -expansions

Some examples

Counting

Again each d ∈ D and a.e. x ∈ [0, 1),

lim
n→∞

1

n
N(d : dn),

(in general, the value of the limit depends on β in a complicated
way.)

Also, for a.e. x

β = lim
n→∞

1

n
logC(n,d).

(this works for any β > 1).
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Sturmian sequences

Let D = {0, 1}. A Sturmian sequence

d = .d1d2d3 · · · ∈ DN

is a sequence so that

C(n,d) = n+ 1.

Strumian sequences were introduced by Morse and Hedlund (1940)
who proved the following result:
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Some examples

Formula

Theorem (Morse, Hedlund: 1940)

Every Sturmian sequence d is given by

dn = bα(n+ 1) + βc − bαn+ βc,
(or d̃n = dα(n+ 1) + βe − dαn+ βe)

for some α ∈ [0, 1)\Q and β ∈ [0, 1).

A Sturmian sequence (or either kind) satisfies the uniqueness
condition:

d = d′ =⇒ α = α′ and β = β′.

Question: How can α and β be determined from d?
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Some examples

Density

It is well know that any Sturmian sequence d satisfies

α = lim
n→∞

1

n
N(1 : dn),

Is there a similar formula for β?

Here is one answer (see Arnoux, Ferenczi and Hubert (1999)).
Define two substitutions.

σ00 = 0

σ01 = 10

σ10 = 01

σ11 = 1
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One answer

Assume x is such that dn = d̃n for n ∈ Z (a similar result holds in
the opposite case).

Theorem (Arnoux, Ferenczi and Hubert (1999))

There are sequences en ∈ N ∪ {0} and an ∈ N so that

d = 0e1 σa10 (1e1) (σa10 σa21 )(oe3) (σa10 σa21 σa30 )(1e4) . . .

Then

α =
1

(a1 + 1) +
1

a2 +
1

a3 + · · ·

.

and . . .
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One answer

Theorem (. . . continued)

β = 1 + (1− α)

(
−e1 +

∞∑
n=1

(−1)n+1en+1 α1α2 . . . αn

)
where

αn =
1

an +
1

an+1 + · · ·

.

The formula for β is an example of Ostrowski numeration.

The formula for d is an example of telescope form.

The idea behind the proof is Rauzy induction.

Similar results are due to Sidorov and Vershik (1993).
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Iteration algorithm

The coefficient algorithm

In the cases of both continued fractions (f(x) = 1/x) and radix
representations (f(x) = x/b, b = r ∈ N or b = β 6∈ N), there is an
iterative algorithm to find the representation

d = .d1d2d3 . . .

of x ∈ (0, 1). Put x1 = x.

dn = bf−1(xn)c.
xn+1 = f−1(xn)− dn.

Stop if f−1(xn) is undefined and say x has a finite expansion.
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Iteration algorithm

f-representations

Several authors (Kakeya (1924), Bissinger, (1944), Everett (1946),
Rényi (1957), Parry (1964)) observed that f(x) = 1/x and
f(x) = x/r can be replaced by different monotonic functions.

Rényi (1957) observed that a map of the interval:

T (x) = f−1(x) mod 1.

can be used to obtain the digits

dn = bf−1(Tn−1(x))c

by iteration.
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Iteration algorithm

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Figure: Continued fractions: f(x) = 1/x

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.8

1.0

Figure: The Gauss map T (x) = 1/x mod 1.
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Iteration algorithm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4
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1.0

Figure: Base 3: f(x) = x/3 (r = 3).
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Figure: The “period tripling” map T (x) = 3x mod 1.
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Iteration algorithm

0 1 2 3 4
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Figure: β-expansions: f(x) = x/β, b = β = 1+
√

5
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure: The β-transformation : T (x) = βx mod 1. Non-independent
digits implies second branch not full (i.e., not onto).
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Iteration algorithm

Basic hypotheses

It will be useful to switch the viewpoint to T rather than f . The
following hypotheses are essentially those of Parry (1957).

Let D ⊆ N, #(D) = 2.

Let ∆(d) = [cd, cd+1) ⊆ [0, 1]

cd < cd+1 ∀d.
such that inf cd = 0, sup cd = 1.

Let I = ∪d∈D∆(d).

I ∈ {[0, 1], (0, 1], [0, 1), (0, 1)}.
Let T : I → [0, 1] be strictly monotone on each ∆(d).

Type A/ Type B if all T |∆(d) decreasing/ increasing,
Else, mixed type.

T : B → B where B = {x : Tn−1(x) ∈ I ∀n ∈ N}.
An example of what Schweiger (1995) calls a fibered system.
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Iteration algorithm

The function f

Let ξ : I → D be ξ(x) = d if x ∈ ∆(d).

Also think of ξ = {∆(d) : d ∈ D} as a finite or countable
partition.

Define T ∗(x) = T (x) + ξ(x). Then T ∗ : I → R is strictly
monotone.

Let f : R→ I be f(x) = (T ∗)−1(x), extended to R to be
(non-strictly) monotone (i.e., piecewise constant on the gaps).
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1.0

Figure: Base −3: f(x) = 1− x/3.
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Figure: Reverse period tripling T (x) = 4− 3x mod 1.
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Iteration algorithm

-6 -4 -2 2 4 6
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Figure: Arctangent expansions: f(x) = arctan(x), D = (−∞,∞).
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Figure: Tangent map: T (x) = tan(x) mod [−π/2, π/2].
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Iteration algorithm

Representations and expansions

For x ∈ B define the f -representation

δ(x) = d = .d1d2d3 · · · ∈ DN

by dn = ξ(Tn−1(x)).

For any d = .d1d2d3 · · · ∈ DN, define the f -expansion

ε(d) = f(d1 + f(d2 + f(d3 . . . ))).

In particular,

ε(d) = lim
n→∞

f(d1 + f(d2 + · · ·+ f(dn) )),

provided the limit exists (we say the f -expansion converges).
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Iteration algorithm

Kakeya’s Theorem

Say f -representations satisfy uniqueness if δ(x) = δ(y) implies
x = y for x, y ∈ B, i.e., δ is 1:1 on B.

Say f -expansions are valid if x = ε(δ(x)) for all x ∈ B.

Theorem (Kakeya, 1924)

Let T be Type A or B, and suppose |T ′(x)| > 1 almost
everywhere. Then f -expansions are valid.

Bissinger (1944), Everett (1946), and Rényi (1957), and
Parry(1964) have similar results, with the hypotheses |f ′(x)| < 1,
replaced by |f(x)− f(y)| < |x− y| (or a little more).
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Ergodic theory and symbolic dynamics

The f-shift

We say f -expansions have independent digits if each T |∆(d) is onto
(each fiber is full in the terminology of Schweiger).

Give DN the product topology (compact if D is finite, Polish
otherwise), and let S be the left-shift map.

Let X0 = {δ(x) : x ∈ B} and let X = X0. Then X is called the
f -shift.

Lemma (Renyi, 1957)

If f has independent-digits, then X = DN (the full shift).

More generally, let Ln be the set of all words of length n in X.
Then L = ∪Ln is called the language of the shift X.
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Ergodic theory and symbolic dynamics

Shifts

If #(D) <∞, the complexity of X is defined

C(n,X) = #(Ln),

and topological entropy is given by

htop(X) = lim
n→∞

1

n
logC(n,X).

If X = DN and #(D) = r <∞, then C(n,X) = rn, and
htop(X) = log r.

If X a β-shift, #(D) = bβc, and htop(X) = log β.

If X a Sturmian shift, #(D) = 2, then C(n,X) = n+ 1, and
htop(X) = 0.
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Ergodic theory and symbolic dynamics

Ergodic theory

A Borel probability measure γ on B is T -invariant if
γ(T−1E) = γ(E) for every Borel set E.

A Borel measure γ is absolutely continuous if there ρ(x) ≥ 0,
ρ ∈ L1(B, λ) (λ=Lebesgue) so that γ(E) =

∫
E ρ(x) dλ.

An absolutely continuous measure is equivalent to Lebesgue
measure if ρ(x) > 0 a.e. Call this Lebesgue-equivalent.

T is ergodic if TE = E implies γ(E) = 0 or γ(E) = 1.



Entropy-zero f -expansions

Ergodic theory and symbolic dynamics

Ergodic theory

If T has ergodic Lebesgue-equivalent invariant measure, then the
Birkhoff ergodic theorem implies f -representations are normal:
For x ∈ B let δ(x) = d = .d1d2d3 . . . . Fix d ∈ D. Then For λ a.e.
x ∈ B

lim
n→∞

1

n
N(d : dn) = γ(∆(d)) =

∫
∆(d)

ρ(x) dµ.

(Similar formulas hold for d replaced by longer words).
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Ergodic theory and symbolic dynamics

Partitions

Define

∆(d1d2 . . . dn) =

n⋂
j=1

T−j+1∆(dj).

In ergodic theory, these are called n-cylinders, and δ(x) = .d1d2 . . .
is called the ξ-name of x.

Lemma

∆(d1d2 . . . dn) 6= ∅ iff d1d2, . . . dn ∈ L, and in this case it is an
interval [a, b) ⊆ I, called a fundamental interval.

Denote the partition into non-empty n-cylinders by

ξ(n) = ξ ∨ T−1ξ ∨ · · · ∨ T−n+1ξ =
n−1∨
j=0

T−jξ
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Ergodic theory and symbolic dynamics

Generators

Let |ξ(n)| = max{λ(∆) : ∆ ∈ ξ(n)}.

Lemma

f -expansions are valid if and only if limn→∞ |ξ(n)| = 0.

In ergodic theory ξ is called a 1-sided generator. This is usually
denoted something like ξ(n) → ε.

If T is invertible, ξ is called a 2-sided generator if

Tnξ ∨ Tn−1ξ ∨ · · · ∨ ξ ∨ · · · ∨ T−nξ → ε
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Ergodic theory and symbolic dynamics

entropy

The entropy of a (finite or countable) partition η = {E1, E2, . . . }
is H(ν) = −

∑
E∈ν γ(E) log γ(E).

Definition

If γ is an invariant probability measure for T , the metric entropy is
defined

hγ(T ) = sup
η
hγ(T, η),

where

hγ(T, η) = lim
n→∞

1

n
H(η(n)).

Theorem (Kolmogorov-Sinai, 1958)

If η is a generator then hγ(T ) = h(T, η).
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Ergodic theory and symbolic dynamics

Indepent-digits case

Suppose f satisfies Type A or B, has has independent digits,
satisfies |f(x)− f(y)| < |x− y| (and a little more along these
lines), and satisfies one additional (difficult to verify) hypotheses.
Rényi (1957) proved T has a Lebesgue-equivalent ergodic invariant
measure.

Gauss measure is ergodic invariant for continued fractions. It
is given by ρ(x) = 1

log 2
1

1+x , (Gauss, c 1800)

Lebesgue measure is ergodic for base-r (T (x) = rx mod 1).
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Ergodic theory and symbolic dynamics

Adler’s theorem

Theorem (Adler, 1973)

Suppose T satisfies

1 Type A or B, with independent digits (i.e., T |∆(d) onto)

2 T |∆(d)is C
2 for each d,

3 There is n ∈ N so that inf |(Tn)′(x)| > 1,

4 supx,y,z∈∆(d) |T ′′(x)/(T ′(y)T ′(z))| <∞, ∀d ∈ D.

Then

f -expansions are valid (ξ is a generator),

∃ ergodic Lebesgue-equivalent invariant measure (normal).

T has a Bernoulli “natural extension” (this implies
hγ(T ) > 0).
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Ergodic theory and symbolic dynamics

β-expansions (Renyi, 1957)

Let β > 1, β 6∈ N. Let D = {0, 1, . . . , bβc}. Then the
β-transformation T (x) = βx mod 1, has non-independent digits.

Theorem (Rényi)

The β-transformation T has an ergodic Lebesgue-equivalent
ergodic invariant measure.

Note: γ 6= λ.

Corollary

β-expansions are valid, and for a.e. x the β-expansion is normal.
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Ergodic theory and symbolic dynamics

Some properties of β-expansions

Parry (1960) found an explicit formula for density ρ(x).

Rényi (1957), Parry (1960), Schmidt (1980), determined
structure of the β-shift X (in terms of the β-representation for
x = 1, denoted 1 = .d1d2d3 . . . , where dn = ξ(Tn−1(1))).

X SFT if 1 = .d1d2d3 . . . dn0000 . . .
If β is a Pisot number, X is sofic.

T has a Bernoulli “natural extension” (Smorodinski, 1973)

hγ(T ) = htop(X) = β > 0.
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Ergodic theory and symbolic dynamics

Lasota-Yorke approach

Theorem (Lasota-Yourke, 1973)

Suppose T satisfies

1 The partition ξ is finite. (There is no independent digits
assumption),

2 T is C2 on ∆(d) for each d,

3 There is n ∈ N so that inf |(Tn)′(x)| > 1 on ∪int(∆(d).

Then T has an absolutely continuous invariant measure.
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Lyapunov exponents

If γ is an invariant measure for T , then (Oseledec, 1978)the
Lyapunov exponent

`(x) = lim
n→∞

1

n
log |(fn)′(x)|.

Let `+(x) = max(0, `) then hγ(T ) ≤
∫
I `+(x) dγ (Margulis, 1968).

If γ is Lebesgue-equivalent, and `+(x) > 0 a.e.,
hγ(T ) =

∫
I `+(x) dγ (Katok, 1980).

If γ is ergodic and Lebesgue-equivalent, `+(x) = `+ γ a.e. is
constant, and

hγ(T ) = `+ > 0.
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Parry’s Theorem

Parry (1964) notes that validity is a dynamical rather than analytic
property.
Let O+(x) = {Tn(x) : n ≥ 0}. Say T is topologically transitive if
O+(x) is dense in B for some x ∈ B.

Theorem (Parry, 1964)

If T is Type B and topologically transitive, then f -expansions are
valid.

Parry (1964) studies T (x) = βx+ α mod 1. The case α = 0
(Rényi, 1957; Parry, 1960) is the β-transformation.
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Figure: βx+ α expansions: f(x) = (x− α)/β.
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Figure: Map: T (x) = βx+ α mod 1. Here, α =
√

2− 1 and β = 2
√

3
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The irrational rotation

The case β = 0, α ∈ [0, 1)\Q gives the irrational rotation map.

T (x) = x+ α mod 1

Put

ξ(x) =

{
0 if x ∈ [0, 1− α)

1 if x ∈ [1− α, 1)

Parry mentions this case in passing, noting that expansions are
valid, but saying it has been “studied elsewhere” (he cites Weyl,
1916).
The f -representations δ(x) = d = .d1d2d3 . . .

dn = b(n+ 1)α+ xc − bnα+ xc = ξ(Tn−1(x)).

give Sturmian sequences.
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Properties of irrational rotation

|T ′(x)| = 1 almost everywhere.

T is invertible.

Lebesgue measure is the unique T -invariant measure (unique
ergodicity).

O+(x) dense for all x, called minimal. Implies topologically
transitive.

htop(X) = hλ(T ) = 0.

By Parry’s theorem, Sturmian sequences are valid
f -representations:

x = ε(δ(x)) = f(d1 + f(d2 + f(d3 + . . . ))).
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Figure: f(x) = x− α for α ≤ x < α+ 1.
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Figure: Irrational map: T (x) = x+ α.
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An example of convergence

Let α = 1+
√

5
2 − 1. Let x = .322. Then

d = .0110110101101011011010110110101101011011010110101 . . .

Here are the first 20 convergents:
0, 3−

√
5 + 1

2(1−
√

5), 3−
√

5 + 1
2(1−

√
5), 3−

√
5 + 1

2(1−√
5), 7− 3

√
5, 7− 3

√
5, 7− 3

√
5, 7− 3

√
5, 7− 3

√
5, 7−

3
√

5, 7− 3
√

5, 7− 3
√

5, 7− 3
√

5, 7− 3
√

5, 7− 3
√

5, 7−
3
√

5, 7− 3
√

5, 7− 3
√

5, 7− 3
√

5, 7− 3
√

5 . . .

All belong to N + αN (in this case Z
[

1+
√

5
2

]
).
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Graph of convergence

The first 1000 has only a few values:
7− 3

√
5, 1

2(61− 27
√

5), 92− 41
√

5, 1
2(1027− 459

√
5) . . .

0 200 400 600 800 1000
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Figure: List Plot of first 1000 convergents
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Interval Exchanges

Irrational rotations maps are interval exchange
transformations T (IET’s) with 2 intervals.

All IET’s have Lebesgue measure λ invariant, and hλ(T ) = 0.

A.e. interval exchange T (if based on a good permutation) is
minimal and uniquely ergodic. In this case the corresponding
f -expansions are valid and a.e x has normal f -expansions.

However, ∃ IET T that are minimal but not unique ergodic.
Parry’s theorem implies f -expansions are valid, but normality
may fail. (There is an bound on the number of ergodic
invariant measures ≤ k − 2 where k=# intervals).
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Figure: Map T is a 3-interval exchange
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Homeomorphisms of the circle

View a homeomorphism as a map T : [0, 1)→ [0, 1) with one
discontinuity.

Assume the rotation number α is irrational. Poincare (1885)
proved T is semi-conjugate to a rotation by α.

1 If T is conjugate to rotation, f -expansions valid. (In this case
there is a Lebesgue-equivalent invariant measure).

2 If not, there is a wandering interval: J = [a, b) ⊆ [0, 1) so that
Tn(J), n ∈ Z are pairwise disjoint. Thus T is not topologically
conjugate, and (one can show) f -expansions are not valid.
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Infinite interval exchanges

Consider an “abstract” invertible ergodic measure preserving
transformation τ on a Lebesgue probability space (Y, ν), and
suppose hν(τ) <∞.

One can construct model T of τ as an exchange of infinitely many
intervals (i.e., so T and τ are isomorphic).

In particular there is a sequence of intervals Ik = [ck, c
′
k), k ∈ N,

and Lk = [ek, e
′
k) so that

e′k − ek = c′k − ck for all k,

T |Ik(x) = x+ (ek − ck), and

∪k∈NIk = ∪k∈NLk = [0, 1).



Entropy-zero f -expansions

Entropy zero

Infinite interval exchanges (continued)

We want T to satisfy the Basic Hypotheses. For this we need to
do the following.

1 Choose D ⊆ Z (infinite), and for d ∈ D, let s(d) be the
successor of d in D (D is well-ordered).

2 Choose a bijection

d 7→ kd : D → N

so that cks(d) = c′kd
This may or may not be possible.

Note that T ′(x) = 1 a.e., so we should use Parry’s Theorem
instead of Kakeya’s.
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Figure: Map T is a 3-interval exchange
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Entropy constraint

Call such a T a good model for τ on (Y, ν). Let ξ = {[ckd , cks(d))}.
Note that T ′(x) = 1 a.e.

Entropy theory places a strong limit on what we can really get.

Lemma

If τ has a good model then hν(τ) = 0.

Proof.

T is isomorphic to τ and ξ is a one sided generator. A theorem in
entropy theory says if T is invertible and has a 1-sided generator,
then hλ(T ) = 0
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