Thirty-six views of the Rauzy Fractal

E. Arthur Robinson, Jr.

Department of Mathematics
George Washington University
Washington, DC 20052
robinson@gwu.edu

1. Two common methods for constructing fractals

I. L-systems
(Lindenmayer 1968, Dekking, 1982)

II. Iterated function systems
(Hutchenson 1981, Barnsley 1988)

- L-systems
$\eta:\left\{\begin{array}{c}1 \rightarrow 1261 \\ 2 \rightarrow 2312 \\ \ldots \\ 6 \rightarrow 6156\end{array}\right.$

II. Iterated function systems

$$
\begin{aligned}
& I=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\} . \\
& C_{i}: X \rightarrow X
\end{aligned}
$$

Uniform
contractions of a complete metric space.

Example: $X=\mathbf{C}$:

$$
\begin{aligned}
& C_{1}(z)=\frac{1}{2} z \\
& C_{2}(z)=\frac{1}{2} z+1 \\
& C_{3}(z)=z+\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Define : $\mathcal{R}_{I}(\Psi)=C_{1}(\Psi) \cup C_{2}(\Psi) \cup \ldots \cup C_{n}(\Psi)$.

Hutchenson's Theorem: For any compact Ψ

$$
\Theta=\lim _{n \rightarrow \infty} R_{I}^{n}(\Psi)
$$

exists and is the unique fixed point $\Theta=R(\Theta)$.

$$
\Theta=C_{1}(\Theta) \cup C_{2}(\Theta) \cup C_{3}(\Theta)
$$

MCRM algorithm:

2. Fractals in number theory

$0,1,1,2,3,5,8,13,21,34,55,89,144 \ldots$

$$
\begin{gathered}
f_{n+1}=f_{n}+f_{n-1} \\
f_{0}=0, f_{1}=1
\end{gathered}
$$

Leonardo Pisano Fibonacci
Liber Abaci, 1202

Define: $v_{n}=\binom{f_{n+1}}{f_{n}} \quad v_{n+1}=F v_{n} \quad F=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

$$
\begin{aligned}
& \lambda_{u} \stackrel{\text { def }}{=} \gamma=\frac{1+\sqrt{5}}{2} \approx 1.6180 \ldots \\
& \lambda_{s}=-\frac{1}{\gamma}=\frac{1-\sqrt{5}}{2} \approx-.6180 \ldots \\
& v_{n}=F^{n} v_{0}=P \cdot\left(\begin{array}{rr}
\gamma^{n} & 0 \\
0 & \frac{-1}{\gamma}
\end{array}\right) \cdot P^{-1} v_{0}
\end{aligned}
$$

Jacques Binet, (1786-1856)

Binet's formula:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\gamma^{n}-\left(\frac{-1}{\gamma}\right)^{n}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

An easy version of Binet's formula:

Note $\lambda_{u}>1$ and $\left|\lambda_{\mathrm{s}}\right|<1$.

The "Pisot Property"

$$
\text { So } \lim _{n \rightarrow \infty} \lambda_{s}^{n}=0 \text {. }
$$

Charles Pisot, c 1938

"Easy" Binet formula:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\gamma^{n}-\left(\frac{-1}{\gamma}\right)^{n}\right) \approx \frac{1}{\sqrt{5}} \gamma^{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

for n large.

n	1	2	3	4	5	6
f_{n}	1	1	2	3	5	8
ϕ_{n}	0.72361	1.17082	1.89443	3.06525	4.95967	8.02492

7	8	9	10	11	12
13	21	34	55	89	144
12.9846	21.0095	33.9941	55.0036	88.9978	144.0014

13	14	15	16	17	18
233	377	610	987	1597	2584
232.9991	377.0005	609.99967	987.0002	1596.99987	2584.00008

2. Pisot numbers

Charles Pisot, c 1938

Definition 1. A number λ is called a Pisot number if it is an algebraic integer with $\lambda>1$ such that all its Galois conjugates λ^{\prime} satisfy $\left|\lambda^{\prime}\right|<1$.

Pisot's Theorem. An real algebraic number $\lambda>1$ is a Pisot number if and only if there exists 60 that

$$
\lim _{n \rightarrow \infty}\left(\alpha \lambda^{n} \bmod 1\right)=0
$$

This means $\alpha \lambda^{n} \approx M \in \mathbf{N}$ for n large.
Note: γ is a Pisot number since it satisfies $\lambda^{2}-\lambda-1=0$ and its conjugate satisfies $|\gamma|<1$.
-Recall that an algebraic integer is a root of a monic irreducible integer polynomial.

- Its Galois conjugates are the other roots of the polynomal.

Comment: It is still unknown whether any transcendental number can satisfy (*).

3. Fibonacci sequence on a free group

$$
\text { Let } A=\{0,1\} \text {. }
$$

Let \boldsymbol{A}^{*} be the set of words in \boldsymbol{A}.
Then $A^{*} \subset \mathcal{F}(A)=$ the free group on A.

- The non-abelian Fibonacci sequence:

Define $u_{0}=0, \quad u_{1}=01, \quad u_{n+1}=u_{n} u_{n-1}$

- Iterate to obtain an infinite sequence..

$$
\begin{aligned}
& u_{0}=0 \\
& u_{1}=01 \\
& u_{2}=u_{1} u_{0}=010 \\
& u_{3}=u_{2} u_{1}=01001 \\
& u_{4}=u_{3} u_{2}=01001010 \\
& u_{4}=u_{3} u_{2}=0100101001001
\end{aligned}
$$

$$
\sigma:=\left\{\begin{array}{c}
0 \rightarrow 01 \\
1 \rightarrow 0
\end{array}\right.
$$

$$
\sigma(u)=u
$$

$u=010010100100101001010010010100100 \ldots \in A^{Z}$

- What is σ ?

$$
\sigma:=\left\{\begin{array}{c}
0 \rightarrow 01 \\
1 \rightarrow 0
\end{array}\right.
$$

$\sigma \in \operatorname{End}(F(A))$

- But...

$$
\sigma^{-1}:=\left\{\begin{array}{l}
0 \rightarrow 1 \\
1 \rightarrow 1^{-1} 0
\end{array}\right.
$$

$$
\sigma \in \operatorname{Aut}(F(A))
$$

Abelianize (i.e., linearize):

$$
\begin{array}{ccc}
F(A) & \xrightarrow{\sigma} & F(A) \\
{ }^{p} \downarrow & & { }^{p} \downarrow \\
\mathbf{Z}^{2} & \xrightarrow{F} & \mathbf{Z}^{2}
\end{array}
$$

$F=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ is the abelianization of σ.

- How does F act (on \mathbf{R}^{2})?

$$
P^{-1} F P=\operatorname{diag}\left\{\gamma,\left(\frac{-1}{\gamma}\right)\right\}
$$

$$
\begin{aligned}
& E_{u}=\operatorname{span}\left\{w_{u}\right\}: \text { unstable subspace. } \quad P=\left[w_{u}, w_{s}\right] \\
& E_{s}=\operatorname{span}\left\{w_{s}\right\}: \text { stable subspace. }
\end{aligned}
$$

4. Atomic surfaces and quasicrystals

Plot $u=010010100100 \ldots$

Project to stable direction:

Dynamical systems in I

- Let τ be the lef t shif $ø \mathrm{f}$.
$\tau u € R x$

$$
\begin{aligned}
& R: I \rightarrow I \\
& R x=x+\frac{1}{\gamma} \bmod 1
\end{aligned}
$$

- How about σ ?
$\sigma^{-1} u € T_{\gamma} x$

$$
\begin{gathered}
T_{\gamma}: I \rightarrow I \\
T_{\gamma} x=\gamma x \bmod 1
\end{gathered}
$$

T_{γ} called β-transformation.

Iterated Function System (IFS):

$$
\begin{gathered}
\sqrt[1]{0.2} T_{1}(x)=\gamma x / \\
T_{2}(x)=\gamma x-1 . \\
\sigma_{0}^{0.2} \sigma^{-1.4} u € T_{\gamma}^{0.6} x \\
T_{\gamma} x=\gamma x \bmod 1
\end{gathered}
$$

$$
\begin{aligned}
& T_{2}^{-1}(x)=\frac{1}{\gamma} x+\frac{1}{\gamma} \\
& T_{1}^{-1}(x)=\frac{1}{\gamma} x
\end{aligned}
$$

MCRM Algorithm: $I=T_{1}^{-1}(I) \cup T_{2}^{-1}(I)$.

The Fibonacci quasicrystal

- β-expansions

Given any $\beta>1$, we can express any positive real number x in the form

$$
x=\sum_{k=-N}^{\infty} \frac{x_{i}}{\beta^{i}}
$$

where $\left.x_{i} \in\{0,1, \ldots, \mid \beta]\right\}$.

$$
\text { Write } x_{\gamma}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \ldots
$$

But there is no reason to require $\beta \in \mathbf{N}$!

Take $\beta=\gamma . \quad T_{\gamma}(x)=\gamma \cdot x \bmod 1$.

$$
D(x)=\left\{\begin{array}{l}
0 \text { if } x \in[0,1 / r) \\
1 \text { if } x \in[1 / y, 1)
\end{array}\right.
$$

$$
x_{i}=D\left(T_{\gamma}^{i} x\right)
$$

The sequence 11 is forbidden.

5. The "tribonacci" sequence

 $0,0,1,1,2,4,7,13,24,44,81,149, \ldots$$$
\begin{aligned}
& t_{n+1}=t_{n}+t_{n-1}+t_{n-2} \\
& t_{0}=0, t_{1}=0, t_{2}=1
\end{aligned}
$$

$$
v_{n}=\left[\begin{array}{c}
t_{n+2} \\
t_{n+1} \\
t_{n}
\end{array}\right] \quad v_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad v_{n+1}=A v_{n}
$$

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Eigenvalues:

$$
\begin{array}{r}
\rho=\lambda_{u}=\frac{1}{3}(1+\sqrt[3]{19-3 \sqrt{33}}+\sqrt[3]{19+3 \sqrt{33}})=1.83929 \\
\lambda_{s}, \overline{\lambda_{s}} \in \mathbf{C} \quad\left\{\begin{array}{l}
\lambda_{s} \approx-0.419643+0.606291 i \\
\left|\lambda_{s}\right| \approx 0.737353
\end{array}\right.
\end{array}
$$

$$
t_{n}=\alpha_{1} \rho^{n}+\alpha_{2} \lambda_{s}^{n}+\alpha_{3} \overline{\lambda_{s}^{n}} \longleftarrow \quad \begin{aligned}
& \text { Binet-type } \\
& \text { formula }
\end{aligned}
$$

Consequence of Pisot property.

$$
t_{n} \approx \alpha_{1} \rho^{n}
$$

6. Non-abelian tribonacci sequence

$$
u_{n+1}=u_{n} u_{n-1} u_{n-2}
$$

$$
u_{0}=1, u_{1}=12, u_{2}=1213
$$

On $A^{*} \subset F(A), A=\{1,2,3\}$ $u=1213121121312121312112131213121 \ldots$
(Gerard Rauzy, c.1982)

Institut de Mathématique de Luminy
March 2002

Corresponding free group endomorphism:

$$
\theta:=\left\{\begin{array}{c}
1 \rightarrow 12 \\
2 \rightarrow 13 \\
3 \rightarrow 1
\end{array}\right.
$$

"Rauzy substitution"

$$
\theta(u)=u
$$

Abelianize:

$$
\begin{array}{ccc}
\mathcal{F}(\mathcal{A}) & \xrightarrow{\theta} & \mathcal{F}(\boldsymbol{A}) \\
{ }^{p} \downarrow & & { }^{p} \downarrow \\
\mathbf{Z}^{2} & \xrightarrow{A} & \mathbf{Z}^{2}
\end{array} \quad A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

.the Rauzy Fractal Ω.
click!
-0.151

There is a domain exchange action R on Ω.

- Understanding R

$$
\begin{gathered}
\Omega \approx \mathbf{T}^{2}=\mathbf{R}^{2} / \Gamma \\
\Gamma \approx \mathbf{Z}^{2} \\
R: \mathbf{T}^{2} \rightarrow \mathbf{T}^{2} \\
R x=(x+w) \bmod 1 \\
w=\left[\begin{array}{l}
\lambda_{u} \\
\lambda_{u}^{2}
\end{array}\right]
\end{gathered}
$$

7. An IFS for Ω

Take $\beta=1 / \lambda_{s} \approx-0.771845+1.11514 i$

$$
|\beta| \approx 1.3562
$$

Identify $E^{s} \approx \mathbf{C}$

Define:

$$
T_{\beta}(z)=\left\{\begin{array}{l}
\beta z \text { if } z \in \Omega_{1} \\
\beta z-1 \text { if } z \in \Omega_{2} \cup \Omega_{3}
\end{array}\right.
$$

Addressing:

$$
\begin{aligned}
& T_{1}(z)=\beta z \\
& T_{2}(z)=\beta z-1
\end{aligned}
$$

$$
T_{1}\left(\Omega_{1}\right)=\Omega
$$

$$
T_{2}\left(\Omega_{2}\right)=\Omega_{1}
$$

$$
T_{2}\left(\Omega_{3}\right)=\Omega_{2}
$$

$$
F_{1}=T_{1}, F_{2}=T_{1} T_{2}, F_{3}=T_{1} T_{2}^{2}
$$

$F_{i}\left(\Omega_{i}\right)=\Omega$

Invert to get an IFS. Render using the MCR.

$$
\begin{aligned}
& \left\{\begin{array}{l}
F_{1}^{-1}(z)=\frac{1}{\beta} z \\
F_{2}^{-1}(z)=\frac{1}{\beta^{2}} z+\frac{1}{\beta} \\
F_{3}^{-1}(z)=\frac{1}{\beta^{3}} z+\frac{1}{\beta^{2}}+\frac{1}{\beta}
\end{array}\right. \\
& \Omega=F_{1}^{-1}(\Omega) \cup F_{2}^{-1}(\Omega) \cup F_{3}^{-1}(\Omega)
\end{aligned}
$$

8. The Rauzy fractal as an L-system

$$
\begin{aligned}
& \begin{array}{r}
\text { Recall that } \\
\text { the tribonacci } \\
\text { matrix }
\end{array} \\
& \theta:=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& \begin{array}{ll}
1 \rightarrow 12 & \text { is the abelianization } \\
2 \rightarrow 13 & \text { of the Rauzy } \\
3 \rightarrow 1 & \text { substitution }
\end{array}
\end{aligned}
$$

But...there are actually 4 ways to define a substitution θ with abelianization A.

The Rauzy substitution is invertible!

$$
A^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & -1
\end{array}\right) \quad \theta^{-1}:\left\{\begin{array}{c}
1 \rightarrow 3 \\
2 \rightarrow 3^{-1} 1 \\
3 \rightarrow 3^{-1} 2
\end{array}\right.
$$

It is an automorphism of $\mathcal{F}(A)$.

Recall this was also the case with the Fibonacci substitution.

Cycles in $\mathcal{F}(A)$

$$
[1,3]=131^{-1} 3^{-1}
$$

$$
[1,2]=121^{-1} 2^{-1}
$$

$$
[2,3]=232^{-1} 3^{-1}
$$

Edges are projections of standard basis vectors to E^{s}

$$
\theta^{-1}[2,3]=\theta^{-1}\left(232^{-1} 3^{-1}\right)=3^{-1} 13^{-1} 21^{-1} 32^{-1} 3
$$

Iterate: $\left(\theta^{-1}\right)^{n}[2,3]=\ldots$

As tiles:

$$
\partial\left(1^{\wedge} 2\right)=[1,2]
$$

Tiling substitution induced by θ^{-1} :

$$
\begin{gathered}
1^{\wedge} 2 \rightarrow 3^{\wedge} 3^{-1}+3^{\wedge} 1=3^{\wedge} 1 \\
1^{\wedge} 3 \rightarrow 3^{\wedge} 3^{-1}+3^{\wedge} 2=3^{\wedge} 2 \\
2^{\wedge} 3 \rightarrow 3^{-1} \wedge 3^{-1}+1^{\wedge} 3^{-1}+3^{-1} \wedge 2+1^{\wedge} 2 \\
=1^{\wedge} 3+2^{\wedge} 3+1^{\wedge} 2
\end{gathered}
$$

The dual Rauzy quasicrystal

As a subset of \mathbf{R}^{2} the dual Rauzy quasicrystal is discrete approximation of E^{s}.

9. RAUZY FRACTAL GALLERY Victor Sirvent

Universidad Simón Bolivar:

$$
1 \rightarrow 1112, \quad 2 \rightarrow 311, \quad 3 \rightarrow 1
$$

\#Vateoz http://www.ma.usb.ve/~vsirvent/gallery/rauzy.html

$$
\begin{gathered}
\zeta_{1}:=\left\{\begin{array}{l}
1 \rightarrow 1112 \\
2 \rightarrow 113 \\
3 \rightarrow 1
\end{array}\right. \text { Invertible? } \\
A_{\zeta}=\left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad A_{\zeta}^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -3 & -2
\end{array}\right) \\
\zeta_{1}^{-1}:= \begin{cases}1 \rightarrow 3 \\
2 \rightarrow 3^{-1} 3^{-1} 3^{-1} 1 \\
3 \rightarrow 3^{-1} 3^{-1} 2\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \zeta_{2}:=\left\{\begin{array}{l}
1 \rightarrow 1112 \\
2 \rightarrow 131 \\
3 \rightarrow 1
\end{array} \text { Invertible? } \zeta_{1}^{-1}:=\left\{\begin{array}{l}
1 \rightarrow 3 \\
2 \rightarrow 3^{-1} 3^{-1} 3^{-1} 1 \\
3 \rightarrow 3^{-1} 23^{-1}
\end{array}\right.\right. \\
& A_{\zeta}^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -3 & -2
\end{array}\right)
\end{aligned}
$$

$\zeta_{3}:=\left\{\begin{array}{l}1 \rightarrow 1112 \\ 2 \rightarrow 311 \\ 3 \rightarrow 1\end{array} \quad\right.$ Invertible?

$$
1 \rightarrow 32,2 \rightarrow 1,3 \rightarrow 2
$$

