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1. Tilings

» Dc RY is a tile if homeomorphic to B,

* A tiling of R is a collection of tiles that
— pack R (have disjoint interiors)
— cover R? (union or support = R%).

D, ~D, 1f they are translates.

* Prototile: equivalence class.

o T: finite set of inequivalent prototiles.




Definition 1. The set X+ of all tilings by translates
of tiles in T is called the full tiling space.

Definition 2. We denote the action of translation
on X+ by T.

A patch y 1s a finite set of tiles with connected
support. The set of all patches is denoted T *.

Definition 3. X+ 1s locally finite 1t there are only
finitely many 2-tile patches in all x € X - .




* For xe X, letx[[B,]] denote the set of all
patches 1n x containing the ball or radius 7.

* x| B |< x denotes the patch of all tiles in x that
intersect the ball.

Definition 4. The filing metric
d(x,y)=inf{3} U {r e (0,9):3x" e x{[B /11,
y'eyl[BY1l, st. T'x'=y' for | t|< r}

Theorem 5. (Rudolph) If X+1s locally finite then
X71s compact.




» Let X+ be a tull tiling space. A filing space 1s a
closed and 7-invariant subset X & X+

o A pair (X, 7)1s called a tiling dynamical system.

We will also consider the situation where
(X, T) is a Z* symbolic dynamical system.

We think of a tiling dynamical system as a
sort of R“ symbolic dynamical system.




2. Complexity

For simplicity we start with the case where
(X,T) is a Z* symbolic dynamical system.

Definition 6. The complexity c(n) of (X, 1) 1s
the number of different n“¢ blocks in all the
different x € X .

We have

h(X,T)=lim log(‘;(”))

n— n



Complexity 1s of interest 1n the case A(X,T)=0.

Now suppose (X, 7) 1s a tiling dynamical system.
We will generalize the previous definition as
follows:

Definition 7. The complexity c(n) of (X,7) 1s
the number of equivalence classes of x| B, | for
all the different x € X.




3. Substitution tiling spaces
*Let L € Gl(d,R)be a linear expansion (an affinity).

o L =AM, where M is an isometry 1s called a
similarity.

A decomposition is amapping C:7 — L''7
that satisfies the perfect overlap condition

supp(C (D)) = supp(D)

We call C self-affine or self-similar according to L



Some decompositions:

*A few self-similar “polyomino” decompositions

The chair The table 3-dimensional
table

Definition 8. A mapping S = LC 1s called a tiling
substitution.




Penrose decompositions:

*The rhombic Penrose substitution (“imperfect”)
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» Can be perfected using “half™ tiles
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More “imperfect” self-similar substitutions

*The octagonal or Ammann-Beenker tiling

*The binary decomposition (note the required
2p/20 rotation)

[z




A self-affine polygonal tiling substitution.

2 0
In this example L = (O 3] (1.e. 1it’s non self-similar)



How to make substitution tiling spaces

* Let S be a tiling substitution on T and DeT
—Putx,={D} & putx,=Sx, ;
* Define X to be the set of all tilings so that

every x € X, patch in x 1s a sub-patch of

SOme X;,.

Definition 9. A tiling substitution S 1s

primitive 1f there exists £ so that for any
D,,D,eT then D,00S*D, .




Lemma 10. If S 1s a primitive substitution
then X 1s a nonempty tiling dynamical system.

Proposition 11. The tiling dynamical system
(X,T) corresponding to a primitive tiling
substitution S 1s strictly ergodic.

Comment. So far everything corresponds to
the familiar theory of (1-dimensional) discrete
substitutions. It 1s easy to define d-dimensional
discrete substitutions as well.



Note that S 1s continuous on X.

Definition 12. If §: X — X is invertible, we
call S an inevitable substitution.

Proposition 13. If S is an inevitable tiling
substitution then all the tilings x[LX are
aperiodic.

Solomyak proved the converse.



4. Complexity of self-affine tilings

Theorem 14. (Cliff Hansen, R.) Let (X,7) be the
tiling dynamical system corresponding to a
primitive inevitable tiling substitution S.
Suppose L 1s diagonalizable and has
eigenvalues, A,,...,A, where ‘7»0,‘ < ‘k].

_ log‘det(L)‘ _ lc)g(‘k1 ...‘Kd‘)
log‘Kd‘ log Kd‘

=1...d

Letc

Then c¢(n) <K -n".



Comments:
o If strictly self-affine c>d (...but really?)

*Corollary: (X,7) has entropy zero.

*For discrete 1-dimensional substitutions the
resulti1s c(n)<k-n.

* Minimum complexity for aperiodic discrete 1-
dimensional symbolic dynamical systems

1S c(n)<n+1. Sturmian systems (Gottschalk &
Hedlund 1955)

 C. Hansen (Dissertation, 2000) proved Theorem
14 for multi-dimensional substitutions.



Why interesting?

Any tiling space X & X, can be defined by
excluding a set F € T* of forbidden patches.

Definition 15 X € X+ is finite type if F is finite.

Example 3.4. Penrose tiles ("local matching rule").
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Theorem 16. (Goodman-Strauss) Suppose (X,7)

1s a self-similar substitution tiling dynamical
system, d=2, with prototiles T.

Then there exists a marking T, of T, and a
local matching rule such that the forgetful
mapping F: X, < Xr1s almost 1:1,

and satisfies F(X ) =X.

Definition 17. Call the strictly ergodic zero
entropy shifts of finite type that arise this way
hierarchical.




Amazing fact about d>1:
There exist aperiodic hierarchical Z¢ shifts of
finite type and R finite type tiling spaces!

Even more amazing:
All the known examples are of this type.

Question:
Are there non-hierarchical examples?

Perhaps complexity can help resolve this
question....




Theorem 17. (Radin) Any strictly ergodic finite
type shift has entropy zero.

The same result holds for strictly ergodic finite
type tiling spaces.
Radin's proof actually shows c(n) < Ke'" .

This 1s larger than the complexity of any
hierarchical example.

* Do any examples actually realize this?




There 1s a notion of a quasiperiodic tiling.
Penrose tilings are examples of these.

One can think of quasiperiodic tiling systems as R*
Sturmian systems. They satisfy c(n) < kn®

Berthe and Vuillon defined a type of Z* Sturmian
shift, based on R* quasiperiodic tiling system and
proved c(n) = n°+2n.

They conjecture this 1s the minimum possible.



T. Le showed that certain quasiperiodic tiling
dynamical systems are almost 1:1 factors of
finite type tiling systems.

In other cases, he shows this 1s not true.

* It 1s not known whether any of the finite type
shifts obtained this way are not hierarchical.

However, complexity will not help here since
these examples have c(n) < kn”.



5. The prootf.

Theorem 14. (Cliff Hansen, R.) Let (X, 7) be the
tiling dynamical system corresponding to a
primitive inevitable tiling substitution S.
Suppose L 1s diagonalizable and has
eigenvalues, A,,...,A, where |A,| < ‘Kj‘ .

_ log‘det(L)‘ _ lc)g(‘k1 ...‘Kd‘)
log‘Kd‘ log Kd‘

Letc

Then c¢(n) <K -n".



Let T be the set of all n-tile patches in X+

Lemma 18. For all m>0 there exists J so that
for all n sufficiently large

#xeT"™ :xcyforsomeyeT"V¥<J n

Let A be the "structure matrix" for S:

* that is @, ; 1s the number of times tile / appears in
the substitution of tile ;.

Since S is primitive we have 4* >0 for some k.



It follows tfrom the Perron Frobenius Theorem
. APv
lim

pP—>© (Dp

=(b-v)a

* Here w0>0 1s the Perron-Frobenius eigenvalue.

* And, a,b>0 are the left and right
Perron Frobenius eigenvectors.

Thus there 1s N so that for p sufficiently large:

max #(C"D)SN-o’ i

DeT



For p>0 call a patch yO L? T * a p-basic patch if
for some D [ly each D 'Ly satisfies Dn D'#@.

* Denote these y /7, ...,y,/, where M 1s
independent of p.

* Then (also independent of p)
M'=max{#(y;): j=1,...,M}

» For a p-basic patch y/we have C*y/ OT.
* Let

M | =max{#(C"y7): j=1..,M}.



Since

HCPyT)<M*™ nl}gTX(CpD),
it follows from % that

MPSM'N-Q)”. C

Let & = max{diam(D):DeT}.

Let € be the maximum radius of balls B, = D



Fix g > (0 +1)/k.
Thenegn>n+0 foralln>1.

Detine

_ log(gn)
log‘Kd‘

Py

Then S‘Kd‘p” —eqn>n+8. Yy

Also B Dsupp(x[B,]) foralln>1,x € X-.



Since S 1s inevitable we can define a super-
tiling C""xe X, tfor all p>1.

By Jx I’B 5B

n+o

forallp=>p .

This means that each patch (C7x)[B

n+o0 ]

1s a sub-patch of some p-basic patch

T'y" in the super-tiling C""x.



Hence
X[B,]l=x[B _]1=C"(C"x[B,.;]) < Tthyj.’.

n —

Now we apply Lemma 18 and (C to conclude

def

c(n)<JM < JM'N-0" =K"o"

for all p > p once n 1s sufficiently large.

We take n so large that Q& holds for p=p, .



Then

log(gn) log(w )log(gn)

log|A log|A
(M <K'o” =K' "8 = gre o

=K'g'n"=K-n’
|



