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Abstract. This paper shows that there is a close relationship between three

groups: the dynamical cohomology of a 0-dimensional substitution dynamical

system (X,T ), the first integer C̆ech cohomology group Ȟ1(Xg) of the corre-

sponding 1-dimensional tiling space Xg, for a given heigh vector g, and the
point-spectrum ETg of the tiling flow (Xg, T t

g). In particular, the group of

eigenfunctions of (Xg, T t
g) can be embedded as a subgroup of Ȟ1(Xg). There

is a real-valued functional W on Ȟ1(Xg), called the winding number, that

assigns each eigenfunction its eigenvalue. The paper gives conditions for W to

be injective and for the image of W to equal ETg . In the injective case, the
spectrum does not depend on the height g, but is completely determined by

Ȟ1(Xg).

1. Introduction

In this paper we consider the 1-dimensional tiling substitution Sg and the cor-
responding tiling flow (Xg, T

t
g) that comes from a discrete substiution S and a

positive tile length vector g. In particular, Tg is the suspension flow for the sub-
stitution shift T corresponding to a piecewise constant function with heights g.
Our purpose is to relate two properties of these dynamical systems that have each
received a great deal of study, but have seldom been discussed together: their point-
spectrum (see for example [Ho-86, Ra-90, FMN-96, So-97, AI-01, CSg-01, SiSo-02,
HS-03, FiHR-03, Sg-03, CS-03, R-04, BK-06, BBK-06]), and their cohomolgy (see
for example [AP-98, BD-01, FoHK-02, CS-06, BD-08, S-08, BD-09]). We show
that, contrary to a common belief, these two invariants are closely related. Every
eigenfunction for (Xg, T

t
g) corresponds to a unique element of the first integer C̆ech

cohomology Ȟ1(Xg). Moreover, there is a real-valued functional W on Ȟ1(Xg)
that assigns to each eigenfunction its corresponding eigenvalue. The image of W ,
which is a subgroup of R, is the largest possible group of eigenvalues among the
different choices of g. Of particular interest is the case when W is injective and the
image of W is completely made up of eigenvalues. We say, in this case, that T tg has
full spectrum.

For a finite alphabet A = {0, 1, . . . , d − 1} let A∗ denote the finite words in
A, including the empty word ε. A discrete substitution is a mapping S : A →
A∗\{ε}. For example, the golden mean substitution S on A = {0, 1} is given by
0 → 01, 1 → 0.. The substitution shift X ⊆ AZ corresponding to S consists of all
sequences x ∈ AZ such that every finite subword is a subword of some Ska, a ∈ A
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and k ≥ 1. Assuming S satisfies a few standard hypotheses (is primitive and shift-
aperiodic), X is a Cantor set, and the shift T restricted to X is a strictly ergodic
homeomorphism. The dynamical system (X,T ) is called a substitution shift.

Now let g = (g0, g1, . . . , gd−1) ∈ Rd be positive, and let T = {I0, I1, . . . , Id−1}
be a set of labeled, half-closed intervals Ia = [0, ga)a, called prototiles. For any
u = u0u2 . . . un−1 ∈ A∗, let t0 = 0 and for j ≥ 1, tj = gu0 + · · ·+ guj−1 , and define
a tiling

Iu = [t0, t1)u0 [t1, t2)u1 . . . [tn−1, tn)un

of [0, tn). Let of T ∗ denote the set of all tilings of the intervals [0, t). Define the
tiling substitution Sg : T → T ∗ by Sg(Ia) = IS(a). For example, when S is the
golden mean substitution, and g = (λ+ 1)−1(1, λ), λ = (1 +

√
5)/2, we have Sg:

Let Xg be the set of all tilings y of R with the property that every finite subtiling
of y is a translate of a subtiling of some Skg(Ia), a ∈ A, and k ≥ 0. The tiling space
Xg has a natural compact metric topology (see e.g., [R-04]), and the tiling flow T tg
on Xg, which is defined as translation by R, is strictly ergodic. A portion of y for
the Fibonacci tiling substitution Sg is shown below (where the dot indicates the
position of 0 ∈ R):

This paper studies the 1-dimensional integer C̆ech cohomology Ȟ1(Xg) of Xg.
Using Bruslinski’s Theorem ([Br-34], see also [PT-82]) we identify Ȟ1(Xg) with the
Bruslinski group Br(Xg) of circle-valued continuous functions f : Xg → T, modulo
homotopy. There is a real valued functional W on Ȟ1(Xg), called the Scwhartzman
winding number [Sc-57] (see also [PT-82]) with the property that W (f) = ω when
f is an eigenfunction with eigenvalue ω. We define the winding number group
WTg = im(W ) ⊆ R. If ETg denotes the group of all eigenvalues, then ETg ⊆ WTg .
If W is injective on Ȟ1(Xg), we say (T tg, Xg) is saturated. In the saturated case
the winding number group gives a faithful numerical representation of Ȟ1(Xg). We
find sufficient conditions for T tg to be saturated, and in many cases, we completely
determine WTg . When WTg = ETg , we say T tg has full spectrum.

Our proofs depend on the fact that (Xg, T
t
g) is a suspension of (X,T ). Thus

almost all of our results have analogues for the substitution shift (X,T ). As a
Cantor set, X has a trivial C̆ech cohomology, but we replace it with the dynamical
cohomology H(T ) (i.e., the continuous integer functions mod coboundaries). The
winding number group is replaced by MT , the subgroup of R generated by the
measures of clopen sets. The concept of saturation in this context is due to [BK-06].

This paper is organized as follows. In the first section we consider Cantor dy-
namical systems in general, and substitutions in particular, and we define MT .
Then we give sufficient conditions for a substitution shift T to be saturated. In
the second section we study suspensions of Cantor dynamical systems, their C̆ech
cohomology. We define winding numbers, and apply these results to substitution
tilings. In the third section, we consider examples.
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Much of this paper is based on work from the 2007 Ph.D. Dissertation of the
first author. The second author wishes to thank Anne Siegel for some helpful
suggestions.

2. Cantor Dynamical Systems

2.1. Basic definitions. A Cantor dynamical system (X,T ) is a homeomorphism
T : X → X of a Cantor set X. Every Cantor dynamical system has at least one
T -invariant Borel probability measure m, and if m is unique, T is called uniquely
ergodic. If the orbit OT (x) := {Tnx : n ∈ Z} of every x ∈ X is dense, then T is
called minimal. We usually assume T is strictly ergodic, which means it is both
minimal and uniquely ergodic.

Let C(X,Z) denote the additive group of integer-valued continuous functions
on X. The group B(T ) of coboundaries is the subgroup of n ∈ C(X,Z) satisfying
n(x) = p(Tx)−p(x) for some p ∈ C(X,Z), and the quotientH(T ) := C(X,Z)/B(T )
is called the (dynamical) cohomology group of T . The group Inf(T ) of infinitesimals
is defined to be those n ∈ C(X,Z) with

∫
ndm = 0. Note that B(T ) ⊆ Inf (T )

because
∫
X

((p(Tx) − p(x)) dm = 0. The group G(T ) = C(X,Z)/Inf (T ) is called
the dimension group of T .

A homeomorphism U of X is said to be orbit equivalent to T if OT (x) = OU (x)
for all x ∈ X. The set of all U orbit equivalent to T is denoted [T ], and called the full
group of T . Since T is strictly ergodic, the same is true for any U ∈ [T ]. Minimality
implies that for U ∈ [T ], there is a unique n : X → Z such that Ux = Tn(x)x. It n
has at most one discontinuity, then U is said to be strongly orbit to T . If n(x) is
continuous, U is said to be in the topological full group of T , denoted U ∈ [[T ]].

Remark 1. Boyle [Bo-83] shows that U ∈ [[T ]] implies U = V −1TV or U =
V −1T−1V for some homeomorphism V of X. Giordano, Putnam and Skau [GPS-95]
show that for minimal Cantor dynamical systems, complete invariants for orbit
equivalence and strong orbit equivalence are given by isomorphisms of H(T ) and
G(T ) that preserve positive functions and constants.

A set E ⊆ X is called clopen if it is both open and closed. Assume T is uniquely
ergodic with unique invariant measure m, and define the measure group MT of
(X,T ) to be the additive subgroup of R generated by the measures m(E) of the
clopen sets E ⊆ X. For n(x) ∈ H(T ), we define I(n) =

∫
X
n(x) dm. It is clear

I : H(T )→MT is a surjective group homomorphism.
Two clopen sets E1, E2 ⊆ X are called T - equivalent if there exists U ∈ [[T ]] so

that E2 = UE1. Clearly if E1 and E2 are T - equivalent, then m(E1) = m(E2).
We call a uniquely ergodic Cantor dynamical system T saturated if any two clopen
sets with m(E1) = m(E2) are T - equivalent. This definition is due to Bezuglyi and
Kwiatkowski, [BzK-00], who also prove the following:

Theorem 2. (Bezuglyi, Kwiatkowski, [BzK-00]) A uniquely ergodic Cantor dy-
namical system T is saturated if and only if Inf (T ) = B(T ).

Clearly the homomorphism I : H(T ) → MT is an isomorphism (we write
H(T ) ∼=MT ) if and only if T is saturated.

Remark 3. Bezuglyi and Kwiatkowski [BK-06] show that Chacon’s transformation
T (as a homeomorphism of a Cantor set X) is not saturated. Chacon’s transforma-
tion is topologically conjugate to the substitution shift (X,T ) corresponding to the
primitive, aperiodic substitution 0→ 0012, 1→ 12, 2→ 012 (see [Fg-02]).
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2.2. Subshifts. For d ≥ 1, let A = {0, . . . , d − 1}, d > 1, be an alphabet, and
consider AZ, which is a Cantor set with the product topology. Let T be the left-shift
homeomorphism. A subshift is a closed T -invariant subsetX ⊆ AZ. An uncountable
subshift X is a Cantor set, and thus (X,T ) is a Cantor dynamical system. We call
u = u0u1 . . . un−1 ∈ An a word with length |u| = n, and let A∗ =

⋃
n≥0An, where

A0 = {ε}, with ε the empty word. Any L ⊆ A∗ is called a language. If x ∈ AZ

and [p, q] ⊆ Z, is an interval, let x[p,q] ∈ Aq−p+1 be the word u with ui = xp+i for
i = 0, . . . , q − p. A subshift (X,T ) is completely determined by its language L. In
particular, L determines whether or not T is strictly ergodic, and determinesMT .
For u ∈ L, |u| = n define the cylinder buc := {x ∈ X : x[0,|u|−1] = w} ⊆ X. More
generally, we also call T kbuc a cylinder. Cylinders are nonempty clopen sets that
form a sub-base for the topology on X. Any clopen set is a finite disjoint union of
cylinders.

3. Substitutions

3.1. Basic properties. Let A = {0, . . . , d − 1}. A substitution on A (or on d
letters) is a mapping S : A → A∗\{ε}. A substitution S is called primitive if there
exists k ≥ 0 so that for each a, b ∈ A, b appears in Sk(a). The structure matrix A
of a substitution S is d× d matrix with entries ea,b equal to the number of times b
appears in S(a). A d×d non-negative integer matrix A is called primitive if Ak > 0
for some k ≥ 1. Thus a substitution is primitive if and only if it has a primitive
structure matrix.

Given a primitive substitution S, let L′ = {Sk(a) : a ∈ A, k ≥ 0} be the words
obtained by iterating S on each letter in A. The set L of all subwords of L′ is thus
the language of a subshift (X,T ) that we call the substitution shift corresponding
to S (see [Qu-87] or [Fg-02]). A substitution S is called shift-aperiodic if the cor-
responding subshift (X,T ) has no periodic points. It is well known (see [Qu-87] or
[Fg-02]) that if S is a primitive shift-aperiodic substitution, then (X,T ) is a strictly
ergodic Cantor dynamical system. For a primitive matrix A, the Perron-Frobenius
Theorem (see [LM-95]), says that there exists a maximal real eigenvalue λ > 0,
called the Perron-Frobenius eigenvalue, and positive (left and right) eigenvectors
m and h (i.e., Am = λm and Ath = λh). We normalize m and h so that m ·1 = 1
and h ·m = 1. We call m and h the normalized right and left Perron-Frobenius
eigenvectors. for A (or S). We call S irreducible if the characteristic polynomial
p(z) of A is irreducible over Z, and unimodular if det(A) = ±1. Note that λ is
always an algebraic integer. Irreducibility means it is degree d, and unimodularity
means it is a unit.

For v ∈ Rd, write Z[v] = {v·n : n ∈ Zd}. For λ ∈ R let Z[λ] denote the Z-module
generated by the numbers λk, k = 0, 1, 2, . . . . We define the Perron-Frobenius group
of a primitive irreducible matrix A by GA =

⋃∞
k=0 Z[λ−km].

Lemma 4. If S is primitive and irreducible, then
(1) S is shift-aperiodic,
(2) Z[m] ∼= Zd,
(3) Z[m] = αZ[λ] ∼= Zd for some α ∈ Q(λ), and
(4) Z[λ−km] ⊆ Z[λ−(k+1)m].

If S is also unimodular, then Z[λ−km] = Z[λ−(k+1)m], and GA = Z[m]. But if S
is not unimodular then GA is not finitely generated.



COHOMOLOGY AND SPECTRUM 5

Proof. If p(z) is irreducible then λ ∈ R\Q. Shift-aperiodicity follows. Let C be
the companion matrix for p(z). Then Cv = λv for v = (λd−1, . . . , λ, 1)t. By
Corollary 18 of [Du-99], there exists Q ∈ Sl(Q, d) so that A = Q−1CQ. Thus
m′ = Q−1v satisfies Am′ = λm′. Clearly m′ ∈ 1

kZ[λ] for some k ∈ N. Also
m · 1 = 1, so α′ = (m′ · 1)−1 ∈ Q(λ). It follows that m ∈ αZ[λ] where α = α′/k.
A similar argument applies to h.

Let λ−km · n ∈ Z[λ−km]. Since λ−(k+1)Am = λ−km, we have λ−km · n =
λ−(k+1)Am · n = λ−(k+1)m · Atn ∈ Z[λ−(k+1)m]. In the unimodular case, A is
invertible, λ is a unit, and Z[λ−km] = Z[m] for all k. If S is not unimodular, then
all the inclusions

(1) Z[λ−km] ⊆ Z[λ−(k+1)m]

are proper. This shows GA is not finitely generated. �

If S is irreducible then the inclusions (1) induce a directed system

Zd A→ Zd A→ Zd A→ Zd . . . .

Given such a directed system, the direct limit DA = lim−→(Zd, A) is called the di-
mension group of A (see [LM-95]). A more concrete presentation of DA is given
by DA = {g ∈ Qd : (At)ng ∈ Zd for some n ∈ Z}, (see [LM-95]). It is easy to
see with this latter presentation that (in the irreducible case) GA ∼= DA ⊆ Qd via
I : DA → GA, defined I(g) = g ·m.

3.2. Kakutani-Rohlin partitions. Let (X,T ) be a Cantor dynamical system. A
semi-partition on (X,T ) is a collection P = {P0, . . . , Pn−1} of pairwise disjoint
clopen sets in X. Two semi-partitions P and Q are disjoint if any P ∈ P and
Q ∈ Q satisfy P ∩ Q = ∅, which implies P ∪ Q is a semi-partition. A partition
is a semi-partition such that ∪P∈PP = X. A partition Q refines partition P,
denoted Q ≥ P, if for each Q ∈ Q there is a P ∈ P with Q ⊆ P . A sequence
Pk of partitions is refining if Pk+1 ≥ Pk for all k. A semi-partition of the form
P = {B, TB, T 2B, . . . , Th−1B}, for some clopen set B is called a Rohlin tower.
The base is B, and the height h ≥ 1. A Kakutani-Rohlin partition is a partition P
that is a union of d disjoint Rohlin towers {P0,P1, . . . ,Pd−1}. A Kakutani-Rohlin
partition is specified by its bases B0, B1, . . . , Bd−1 and its heights h0, h1, . . . , hd−1.

We say p ∈ A is a common prefix for a substitution S if for all a ∈ A, there is
a ua ∈ A∗, so that S(a) = pua. Similarly, we say s ∈ A is a common suffix if for
all a ∈ A there is a va ∈ A∗ so that S(a) = vas. A substitution S is called proper
(see [DHS-99]) if it has both a common prefix and a common suffix. Any primitive
aperiodic substitution shift (X,T ) is topologically conjugate to a substitution shift
for a proper substitution, but generally one with a larger alphabet (see [DHS-99]).

Proposition 5. (Durand, Host, Skau [DHS-99]) Let (X,T ) be the substitution
shift corresponding to a primitive aperiodic substitution S on an alphabet A with d
symbols. For each k ≥ 0, there is a Kakutani-Rohlin partition Pk with bases B(k)

a =
Sk(bac), a ∈ A, and heights ha = |Sk(a)|. These partitions satisfy Pk+1 ≥ Pk.

We say that a sequence Pk of partitions on a Cantor set X generates (the topol-
ogy) if for all k sufficiently large, any clopen set E is the union of sets in Pk.
Alternatively, the sequence Pk generates the topology on X if and only if for each
n ≥ 1, there is a K ∈ N, so that for k ≥ K, the function x 7→ x[−n,n] : X → A2n+1
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is constant on each P ∈ Pk. Durand, Host and Skau [DHS-99] show that if, in
addition to the hypotheses of Proposition 5, S is proper, then the sequence Pk
generates the topology on X. The next proposition extends this result.

Proposition 6. Let S be a primitive aperiodic substitution on d symbols, let T
be the corresponding susbtitution shift, and let rk be a sequence of integers. Then
there is a sequence Pk of Kakutani-Rohlin partition with bases B(k)

a = T rkSk(bac),
a ∈ A, and heights `a = |Sk(a)|. If in addition S has a common prefix (or suffix),
then there exists a sequence rk so that the sequence Pk of partitions generates the
topology on X.

Proof. It is easy to see (using Proposition 5) that Pk is always a Kakutani-Rohlin
partition. Now suppose S has a common prefix (the common suffix case is similar).
Then for a ∈ A, S(a) = pua, and for any ab ∈ L (including, possibly aa), S(ab) =
puapub. Thus for k > 1,

(2) Sk(ab) = Sk−1(p)Sk−1(ua)Sk−1(p)Sk−1(ub).

Let ek = |Sk−1(p)| and let dk = bek/2c (the integer part of ek/2), and let ca,k =
|Sk−1(ua)|.

Fix n ≥ 0 and take k large enough that ek ≥ n. This is possible because S
is primitive. Since Sk(a) = Sk−1(p)Sk−1(ua), it follows that `a,k = |Sk(a)| =
|Sk−1(p)| + |Sk−1(ua)| = ek + ca,k, which implies [0, 2ek + ca,k] = [0, ek + `a,k].
Thus by (2), any x ∈ bSk(a)c satisfies

(3) x[0,ek+`a,k] = Sk−1(p)Sk−1(ua)Sk−1(p)

Now Sk(bac) ⊆ bSk(a)c, so (3) remains true for x ∈ Sk(bac).
Let Qg ∈ Qk. Then there exists a ∈ A and 0 ≤ j < `a,k so that Q =

T j+dkSk(bac). Any x ∈ Q satisfies T−j+dkx ∈ Sk(bac), so by (3)

(4) x[−j−dk,`a,k−j] = (T−j−dkx)[0,dk+`a,k] = Sk−1(p)Sk−1(ua)Sk−1(p).

But n < ek ≤ dk/2 < dk + j, and since j ≤ `a,k, n < ek ≤ dk/2 < ` Thus
[−n, n] ⊆ [−j − dk, dk + ca,k − j], so x[−n,n] is constant on Sg. �

Let S be primitive shift-aperiodic substitution, and let Pk be the sequence of
Kakutain-Rohlin partitions from Proposition 6, corresponding to an arbitrary se-
quence rk. Let m(k)

a = m(B(k)
a ) = m(Sk(bac)) be the measures of the bases, and

let m(k) = (m(k)
0 ,m

(k)
1 , . . . ,m

(k)
d−1). We call the vectors m(k) tower base vectors.

Lemma 7. The tower base vectors satisfy m(k) = λ−km, where m is the normalized
right Perron-Frobenius eigenvalue. The subgroup of R generated by the measures of
the tower bases is the Perron-Frobenius group GA.

Proof. First note that m(0) = m. Also, Am(k) = m(k−1) for all k. Assume
m(k−1) = λk−1m. Then m(k) = Am(k−1) = λk−1Am = λkm. The measures of the
bases generate ∪Z[m(k)] = ∪Z[λ−km] = GA. �

The next theorem is the main result of this section:

Theorem 8. If S is a primitive, shift-aperiodic substitution with a common prefix
(or suffix), then MT = GA. If S is also irreducible, then (X,T ) is saturated, and
H(T ) ∼=MT = GA.
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Proof. Let Pk be the sequence of Kakutani-Rohlin towers from Proposition 6. It
follows from Proposition 6 that for any clopen set E, there exists k, so that E is a
union of levels of Pk. Thus by Lemma 7, m(E) ∈ Z[λ−km] ⊆ GA.

Now suppose S is irreducible, and let E and F be clopen sets such that m(E) =
m(F ). By Proposition 6, there exists k so that E and F are both unions of the levels
of ∈ Pk. The entries of m(k) give the measures of the bases of Pk. Since T preserves
m all the levels in each tower have the same measure as the base. By Lemma 4,
m(k) has rationally independent entries, since by Lemma 7, m(k) = λ−km. Thus
E and F must consist of the same number of levels from each tower in Pk. Clearly
we can define a homeomorphism U ∈ [[T ]] that matches up components of E with
components of F within each tower, and that is constant on the rest of X. It follows
that (X,T ) is saturated. The last assertion follows from Theorem 2. �

4. One dimensional tiling systems

4.1. Suspensions. Throughout this section, we fix a strictly ergodic Cantor dy-
namical system (X,T ), with unique T -invariant probability measure m. For a pos-
itive continuous function, g : X → R (called a height function), define R : X×R→
X × R by R(x, s) = (Tx, g(x) + s). Put (x, s) ∼ (x′, s′) if (x′, s′) = Rn(x, s) for
some n ∈ Z. The suspension space for (X,T ) and g is defined Xg = (X × R)/ ∼.
Note that Xg is a 1-dimensional compact metric space such that each (x, t) ∈ Xg

has a neighborhood of that is a product of an interval and a Cantor set. A space of
this type is called a 1-dimensional lamination. In particular, Xg has a well defined
1-dimensional integer C̆ech cohomology Ȟ1(Xg) (see [PT-82]). Define the suspen-
sion flow (or flow under a function) T tg on Xg to be the ∼ quotient of the flow
(x, s) 7→ (x, t+ s). The minimality of (X,T ) implies that (Xg, T

t
g) is minimal.

Let γ =
∫
g dm. Call a suspension even if γ = 1, and uneven otherwise. A

probability measure µ on Xg is given by µ(A × [a, b]) = γ−1(b − a)m(A), where
A ⊆ Xg and 0 ≤ a < b < g(x). The unique ergodicity of (X,T ) implies (T tg , Xg)
is uniquely ergodic for µ. Given an even suspension T tg , let T tγg be the uneven
suspension corresponding to γg for a constant γ 6= 1. It is easy to see that T tγg is
topologically conjugate to a time change T γ

−1t
g of Tg.

4.2. The Brushlinski group. We now describe a way to compute the 1-dimensional
integer C̆ech cohomology Ȟ1(Xg) for a suspension space Xg. Let T = {z ∈ C :
|z| = 1} be the unit circle group in C, and let C(Xg,T) be the group of cir-
cle valued continuous functions on Xg, with pointwise multiplication. Recall that
f0, f1 ∈ C(Xg,T) are homotopic if there exists continuous F : Xg × [0, 1] → T so
that f0(y) = F (y, 0) and f1(y) = F (y, 1). The Brushlinski group of Xg, denoted
Br(Xg), is defined to be C(Y,T) modulo homotopy. According to Brushlinski’s
Theorem ([Br-34], see [PT-82]), Ȟ1(Xg) is isomorphic to the Brushlinski group
Br(Xg). From now on we will identify these two groups, writing both as Ȟ1(Xg)
(this follows [PT-82]).

For n(x) ∈ C(X,Z) define

(5) fn(x, t) = exp
(

2πi t
n(x)
g(x)

)
.

Clearly fn ∈ C(Y,T) since t n(x)/g(x) ∈ Z for t = 0 and t = g(x).
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Proposition 9. Suppose (Xg, T
t
g) is a suspension of a uniquely ergodic Cantor

dynamical system (X,T ). Then n(x) is a dynamical coboundary if and only if fn
is homotopic to a constant. Moreover, for any f ∈ C(Y,T) there is an n ∈ C(X,Z)
so that fn is homotopic to f .

Proof. Suppose n(x) = p(Tx)− p(x) for p ∈ C(X,Z). Then

fn(x, t) = exp(2πitp(Tx)/g(x)) exp(2πitp(x)/g(x)),

Define a continuous real valued function k(x, t) = (p(x)(1 − t) + p(Tx)t)/g(x) on
Xg. Since Xg is compact, k(x, t) is continuous, uniformly bounded, and it follows
that k is homotopic to 0. But k(x, t) = (p(x) + tn(x))/g(x), and p(x) ∈ Z, so
fn(x, t) = exp(2πik(x, t)), which implies fn is homotopic to 1.

Conversely, if fn(x, t) = exp(2πitn(x)/g(x)) is homotopic to 1, then there is a
lift f̃n : Xg → R so that exp(2πi t n(x)/g(x)) = exp(2πi f̃n(x, t)), and

(6) t
n(x)
g(x)

− f̃n(x, t) = p(x, t),

for some p ∈ C(Y,Z). But p can not depend on t, so if we define p(x) = p(x, 0),
then we have

(7) t
n(x)
g(x)

− f̃n(x, t) = p(x).

By the continuity of the left hand side of (7) for t → g(x) we have n(x) −
f̃n(x, g(x)) = p(x). On the other hand f̃n(x, g(x)) = f̃n(Tx, 0). For t = 0 we
have −f̃n(Tx, 0) = p(Tx), and therefore n(x) = p(Tx)− p(x). The final statement
was proved in the case g(x) = 1 by Parry and Tuncel [PT-82]. The proof in this
case is almost the same. �

Corollary 10. If (Xg, T
t
g) is a suspension of a Cantor dynamical system (X,T ),

then the dynamical cohomology group H(T ) is isomorphic to the C̆ech cohomology
group Ȟ1(Xg).

4.3. Winding numbers. Let T t be a flow on a compact metric space Y . We say
that f ∈ C(Y,T) is differentiable at y ∈ Y if the limit

(8) f ′(y) = lim
h→0

1
h

(f(T ty)− f(y))

exists. If f is continuously differentiable, we define the winding number of f by

(9) W (f) =
1

2πi

∫
Y

f ′(y)
f(y)

dµ(y).

If we want to note the dependence on T t we write W (T t, f). In particular, for a
time change F γt we have W (T γt, f) = γ−1W (T t, f).

The winding number was defined by Schwartzman [Sc-57], who proved the fol-
lowing.

Lemma 11. (Schwartzman, [Sc-57]) Every homotopy class in C(Y,T) contains a
continuously differentiable function. Moreover, if two continuously differentiable f1
and f2 are homotopic then W (f0) = W (f1). Thus W is a well defined real-valued
functional on Ȟ1(Y ).
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For a flow (Y, T t), we define the winding number group WT t ⊆ R to be the
image im(W ) of the winding number operator W . By the comment following the
definition of W , we have WTγt = γ−1WT t for a time change.

Proposition 12. Suppose (Xg, T
t
g) is an even suspension of a uniquely ergodic

Cantor dynamical system (X,T ). If n ∈ C(X,Z), and fn ∈ C(Xg,T) is defined by
(5), then W (fn) =

∫
X
ndm. Thus WTg =MT .

Proof. Since f ′n(x, t) = 2πin(x)/g(x)fn(x, t), f ′n/fn = 2πin(x)/g(x) Thus W (ff ) =∫
Y
n(x)/g(x) dµ =

∫
X
ndm. �

Remark 13. The conclusion of Proposition 12 does not depend on the height func-
tion g, except for the assumption that g is even. If we replace T tg with the uneven
suspension T tγg, then WTγg = γ−1WTg = γ−1MT .

Remark 14. When T is not saturated, ker(W ) 6= ∅. We call f ∈ ker(W ) an
invisible cocycle. These are the elements of Ȟ1(Xg), that have winding number
zero, and correspond to the dynamical cocycles in Inf(T ).

Remark 15. Conversely, when T is saturated (i.e., when ker(W ) = {0}), any
f ∈ C(Xg,T) with W (f) = 0 is (homotopic to) a constant. We think of this as a
strong form of unique ergodicity for T tg .

4.4. Eigenvalues. Suppose (T t, Y ) is a minimal and uniquely ergodic continuous
flow on a compact metric space Y for the invariant probability measure µ. We say
that ω ∈ R is an eigenvalue corresponding to the eigenfunction f ∈ L2(X,µ) such
that

(10) f(T ty) = exp (2πiωt) · f(y),

for µ a.e., y ∈ Y . One can think of the eigenvalue ω as the angular velocity of the
eigenfunction f along the flow. We will assume (T t, Y ) is strictly ergodic, and also
homogeneous, which means every eigenfunction f can be chosen to be continuous.
We let ET t ⊆ R denote the set of all eigenvalues. Fixing y0 ∈ Y , we may assume
that the eigefunctions f are normalized so that f(y0) = 1, so that the mapping
ω 7→ fω from eigenvalues to corresponding eigenfunction is well defined. Letting
E(Y ) = {fω : ω ∈ ET t}, we have that E(Y ) ⊆ C(Y,T), and ET t and E(Y ) are both
groups.

Lemma 16. Let ω, ω1, ω2 ∈ ET t
(1) W (fω) = ω, and
(2) If fω1 is homotopic to fω2 then ω1 = ω2.

Proof. For (1), f ′ω(y) = 2πiω fω(y). Thus f ′ω/fω = 2πiω. Part (2) follows from
part (1) and Lemma 11. �

The next theorem applies these results to the case of even suspensions.

Theorem 17. If (Xg, T
t
g) is an even suspension of a strictly ergodic Cantor system

(X,T ), then ETg ⊆ WTg =MT and E(Xg) ⊆ Ȟ1(Xg).

Proof. Lemma 16 shows that E(Xg) ⊆ Ȟ1(Xg). Since E(Xg) ⊆ C(Xg,T), Propo-
sition 12 shows that ETg = W (E(Xg)) ⊆W (C(Xg,T)) =WTg . �
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Remark 18. While MT does not depend on the (even) height function g(x), the
eigenvalues ETg do. Thus MT provides an upper bound on the possible sets ETg of
eigenvalues for different even suspension flows (Xg, T

t
g).

4.5. Substitution tilings. Let S be a primitive shift-aperiodic substitution on
A = {0, . . . , d − 1} and let (X,T ) be the corresponding substitution shift. Let
m and h be the right and left Perron-Frobenius eigenvectors, normalized so that
m · 1 = 1 and h ·m = 1. We call a vector g an even height vector if g ·m = 1.
Two particular even height vectors are g = 1, called the unit height vector, and
g = h, the normalized left Perron-Frobenius eigenvector. Given an even height
vector g = (g0, g1, . . . , gd−1), define

g(x) =
d∑
a=1

gaχbac(x),

and let (Xg, T
t
g) be the corresponding even suspension flow. We interpret this flow

as the substitution tiling flow for the tiling substitution Sg obtained from S and g
(see the Introduction or [RaS-01]).

Lemma 19. For a primitive aperiodic tiling substitution Sg the substitution tiling
flow (Xg, T

t
g) is strictly ergodic and homogeneous. Moreover ETg ⊆ WTg =MT .

For strict ergodicity and homogeneity, see [CS-03]. The second statement follows
from Theorem 17. The next theorem is our second main result.

Theorem 20. Let Sg be a tiling substitution Sg corresponding to a primitive,
irreducible discrete substitution S with a common prefix. Then ker(W ) is trivial,
ETg ⊆ WTg = MT = GA ∼= Ȟ1(Xg). If, in addition, S is unimodular, then
WTg = GA = Z[m] ∼= Zd.

Proof. This follows from Theorem 8 and Lemma 19. �

4.6. The spectrum of a substitution. Theorem 20 gives conditions for ETg ⊆
WTg = GA. In this section, we give some conditions for equality.

Definition 21. If a saturated strictly ergodic flow (Y, T t) on a compact metric
space has ET t =WT t

∼= Ȟ1(Y ), then we say T t has full spectrum.

A primitive irreducible integer matrix A is called an Pisot matrix if all the
eigenvalues λ′, except the Perron-Frobenius eigenvalue λ > 1, satisfy |λ′| < 1. In
particular, the Perron Frobenius eigenvalue λ of a Pisot matrix is a Pisot number
(a real algebraic integer λ > 1 whose Galois conjugates all satisfy |λ′| < 1; see e.g.,
[Me-75]). We call a (primitive irreducible) substitution S a Pisot substitution if its
structure matrix is a Pisot matrix. Similarly we call a (primitive aperiodic) tiling
substitution Sg a Pisot substitution if the underlying discrete substitution S is a
Pisot substitution.

Our main result in this section is the following.

Theorem 22. The tiling flow T tg corresponding to an even Pisot tiling substitution
Sg, with a common prefix, has full spectrum: ETg =WTg = GA.

For a word u = u0u1 . . . un−1 ∈ L, the population vector is defined pu =
(p0, p1, . . . , pd−1)t ∈ Zd, where pa = |{j = 0, . . . , n− 1 : uj = a}|. We say u ∈ L is
a recurrence word if u = x[r,s], r ≤ s, for some x ∈ X such that xr = xs+1. For a
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real number t define {t} = t−btc. We begin with a general lemma from Clark and
Sadun [CS-03] (see also Host [Ho-86] and Solomyak [So-98]).

Lemma 23. Let T tg be be a tiling flow corresponding to a primitive aperiodic tiling
substitution Sg. A real number satisfies ω ∈ ETg if and only if for every recurrence
word u,

(11) lim
n→∞

{ω g ·Anpu} = 0.

In the case of an even suspension, where g = h is the normalized left Perron-
Frobenius eigenvector, we have the following:

Lemma 24. Let T th be the even suspension of a primitive aperiodic substitution
shift T , corresponding to the normalized left Perron-Frobenius eigenvector h (i.e,
the Perron-Frobenuis suspension). If ω ∈ R satisfies

(12) lim
n→∞

{ω ha λn} = 0

for each a ∈ A, where ha is the height of the ath Kakutani-Rokhlin tower for T ,
then ω ∈ ETh

.

Proof. To prove ω satisfies (11) for each return word, it suffices to establish (11)
for pa for each a ∈ A. This is because every return word is made up of symbols.
But in this case ωh · Anpa = ω(At)nh · pa = ωλnh · pa = ωλnha, since pa is the
ath standard basis vector. �

A Pisot matrix A has 1-dimensional expanding subspace Hu(A) and a d − 1
dimensional contracting subspace Hs(A).

Lemma 25. We have Hu(A) ⊥ Hs(At) and Hu(At) ⊥ Hs(A). Moreover, if we
define Pv = v − (h · v)m for v ∈ Rd, then Pv ∈ Hs(A).

Proof. For j = 0, . . . , d − 1, let Amj = λjmj and Athj = λjhj , where m1 = m,
h1 = h. Then hi ·mj = 0, for i 6= j. This is because i 6= j implies λj 6= λj , but
λihi ·mj = (Athi) ·mj = hi · (Ahj) = λjhi ·mj . Note that Hu(A) and Hu(At) are
the spans of m and h, and that Hs(A) and Hs(At) are the real parts of the spans of
m2, . . . ,md and h2, . . . ,hd. For the second assertion, h ·Pv = h · (v− (h ·v)m) =
h · v − (h · v)(h ·m) = 0 since h ·m = 1. �

The next result is one direction of Theorem 22 in the case of g = h.

Proposition 26. The the tiling flow T th corresponding to the Perron-Frobenious
Pisot tiling substitution satisfies Z[m] ⊆ ETh

.

Proof. For v,k ∈ Rn, let t = (v · h), and α = (k ·m). Then

tαλn = λn(v · h)(k ·m) =
(
k · (v · h)λnm

)
=

(
k · (v · h)Anm

)
=
(
(At)nk · (v · h)m

)
= (At)nk · (v − Pv

)
= k ·Anv − k ·AnPv.

If k = pa and v = pb, then

(13) {mbhaλ
n} = {pa ·Anpb − pa ·AnPpb} = {−pa ·AnPpb},

since pa ·Anpb ∈ Z, and thus {mbhaλ
n} → 0 since Ppb ∈ Hs(A). �
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Remark 27. In [BK-06], this result is said to be well known and attributed to
[BT-86]. The proof in [BK-06] constructs a torus rotation factor of T th that has
eigenvalues Z[m] (but see Remark 28 regarding the scaling). The authors go on
to prove the opposite inclusion ETh

⊆ Z[m], which is their main result. For us,
this opposite inclusion is Corollary 29, which will follow from Theorem 20, once
we assume S has a common prefix. Unfortunately, the common prefix assumption
seems necessary for our approach.

Remark 28. In [BK-06] and [BBK-06] the Perron-Frobenius eigenvectors are nor-
malized m ·m = 1 and h ·m = 1, so their tiling flow T th is not, in our terminology,
an even suspension. However, the conclusion of Proposition 26 holds verbatim,
since it differs from an even suspension by a time change.

Corollary 29. If S is a Pisot substitution with structure matrix A, and (Xh, T
t
h)

is the Perron Frobenuis suspension, then GA ⊆ ETg .

Proof. It suffices to show that Z[λ−km] ⊆ ETh
. But clearly {(λ−kmb)haλn} =

{mbhaλ
n−k} → 0 as n→∞. �

The next result, which completes the proof of Theorem 22, shows that for Pisot
tiling substitutions any even height vector g can be substituted for the Perron-
Frobenius eigenvector h.

Proposition 30. For a Pisot substitution S, let m and h be the normalized Perron-
Frobenius eigenvectors, and let g ≥ 0 be a normalized height vector (so that g ·m =
1). Then ETg = ETh

.

Proof. Let ω ∈ ETh
, so that by Lemma 23, {ωh · Anpw} → 0 for every recurrence

vector pw. Then

{ωh ·Anpw} = {ω(g − (g − h)) ·Anpw}
= {ωg ·Anpw − ω(At)n(g − h) · pw}.

Since (g − h) ·m = g ·m− h ·m = 1− 1 = 0 it follows that g − h ∈ Hs(At) and
(At)n(g − h)→ 0. Thus {ωh ·Anpw} → 0 and ω ∈ ETg . �

5. Examples

5.1. Metallic and alloy substitutions. Let us consider two families of substitu-
tions on A = {0, 1}. Define the substitutions Sn, for n ≥ 1 (left), and S′n for n ≥ 3
(right), by

0 → 0n1
1 → 0 and

0 → 0n−11n−2

1 → 01.
We call Sn the nth metallic substitution and S′n the nth alloy substitution.

Proposition 31. The substitutions Sn and S′n are primitive, shift-aperiodic, irre-
ducible, unimodular, Pisot, and have a common prefix. For each of them, the sub-
stitution shift (X,T ) is strictly ergodic and saturated, with H(T ) ∼= MT = Z[m].
For g an even height vector the flow T tg has WTg = Z[m] ∼= H1(Xg).

Proof of Proposition 31. The primitive unimodular structure matrices An and A′n
for Sn, and S′n are given by

(14) An =
[
n 1
1 0

]
, and A′n =

[
n− 1 1
n− 2 1

]
,
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(A2
n > 0, det(An) = −1, and det(A′n) = 1). The characteristic polynomials pn(z) =

z2 − nz − 1, and qn(z) = z2 − nz + 1, are irreducible, and have roots

λn, λ
′
n =

n±
√
n2 + 4
2

, and βn, β
′
n =

n±
√
n2 − 4
2

,

so the substitutions are Pisot. All the other stated properties follow. �

The numbers λn are sometimes called the metallic numbers. The number λ1 =
(1/2)(1 +

√
5) is called the golden mean, λ2 = 1 +

√
2 is called the silver mean,

etc. We call the numbers βn alloy numbers because A′n+2 = A1An. Any monic
quadratic polynomial over Z with constant term ±1 is either pn(z), pn(−z), qn(z),
qn(−z) or is r(z) = z2 ± 1. Thus the metallic and alloy numbers make up all the
quadratic units, and all quadratic units are Pisot. Any product of the matrices of
types An and Ak has a Pisot quadratic unit as its Perron-Frobenius eigenvalue.

Theorem 32. A metallic tiling substitution flow (Xg, T
t
g) for an even height g has

full spectrum with

(15) WTg = ETg =
1

λ+ 1
Z[λ] ∼= Z2,

where λ is the Perron-Frobenius eigenvalue. Similarly, a metallic tiling substitution
flow (Xg, T

t
g) for an even height g has full spectrum with

(16) WTg = ETg =
1

β − (n− 2)
Z[β] ∼= Z2,

where β is the Perron-Frobenis eigenvalue.

Remark 33. In the golden mean case n = 1, λ = (1 +
√

5)/2, λ+ 1 = λ2 is a unit,
and WTg = ETg = Z[λ].

Proof. The normalized right Perron-Frobenius eigenvectors of the matrices An
(which is symmetric) are m = (λ+ 1)−1(1, λ). Thus ETg = Z[m] = (λ+ 1)−1Z[λ].
Similarly, fixing n ≥ 3, the normalized right Perron-Frobenius eigenvectors of Bn
are m = (β − n+ 2)−1(1, β − n+ 1), and Z[β − n+ 1] = Z[β]. �

Remark 34. For any substitution Sn or S′n, the spectrum of the substitution shift
(X,T ) is exp(2πi ETg). It is well known that T has pure point spectrum.

5.2. A unimodular non-Pisot substitution. A non-Piot substitution is primi-
tive substitution S with a non-Pisot Perron-Frobenius eigenvalue. The 4-letter sub-
stitution S 0→ 0313, 1→ 031313, 2→ 03223, 3→ 0323 studied in [FiHR-03] is non-
Pisot because the Perron-Frobenius eigenvalue, λ = 1

4 (7 +
√

5 +
√

2
√

19 + 7
√

5) ≈
4.39026, and has a conjugate λ′ ≈ 1.83785 (the other two conjugates are recipro-
cals of these). It is primitive, shift-aperiodic, has a common prefix, is irreducible,
and unimodular. Let (Xg, T

t
h) be strictly ergodic even Perron-Frobenius substitu-

tion tiling flow. It is shown in [FiHR-03] that T th is weakly mixing, which means
ETh

= {0}. On the other hand, Ȟ1(Xh) ∼=WTh
which is equal to Z[m] ∼= Z4. Thus

the spectrum is not full.

Remark 35. In [FiHR-03] it is proved that (Xh, T
t
h) is homeomorphic to an al-

most 1:1 extension of a flow (G2, F
t) that is a suspension of a four-interval in-

terval exchange transformation. The space G2 is a surface of genus 2, and the
substitution Sh induces a pseudo-Anosov diffeomorphism on G2. The space Xh
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can be obtained as an inverse limit limn←∞Gn2 , where Gn2 is the surface G2 with
a six pointed asterisk of radius n (part of a singular orbit) removed. For each
n, Gn2 is homeomorphic to G2\{p}, which is G2 with a single puncture. Thus
Ȟ1(Gn2 ) = H1(G2{p}) ∼= Z4, and thus Ȟ1(Xg) = limn→∞ Ȟ1(Gn2 ) ∼= Z4. This
alternate way to compute Ȟ1(Xg), suggests an explanation for why the cohomology
is not related to the spectrum for this substitution S. However, a similar calculation
for the golden mean substitution S1, unzipping a single orbit from an irrational flow
in T2, shows that Ȟ1(Xg) = H1(T2\{p}) ∼= Z2, even though T tg has full spectrum
in this case.

5.3. The completely non-Pisot case. We call a d-letter substitution S com-
pletely non-Pisot if all the eigenvalues λ satisfy |λ| ≥ 1. Such a substitution is
never unimodular. Clark and Sadun [CS-03] study the case of primitive, aperiodic,
completely non-Pisot substitution S, with the additional assumption that there is a
full recurrence word u ∈ L: the vectors pu, Apu, . . . , Ad−1pu are linearly indepen-
dent. They show that if a height vector g = (g0, g1, . . . , dd−1) (not necessarily even)
has rationally independent entries, then the tiling flow T tg is weakly mixing. This
provides us with many examples of substitutions that do not have full spectrum
since ETg = {0} is a proper subgroup of WTg . Consider, for example the substitu-
tion 0 → 0111, 1 → 0 from [FR-08]. It is also shown in [CS-03] that if gi/gj ∈ Q
∀i, j, for a primitive, aperiodic, completely non-Pisot substitution then ETg ⊆ g0Q.

In the two-letter primitive, aperiodic, completely non-Pisot case, Kenyon, Sadun,
and Solomyak [KSS-05] show that for a substitutions S, the tiling flow T tg is topo-
logically mixing if and only if g has rationally independent entries (i.e., g0/g1 6∈ Q).
This implies weak mixing. In fact, whenever the second (non-Perron-Frobenius)
eigenvalue satisfies |λ′| 6= 1, weak mixing for T tg is equivalent to topological mixing
(but never measure theoretic mixing; see [CS-03]).

Sometimes it is possible to say something about the spectrum even if g0/g1 ∈ Q.
Let us fix a a primitive, irreducible, shift-aperiodic two-letter substitution S that
is completely non-Pisot. We assume, in addition, that S has a common prefix, and
that 00, 11 ∈ L. For a vector k = (k0, k1) ∈ Z2, let gcd(k) = gcd(k0, k). We say k
satisfies the gcd condition if gcd((At)nk) = 1 for all n ≥ 0. It is shown in [KSS-05]
that if S is a primitive, shift-aperiodic completely non-Pisot substitution, and if
1 satisfies the gcd condition, then (the discrete substitution shift) T is topologi-
cally mixing, which implies weak mixing. Conversely, if 1 does not satisfy the gcd
condition then T is not weak mixing.

Theorem 36. Let S be a two-letter primitive irreducible completely non-Pisot sub-
stitution with a common prefix. Then for any even height vector g, the tiling flow
Tg is saturated and Ȟ1(Xg) ∼= WTg =

⋃
k≥0 Z[λ−km], which is not finitely gener-

ated. Suppose, in addition, that 00, 11 ∈ L. Let g = γk be an even height vector
where k ∈ Z2 satisfies the gcd condition. Then γ−1 = m · k and ETg = γ−1Z. In
particular, T tg does not have full spectrum.

In [KSS-05] an algorithm is given to test the gcd condition. It is easy to see the
substitution 0→ 00011, 1→ 0111, satisfies all the hypotheses of Theorem 36), and
the vector 1 satisfies the gcd condition.

Proof of Theorem 36. Consider T tk where k satisfies the gcd condition. Since 00, 11 ∈
L, and λ is irrational, both 0 and 1 are full return words. Thus Lemma 23
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implies that ω ∈ ETk
if and only if limn→∞{ω k · Anpu} = 0 for both u = 0

and u = 1. The argument in [CS-03] shows that this is the case if and only if
ω(At)nk·pu = ω k·Anpu ∈ Z for u = 0, 1 and all n sufficiently large, or equivalently,
ω(At)nk ∈ Z2, for n sufficiently large. Since (At)nk ∈ Z2 and gcd((At)nk) = 1, it
follows that ETk

= Z. Thus ETg = γ−1Z. �

5.4. The case of T . Let (X,T ) be the substitution shift for a primitive aperiodic
substitution S. We say a measurable, complex valued function f on X is an eigen-
function for eigenvalue ν if f(Tx) = νf(x). Because T is strictly ergodic and ho-
mogeneous, we may assume |f(x)| = 1, f ∈ C(X,T), and |ν| = 1. The set E ′T of all
eigenvalues is then a countable subgroup of T and we let ET = {ω ∈ R : e2πiω ∈ E ′T }.
It is easy to see that ET = ET1 (T is isomorphic to T 1

1 on {(x, 0) ∈ X1}).
It makes no sense to study Ȟ1(X) (since X is a Cantor set) but we can study

H(T ) instead, keeping in mind that H(T ) ∼= Ȟ1(X1). We also know that MT =
WT t1

and MT =WT t1
, so that ET ⊆MT . If T is saturated (e.g., if S is irreducible

and has a common prefix) then H(T ) ∼=MT . In a weak mixing case, like (??), for
example, MT = GA, whereas ET = Z and E ′T = {1}. In a unimodular Pisot case,
on the other hand, MT = ET = Z[m] and E ′T = exp (2πiZ[m]).
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d’Informatique Théorique (Marne-la-Vallée, 2000), Bull. Belg. Math. Soc. Simon Stevin 8,

(2001), 181–207.

[AP-98] J. Anderson, I. Putnam, Topological invariants for substituon tilings and their assiciated
C∗-algebras, Ergodic Theory and Dynamical Systems, 18 (1998), 509–537.

[BD] Barge, Marcy and Beverly Diamond, Coincidence for substitutions of Pisot type., Bull. Soc.
Math. France 130 (2002), 619–626.

[BD-08] Barge, Marcy and Beverly Diamond, Cohomology in one-dimensional substitution tiling

spaces, Proc. Amer. Math. Soc., 136 (2008), 2183–2191.
[BD-01] Barge, Marcy and , Beverly Diamond, A complete invariant for the topology of one-

dimensional substitution tiling spaces, Ergodic Theory Dynam. Systems 21 (2001), 1333–

1358.
[BD-09] Barge, Marcy and Beverly Diamond, Cohomology in one-dimensional substitution tiling

spaces, Proc. Amer. Math. Soc. 136, (2008), 2183–2191.

[BK-06] Barge, Marcy and Kwapisz, Jaroslaw Elements of the theory of unimodular Pisot substi-
tutions with an application to β-shifts, Algebraic and topological dynamics, Contemp. Math.,
385 Amer. Math. Soc., Providence, RI, (2005), 89–99.

[BBK-06] Baker, Veronica, Marcy Barge and Jaroslaw Kwapisz, Geometric realization and co-
incidence for reducible non-unimodular Pisot tiling spaces with an application to β-shifts,

Numération, pavages, substitutions, Ann. Inst. Fourier (Grenoble) 56 (2006), 2213–2248.

[BT-86] Bomberi, E. and J. Taylor, Which distributions of matter diffract? An initial investiga-
tion, J. Physique, 47 (Suppl. Colloq. C3, International workshop on aperiodic crystals, Les
Houches, (1986), 1928.

[Bo-83] Boyle, M., Topological orbit equivalence and factor maps in symbolic dynamics Ph.D.
Dissertation, University of Washington, (1983).

[Br-34] Bruschlinsky, N., Stetige Abbildungen und Bettische Gruppen der Dimensionszahlen 1
und 3, Mathematische Annalen, 109 (1934), 525-537.

[BzK-00] S. Bezugly, J. Kwiatkowski, The topological full group of a Cantor minimal system is
dense in the full group, Topological Methods in Nonlinear Analysis, 3, 10(2000), 22–46.

[CSg-01] Canterini, Vincent and Anne Siegel, Geometric representation of substitutions of Pisot
type, Trans. Amer. Math. Soc. 353 (2001), 5121–5144.

[CS-03] Clark, Alex and Lorenzo Sadun, When size matters: subshifts and their related tiling
spaces, Ergodic Theory and Dynamical Systems, 23, (2003), 1043–1057.



16 TETYANA I. ANDRESS AND E. ARTHUR ROBINSON, JR.

[CS-06] Clark, Alex and Lorenzo Sadun, When shape matters: deformations of tiling spaces,

Ergodic Theory Dynam. Systems 26 (2006), 69–86.

[Du-99] D. Dummit, R. Foote, Abstract algebra, John Wiley and Sons, 1999.
[DHS-99] F. Durand, B. Host, C. Skau, Substitutional dynamical systems, Bratteli diagrams and

dimension groups, Ergodic Theory and Dynamical Systems, 19 (1999), 953–993.

[FMN-96] S.Ferenczi, C. Mauduit, A. Nogueira, Substitution dynamical systems: algebraic char-

acterization of eigenvalues, Ann. scient. Éc. Norm. sup, 4 (1996), 519–533.
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