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Abstract

A two-species interacting system, motivated by the triblock copolymers theory, is studied on a flat
torus, the quotient space of the complex plane by a lattice. The free energy of the system, which
contains both short range and long range interactions, admits disc-disc like stationary points. The relative
displacement of the disc centers in a stationary point is related to Green’s function of the Laplace operator
on the flat torus. When restricted to disc-disc configurations with relative displacements equal to half
periods, the free energy is minimized with respect to the lattice and its half periods. The resulting
optimal lattice depends on a single parameter. As this parameter varies, the optimal lattice may be
rectangular, square, rhombic, or hexagonal. This is in sharp contrast to single species systems where
optimal lattices are always hexagonal.

Key words. Two-species interacting system, triblock copolymer, disc-disc configuration, disc-disc sta-
tionary point, rectangular lattice, square lattice, rhombic lattice, hexagonal lattice.
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1 Introduction

Pattern formation in inhibitory physical systems results from controlled growth and self-organization. Com-
mon in these systems is that a deviation from homogeneity has a strong positive feedback on its further
increase, and in the meantime a longer ranging inhibition mechanism exists to limit increase and spreading.
Exquisitely structured patterns arise in such systems as orderly outcomes.

An archetype of two-species interacting systems is a triblock copolymer. A triblock copolymer molecule
is a subchain of type A monomers connected to a subchain of type B monomers which in turn is connected
to a subchain of type C monomers. Because of the repulsion between the unlike monomers, the different
type subchains tend to segregate. However since subchains are chemically bonded in molecules, segregation
cannot lead to a macroscopic phase separation; only micro-domains rich in individual type monomers emerge,
forming morphological phases [3]. Here we treat two of the three monomer types in a triblock copolymer as
species and view the third type as the surrounding environment, dependent on the two species. This way a
triblock copolymer is a two-species interacting system.
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Two dimensional periodic structures are the focus of our study, and we take the sample space to be a
flat torus, namely the complex plane divided by a lattice. A lattice Λ on the complex plane C is generated
by two nonzero complex numbers α1 and α2, with Im(α2/α1) > 0,

Λ = {j1α1 + j2α2 : j1, j2 ∈ Z}. (1.1)

Let α = (α1, α2) be a basis of Λ. The parallelogram,

Pα = {t1α1 + t2α2 : 0 ≤ tj < 1, j = 1, 2}, (1.2)

is termed the fundamental parallelogram associated with α.
The flat torus C/Λ is the space of Λ-equivalence classes of points in C. Two numbers in C are Λ-equivalent

if their difference is in Λ. When no confusion exists, a point in C and its Λ-equivalence class in C/Λ are
not distinguished. Functions on C/Λ can be identified with Λ-periodic functions on C; subsets of C/Λ can
be thought as Λ-periodic subsets of C. If a basis α = (α1, α2) is given, C/Λ may be represented by the
fundamental parallelogram Pα. The area, or the Lebesgue measure, of C/Λ is |C/Λ| = Im(α1α2). However
|C/Λ| actually depends on the lattice Λ, not any particular basis α. For simplicity we write |Λ| for |C/Λ|,
i.e.

|Λ| = |C/Λ| = Im(α1α2). (1.3)

Our model originates from Nakazawa and Ohta’s density functional theory for triblock copolymers [13]
with simplifications by Ren and Wei [20]. It is a variational problem defined on pairs of subsets of C/Λ with
prescribed area. There are two sets of parameters in this model. The first consists of two numbers ω1 and
ω2 satisfying

0 < ω1, ω2 < 1, and ω1 + ω2 < 1. (1.4)

The second set of parameters form a two by two symmetric matrix γ,

γ =

[
γ11 γ12

γ21 γ22

]
, γ12 = γ21. (1.5)

A pair (Ω1,Ω2) of subsets of C/Λ is admissible if the following conditions hold. Both Ω1 and Ω2 are
Lebesgure measurable; Ω1 and Ω2 do not overlap in the sense that

|Ω1 ∩ Ω2| = 0; (1.6)

the Lebesgue measure of Ωj is fixed by ωj , i.e.

|Ω1| = ω1|Λ|, |Ω2| = ω2|Λ|. (1.7)

In (1.6) and (1.7), | · | denotes the Lebesgue measure on C/Λ, and |Λ| is the Lebesgue measure of the torus
C/Λ, as in (1.3).

Given an admissible pair (Ω1,Ω2), let Ω3 = (C/Λ)\(Ω1 ∪ Ω2). Define a functional JΛ to be the free
energy of (Ω1,Ω2) by

JΛ(Ω1,Ω2) =
1

2

3∑
j=1

PC/Λ(Ωj) +

2∑
j,k=1

γjk
2

∫
C/Λ
∇IΛ(Ωj)(z) · ∇IΛ(Ωk)(z) dA(z). (1.8)

Here PC/Λ(Ωj) is the perimeter of Ωj in C/Λ given by

PC/Λ(Ωj) = sup
{∫

Ωj

div g(z) dA(z) : g ∈ C1(C/Λ,R2), |g(z)| ≤ 1 ∀z ∈ C/Λ
}
. (1.9)

In (1.9), and (1.8), the integrals are taken against the Lebesgue measure, denoted
∫
... dA. If Ωj has piecewise

C1 boundary, then PC/Λ(Ωj) is the length of the boundary. The first term in (1.8) is the total length of
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the curves separating Ω1, Ω2, and Ω3. In
∑3
j=1 PC/Λ(Ωj) each boundary curve separating a Ωj from a Ωk,

j, k = 1, 2, 3, j 6= k, is counted twice. The constant 1
2 in the front takes care of the double counting. The

function IΛ(Ωj) is the solution of Poisson’s equation

−∆IΛ(Ωj)(z) = χΩj (z)− ωj in C/Λ,
∫
C/Λ

IΛ(Ωj)(z) dA(z) = 0, (1.10)

where χΩj is the characteristic function of Ωj . Equation (1.10) can be solved in terms of Green’s function
GΛ of −∆; GΛ satisfies

−∆GΛ = δ − 1

|Λ|
,

∫
C/Λ

GΛ(z) dA(z) = 0, (1.11)

where δ is the δ-measure centered at the Λ-equivalence class of the origin. Then

IΛ(Ωj)(z) =

∫
Ωj

GΛ(z − ζ) dA(ζ). (1.12)

A stationary point (Ω1,Ω2) of JΛ is an admissible pair at which the first variation of JΛ vanishes. It is
a solution to the following equations of a free boundary problem:

κ13 + γ11IΛ(Ω1) + γ12IΛ(Ω2) = µ1 on ∂Ω1 ∩ ∂Ω3 (1.13)

κ23 + γ12IΛ(Ω1) + γ22IΛ(Ω2) = µ2 on ∂Ω2 ∩ ∂Ω3 (1.14)

κ12 + (γ11 − γ12)IΛ(Ω1) + (γ12 − γ22)IΛ(Ω2) = µ1 − µ2 on ∂Ω1 ∩ ∂Ω2 (1.15)

T13 + T23 + T12 = ~0 at ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3. (1.16)

In (1.13)-(1.15) κ13, κ23, and κ12 are the curvatures of the curves ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3, and ∂Ω1 ∩ ∂Ω2,
respectively. The unknown constants µ1 and µ2 are Lagrange multipliers associated with the constraints
(1.7) for Ω1 and Ω2 respectively. The three interfaces, ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and ∂Ω1 ∩ ∂Ω2, may meet at a
common point in C/Λ, which is termed a triple junction point. In (1.16), T13, T23 and T12 are respectively
the unit tangent vectors of these curves at a triple junction point. This equation simply says that at every
triple junction point three curves meet at 120 degree angles.

The disc-disc structure is one of the simplest patterns on a flat torus. An admissible pair (Ω1,Ω2) is
called a disc-disc configuration if each species Ωj forms a closed disc in C/Λ, j = 1, 2; namely

Ωj = B(ξj , rj) = {z ∈ C/Λ : |z − ξj | ≤ rj}, j = 1, 2, (1.17)

where ξj ∈ C/Λ are the centers, rj are the radii, and r1 + r2 < |ξ2 − ξ1|. Due to the translation invariance,
the relative displacement

ζ = ξ2 − ξ1, (1.18)

rather than the centers ξ1 and ξ2, is the quantity that characterizes the configuration. However a disc-disc
configuration is not a stationary point of JΛ. In this paper, we find stationary points that are close to
disc-disc configurations. Such a stationary point (Ω1,Ω2) is called a disc-disc stationary point. Each Ωj is
a small perturbation of a disc B(ξj , rj), and

|Ω1| = πr2
1, |Ω2| = πr2

2. (1.19)

Henceforth, r1 and r2 replace ω1 and ω2 as the first set of parameters. The area constraint (1.7) becomes
(1.19). We set

ρ =
√
r2
1 + r2

2. (1.20)

For the second set of parameters, let

|γ| =

√√√√ 2∑
j,k=1

γ2
jk (1.21)
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be the norm of γ.
A disc-disc stationary point satisfies equations (1.13) and (1.14), The other two equations, (1.15) and

(1.16), are not needed, because in a disc-disc stationary point (Ω1,Ω2), the subsets Ω1 and Ω2 are separated
by a positive distance. Green’s function GΛ of the −∆ operator on C/Λ plays a critical role here. Since it
is smooth on C/Λ except at the lattice point 0 where

lim
z→0

GΛ(z) =∞, (1.22)

GΛ admits a global minimum. Our first theorem asserts that when rj and γjk are in a suitable range, there
exists a disc-disc stationary point whose relative displacement is close to a global minimum of GΛ.

Theorem 1.1. Let Λ be a lattice, A1 > 1, A2 > 1, and η > 0. There exists ρ0 > 0 depending on Λ, A1, A2,
and η such that if

1. 0 < ρ =
√
r2
1 + r2

2 < ρ0,

2. 1
A1

< r2
r1
< A1,

3. each entry γjk > 0 (j, k = 1, 2) and |γ| < A2γ12,

4. each diagonal entry γjj <
12−η
r3
j

, j = 1, 2,

then JΛ admits a stationary point to (1.8) and (1.19) of disc-disc type.
If ρ→ 0 along a sequence, then the relative displacement of the stationary point converges, possibly along

a subsequence, to a global minimum of GΛ.

This stationary point is in a sense stable. See the discussion after the proof of the theorem.
Whenever (Ω1,Ω2) is a stationary point, one can shift both Ωj , j = 1, 2, by an arbitrary amount ι, and

the resulting pair (Ω1 + ι,Ω2 + ι) is again a stationary point. Therefore Theorem 1.1, as well as Theorem
1.2 below, gives a family of stationary points.

Theorem 1.1 will be proved by a Lyapunov-Schmidt reduction procedure tailored for this type of varia-
tional problems. It was first developed by Ren and Wei for the diblock copolymer problem [23, 22], a single
species system, and later used by Ren and Wang for the triblock copolymer problem [18]. There are two
steps. First one fixes a relative displacement ζ and finds a “pseudo-solution” ϕ(·, ζ) parametrized by ζ. This
pseudo-solution solves (1.13) and (1.14) up to a two dimendional subspace; see Lemma 5.3. In the second
step one considers the function ζ → JΛ(ϕ(·, ζ)) and shows that every critical point ζc of this function gives
rise to a special pseudo-solution ϕ(·, ζc), which solves (1.13) and (1.14) exactly; see Lemma 6.1. To find such
a ζc, one observes that the function ζ → JΛ(ϕ(·, ζ)) is closely related to Green’s function GΛ. Since GΛ

admits a global minimum, ζ → JΛ(ϕ(·, ζ)) also has a minimum. Using this minimum as the critical point
ζc, we obtain a stationary point ϕ(·, ζc) of JΛ, proving the theorem.

Green’s function GΛ is Λ-periodic on C; it is also even, i.e. GΛ(ζ) = GΛ(−ζ) for all ζ ∈ C. Consequently
∇GΛ(h) = 0 where h is a half period, i.e. h 6∈ Λ but 2h ∈ Λ. There are precisely three Λ-inequivalent half
periods. If (α1, α2) is a basis for Λ, they are given by

α1

2
,
α2

2
,
α1 + α2

2
. (1.23)

The question whether GΛ admits other critical points was studied by Lin and Wang in [9]. It was shown
that GΛ has either three or five critical points in C/Λ, depending on Λ. Our second theorem shows that
if ζ∗ is a non-degenerate critical point of GΛ, there exists a disc-disc type stationary point whose relative
displacement is close to ζ∗.

Theorem 1.2. Let Λ be a lattice, A1 > 1, A2 > 1, and η > 0. Suppose that GΛ admits a non-degenerate
critical point ζ∗. There exists ρ0 > 0 depending on Λ, A1, A2, and η such that if

1. 0 < ρ =
√
r2
1 + r2

2 < ρ0,
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Figure 1: The fundamental parallelograms Pα and the disc-disc configurations of optimal lattices. From
left to right: a rectangular lattice, a square lattice, a rhombic lattice, and a hexagonal lattice. In all cases
h = α1+α2

2 .

2. 1
A1

< r2
r1
< A1,

3. each entry γjk > 0 (j, k = 1, 2) and |γ| < A2γ12,

4. each diagonal entry γjj <
12−η
r3
j

, j = 1, 2,

then JΛ admits a stationary point to (1.8) and (1.19) of disc-disc type.
If ρ→ 0, then the relative displacement of the stationary point converges to ζ∗.

The proof of Theorem 1.2 starts with the same pseudo-solution ϕ(·, ζ) mentioned earlier. Instead of
minimizing the function ζ → JΛ(ϕ(·, ζ)), consider its gradient ∇JΛ(ϕ(·, ζ)) and show that this vector field
can be approximated by ∇GΛ, the gradient of GΛ. Using a topological degree argument, we prove that
near every non-degenerate critical point ζ∗ of GΛ there exists a critical point ζc of JΛ(ϕ(·, ζ)), leading to a
stationary point ϕ(·, ζc) of JΛ.

In the second part of this paper, we address the role played by the lattice Λ. From honeycomb to chicken
wire fence, from graphene to carbon nanotube, the most common two dimensional lattice observed in nature
is the hexagonal lattice. This lattice admits a basis (α1, α2) with α2

α1
= eπi/3. The reason that this lattice is

called a hexagonal lattice comes from the notion of Voronoi cells. A Voronoi cell of a lattice point consists
of points in C that are closer to the lattice point than other lattice points. For the hexagonal lattice the
Voronoi cell of each lattice point is a regular hexagon.

Our finding goes against the conventional wisdom. For the two-species interacting system JΛ the hexag-
onal lattice is rarely a favored structure. In section 7 it is shown that the effect of the size of a lattice can
be separated from the effect of the shape of the lattice. One can determine the shape of an optimal lattice
first by restricting to those lattices whos area equals 1. Then the size of the optimal lattice follows easily.

In our investigation, we are content with disc-disc configurations whose relative displacements are half
periods. More precisely given r1, r2 > 0, define an admissible set Ar1,r2 of pairs (Λ, h) such that (Λ, h) ∈
Ar1,r2 if the following conditions hold:

1. Λ is a lattice with |Λ| = 1, and h is a half period of Λ;

2. B(λ, r1) ∩B(λ′, r1) = ∅ whenever λ, λ′ ∈ Λ and λ 6= λ′;

3. B(λ, r2) ∩B(λ′, r2) = ∅ whenever λ, λ′ ∈ Λ and λ 6= λ′;

4. B(λ, r1) ∩B(λ′ + h, r2) = ∅ whenever λ, λ′ ∈ Λ.

Here the discs B(λ, rj) and B(λ′, rj) are viewed as subsets in C. The conditions 2, 3, and 4 ensure that they
are separated from each other.

Although not every pair of lattice and half period belongs to Ar1,r2 , the smaller r1 and r2 are, the larger
the admissible set Ar1,r2 is. In order to capture all the interesting lattices, we assume that r1 and r2 are
sufficiently small so that Ar1,r2 contains the following (Λ, h) pairs:
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1. Λ has a rectangular fundamental parallelogram of unit area whose aspect ratio is in [1,
√

3], and h is
the center of the rectangle;

2. Λ has a rhombic fundamental parallelogram of unit area whose acute angles are in [π3 ,
π
2 ], and h is the

center of the rhombus.

Given an admissible set Ar1,r2 satisfying the conditions 1 and 2 above we pose the minimization problem

min
(Λ,h)∈Ar1,r2

JΛ(B(0, r1), B(h, r2)). (1.24)

In section 8 we show that for problem (1.24), the hexagonal lattice is generally not optimal. Several
lattices will appear as the most favored structures. They are illustrated in Figure 1. A rectangular lattice
has a basis α whose fundamental parallelogram Pα is a rectangle. A square lattice has a square as a
fundamental parallelogram. A rhombic lattice has a rhombus as a fundamental parallelogram. Finally a
hexagonal lattice is a rhombus lattice with two acute angles of Pα equal to π

3 . If

τ =
α2

α1
, (1.25)

then in terms of τ , Λ is rectangular if Re τ = 0, Λ is square if τ = i, Λ is rhombic if |τ | = 1, and Λ is
hexagonal if τ = eπi/3. Note that these classes of lattices are not mutually exclusive. A hexagonal lattice
is a rhombic lattice; a square lattice is both a rectangular lattice and a rhombic lattice. Here is the third
theorem of this paper.

Theorem 1.3. Let the parameters γjk, j, k = 1, 2, satisfy the conditions

γ11 > 0, γ22 > 0, γ12 ≥ 0, γ11γ22 − γ2
12 ≥ 0, (1.26)

and set

b =
γ11r

4
1 + γ22r

4
2 − 2γ12r

2
1r

2
2

γ11r4
1 + γ22r4

2

(1.27)

which lies in [0, 1] by (1.26). Suppose that r1 and r2 are sufficiently small so that Ar1,r2 satisfies the conditions
1 and 2 before (1.24).

The minimization problem (1.24) admits a minimum attained by a lattice Λb and a half period hb. The
lattice Λb has a basis αb = (αb,1, αb,2) such that

hb =
αb,1 + αb,2

2
. (1.28)

Moreover there exists a number B = 0.1867... such that the following statements hold.

1. If b = 0, then Pαb is a rectangle whose aspect ratio is
√

3.

2. If b ∈ (0, B), then Pαb is a rectangle whose aspect ratio is in (1,
√

3). As b increases from 0 to B, this
ratio decreases from

√
3 to 1.

3. If b ∈ [B, 1−B], then Pαb is a square.

4. If b ∈ (1 − B, 1), then Pαb is a rhombus. It has an acute angle in (π3 ,
π
2 ). As b increases from 1 − B

to 1, this angle decreases from π
2 to π

3 .

5. If b = 1, then Pαb is a rhombus with an acute angle equal to π
3 .

The minimum (Λb, hb) is unique up to rotation.
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As you can see, only in the case b = 1, the optimal lattice is hexagonal; in all other cases, the optimal
lattice is not hexagonal. In contrast, there is a single species analogy to (1.8): the Ohta-Kawasaki diblock
copolymer problem [15]. If considered on a flat torus, the free energy of that problem takes the form

Jd,Λ(Ω) = PC/Λ(Ω) +
γd
2

∫
C/Λ
|∇IΛ(Ω)(z)|2 dA(z) (1.29)

where Ω is a measurable subset of C/Λ of the prescribed area: |Ω| = ωd|C/Λ|, ωd ∈ (0, 1), and γd > 0. This
Ω is occupied by one of the two type monomers in a diblock copolymer and is viewed as the only species
of the system (the other type monomers form the environment). If one takes Ω = B(0, r) to be a disc and
minimizes Jd,Λ(B(0, r)) with respect to Λ, |Λ| = 1, Chen and Oshita showed that the minimum was achieved
by a hexagonal lattice [4]; Sandier and Serfaty gave a different proof of this fact in [26].

In recent years the single species problem (1.29) has been actively studied on flat tori and bounded
domains with the Neumann boundary condition for equation (1.10); see [19, 22, 8, 1, 5, 11, 7, 16] and the
references therein. The study of the two-species problem (1.8) is still in the early stage. There are results on
existence of stationary points in one and two dimensional domains with the Neumann boundary condition
[21, 24, 25, 17, 18].

The threshold number B in Theorem 1.3 was first discovered by Luo, Ren, and Wei in their study of
another configuration [10]. It comprises two discs of the first species, B(ξ1, r1) and B(ξ′1, r1), and two discs
of the second species, B(ξ2, r2) and B(ξ′2, r2). In a fundamental parallelogram Pα the four centers are

ξ1 =
3

4
α1 +

1

4
α2, ξ

′
1 =

1

4
α1 +

3

4
α2, ξ2 =

1

4
α1 +

1

4
α2, ξ

′
2 =

3

4
α1 +

3

4
α2, (1.30)

which form a parallelogram like a scaled down version of Pα by a factor 1/2. When the energy of this
configuration is minimized among lattices of unit area, the optimal one is rectangular, square, rhombic, or
hexagonal, like in Theorem 1.3.

Another motivation for our work comes from a two-component Bose-Einstein condensates problem studied
by Mueller and Ho [12]. In a Bose gas made up of two hyperfine spin states of the same atom, the vortex
lattices are bound to be more intricate than those in single component condensates, as the vortices in different
components can move relative to one another. The model Mueller and Ho derived, different from our two-
species interacting system (1.8), also contains a parameter, and as it varies, numerical calculations show
various hexagonal, rhombic, square, and rectangular lattices appearing as the optimal lattices.

2 Disc-disc configuration

Section 2 to section 6 are devoted to the proofs of Theorems 1.1 and 1.2. The constants A1 > 1, A2 > 1,
and η > 0 in the two theorems are fixed and the conditions 2, 3, and 4 on rj and γjk hold. Also fixed in
these sections is the lattice Λ, so we drop the subscript Λ in notations like JΛ, IΛ, and GΛ, etc, and simply
write J , I, and G, respectively. There will be constants, such as C0, C1, c2, C2, and C3, arising in various
estimates. They depend on A1, A2, η, and Λ at most.

Denote the two parts of J by Js and Jl for short range interaction and long rrange interaction respectively,
i.e.

J (Ω1,Ω2) = Js(Ω1,Ω2) + Jl(Ω1,Ω2), (2.1)

Js(Ω1,Ω2) =
1

2

3∑
j=1

PC/Λ(Ωj/Λ), (2.2)

Jl(Ω1,Ω2) =

2∑
j,k=1

γjk
2

∫
C/Λ
∇I(Ωj)(z) · ∇I(Ωk)(z) dA(z). (2.3)
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Let (α1, α2) be a basis of Λ. It is always assumed that

α2

α1
∈ H (2.4)

where
H = {τ ∈ C : Im τ > 0} (2.5)

is the upper half plane. There is an explicit formula for Green’s function G:

G(z) =
|z|2

4|Λ|
− 1

2π
log
∣∣∣ e( z2α1

4i|Λ|α1
− z

2α1
+

α2

12α1

)(
1− e

(
z

α1

))
∞∏
n=1

(
1− e

(
nτ +

z

α1

))(
1− e

(
nτ − z

α1

)) ∣∣∣; (2.6)

see [4, Lemma 1] for a proof. Here
e(w) = e2πiw. (2.7)

Sometimes one singles out the singularity of G at 0 and decompose G into

G(z) = − 1

2π
log

2π|z|√
|Λ|

+
|z|2

4|Λ|
+H(z) (2.8)

where

H(z) = − 1

2π
log
∣∣∣ e( z2α1

4i|Λ|α1
− z

2α1
+

α2

12α1

) √
|Λ|

2πz

(
1− e

(
z

α1

))
∞∏
n=1

(
1− e

(
nτ +

z

α1

))(
1− e

(
nτ − z

α1

)) ∣∣∣ (2.9)

is a harmonic function on (C\Λ) ∪ {0}.
Note that G is a smooth function on C/Λ except at the lattice point 0, where G(z)→∞ as z → 0. For

sufficienlty small δ > 0,
min
z∈C/Λ

G(z) < min
z∈(C/Λ)\(C/Λ)δ

G(z) (2.10)

where (C/Λ)δ is subset of C/Λ given by

(C/Λ)δ = {z ∈ C/Λ : |z| > δ}. (2.11)

By (2.10), if ζ∗ is a minimum of G in C/Λ, then |ζ∗| > δ. Henceforth we fix one such δ.
Let Ωj = B(ξj , rj), j = 1, 2, be two discs in C/Λ centered at ξj of radii rj :

B(ξj , rj) = {z ∈ C/Λ : |z − ξj | ≤ rj}, j = 1, 2. (2.12)

Denote by
ζ = ξ2 − ξ1 (2.13)

the relative displacement from ξ1 to ξ2. One requires that

|ζ| ≥ δ, i.e., ζ ∈ (C/Λ)δ, (2.14)

and

rj <
δ

4
, j = 1, 2. (2.15)

Under (2.14) and (2.15), for any two points zj ∈ B(ξj , rj), j = 1, 2,

|z2 − z1| ≥ |ξ2 − ξ1| − r1 − r2 > δ − δ

4
− δ

4
=
δ

2
, (2.16)

so the two sets B(ξ1, r1) and B(ξ2, r2) are well separated. We call (B(ξ1, r1), B(ξ2, r2)) a disc-disc configu-
ration.
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Lemma 2.1. Let B(ξ, r) be a disc in C/Λ centered at ξ of radius r. Then

I(B(ξ, r))(z) =


−|z − ξ|

2

4
+
r2

4
− r2

2
log r if |z − ξ| ∈ [0, r]

−r
2

2
log |z − ξ| if |z − ξ| > r


− r2

2
log

2π√
|Λ|

+
1

4|Λ|

(
πr2|z − ξ|2 +

πr4

2

)
+ πr2H(z − ξ).

Proof. Without the loss of generality, assume ξ = 0. Since the integral of G on C/Λ is zero, by (2.8)

I(B(0, r))(z) =

∫
C/Λ

G(z − ζ)

(
χB(0,r)(ζ)− πr2

|Λ|

)
dA(ζ)

=

∫
B(0,r)

G(z − ζ) dA(ζ)

=

∫
B(0,r)

(
− 1

2π

)
log |z − ζ| dA(ζ) +

∫
B(0,r)

(
− 1

2π

)
log

2π√
|Λ|

dA(ζ)

+

∫
B(0,r)

|z − ζ|2

4|Λ|
dA(ζ) +

∫
B(0,r)

H(z − ζ) dA(ζ). (2.17)

Let

v(z) =

∫
B(0,r)

(
− 1

2π

)
log |z − ζ| dA(ζ),

which is a radially symmetric solution of −∆v = χB(0,r) in R2 = C. With t = |z|,

−vtt −
1

t
vt = χ(0,r), vt(0) = 0.

Solving this equation, one finds

v(t) =


− t

2

4
+
r2

4
− r2

2
log r if t ∈ [0, r]

−r
2

2
log t if t > r

+ C.

To determine the constant C, let t = 0 and then v(0) = r2

4 −
r2

2 log r + C. On the other hand

v(0) =

∫
B(0,r)

(
− 1

2π

)
log |0− ζ| dA(ζ) =

r2

4
− r2

2
log r.

Hence C = 0. For the remaining terms in (2.17), one finds∫
B(0,r)

(
− 1

2π

)
log

2π√
|Λ|

dA(ζ) = −r
2

2
log

2π√
|Λ|∫

B(0,r)

|z − ζ|2

4|Λ|
dA(ζ) =

1

4|Λ|

(
πr2|z|2 +

πr4

2

)
∫
B(0,r)

H(z − ζ) dA(ζ) = πr2H(z)

where the last one follows from the mean value property for harmonic functions.
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Lemma 2.2. Let (B(ξ1, r1), B(ξ2, r2)) be a disc-disc configuration. Then

J (B(ξ1, r1), B(ξ2, r2)) =

2∑
j=1

2πrj +

2∑
j=1

γjj
2

(
−
πr4
j

2
log

2πrj√
|Λ|

+
πr4
j

8
+ π2r4

jH(0) +
π2r6

j

4|Λ|

)

+ γ12

(
π2r2

1r
2
2G(ζ) +

π2(r2
1r

4
2 + r2

2r
4
1)

8|Λ|

)
where ζ = ξ2 − ξ1.

Proof. Obviously

Js(B(ξ1, r1), B(ξ2, r2)) =

2∑
j=1

2πrj . (2.18)

To find Jl(B(ξ1, r1), B(ξ2, r2)), note that, by Lemma 2.1,∫
B(ξj ,rj)

∫
B(ξj ,rj)

G(z − w) dA(w)dA(z) =

∫
B(ξj ,rj)

I(B(ξj , rj))(z) dA(z)

= −
πr4
j

2
log

2πrj√
|Λ|

+
πr4
j

8
+ π2r4

jH(0) +
π2r6

j

4|Λ|
, j = 1, 2, (2.19)∫

B(ξj ,rj)

∫
B(ξk,rk)

G(z − w) dA(w)dA(z) =

∫
B(ξj ,rj)

I(B(ξk, rk))(z) dA(z)

= π2r2
j r

2
kG(ξj − ξk) +

π2(r2
j r

4
k + r2

kr
4
j )

8|Λ|
, j 6= k. (2.20)

The lemma follows from (2.18), (2.19), and (2.20).

3 First variation

Define a Hilbert space Z of functions whose values are in R2,

Z =
{
φ = (φ1, φ2) : φj ∈ L2(S1),

∫ 2π

0

φj(θ)dθ = 0, j = 1, 2
}
. (3.1)

Here S1 is the unit circle identified with [0, 2π], and L2(S1) is the real valued L2-space on S1. The inner
product on Z is

〈φ, ψ〉 =

2∑
j=1

∫ 2π

0

φj(θ)ψj(θ) dθ. (3.2)

Next let

Y =
{
φ = (φ1, φ2) ∈ Z : φj ∈ H1(S1), j = 1, 2

}
(3.3)

be a subspace of Z. Here H1(S1) is the usual H1 Sobolev space on S1. The norm of Y is given by

||φ||2Y =

2∑
j=1

∫ 2π

0

(
(φ′j)

2 + φ2
j

)
dθ. (3.4)

Finally define

X =
{
φ = (φ1, φ2) ∈ Z : φj ∈ H2(S1), j = 1, 2

}
(3.5)
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where H2(S1) is the H2 Sobolev space on S1 and the norm of X is given by

||φ||2X =

2∑
j=1

∫ 2π

0

(
(φ′′j )2 + (φ′j)

2 + φ2
j

)
dθ. (3.6)

Clearly X ⊂ Y ⊂ Z.
Fix ξj and rj , j = 1, 2, subject to the conditions (2.14) and (2.15). If φ1 and φ2 are 2π-periodic continuous

functions, collectively denoted φ = (φ1, φ2), then they specify two subsets of C/Λ as

Ωj =
{
ξj + teiθ ∈ C/Λ : θ ∈ [0, 2π], t ∈

[
0,
√
r2
j + 2φj(θ)

]}
, j = 1, 2, (3.7)

provided r2
j + 2φj(θ) > 0 for all θ ∈ [0, 2π], j = 1, 2. In particular φ = (0, 0) corresponds to the the disc-disc

configuration (B(ξ1, r1), B(ξ2, r2)).
One views J as a functional of φ and the domain of J is taken to be

Dom(J ) =
{
φ ∈ Y : ‖φ‖Y < dρ2

}
. (3.8)

In (3.8), d is a positive number small enough so that

2Cd(1 +A2
1) <

1

2
(3.9)

where C > 0 is a constant in the imbedding H1(S1)→ C(S1), i.e.,

‖f‖L∞(S1) ≤ C‖f‖H1(S1), for all f ∈ H1(S1), (3.10)

and A1 > 1 is the constant in condition 2 of Theorems 1.1 and 1.2.
Note that under (3.8) and (3.9),

‖2φj‖L∞(S1) ≤ 2C‖φj‖H1(S1) ≤ 2Cdρ2 ≤ 2Cd(1 +A2
1)r2

j <
r2
j

2
, (3.11)

and hence

0 <
r2
j

2
< r2

j + 2φj(θ) <
3r2
j

2
, for all θ ∈ S1. (3.12)

The lower bound in (3.12) shows that Ωj is well-defined by (3.7). The upper bound in (3.12) implies that
Ω1 and Ω2 are well separated, for if zj ∈ Ωj , j = 1, 2, then by (2.14) and (2.15),

|z2 − z1| > |ξ2 − ξ1| −
√

3

2
r1 −

√
3

2
r2 > δ −

√
3

2

(
δ

4

)
−
√

3

2

(
δ

4

)
= 0.3876...× δ. (3.13)

The area of Ωj is

|Ωj | =
∫ 2π

0

∫ √r2
j+2φj(θ)

0

tdtdθ = πr2
j +

∫ 2π

0

φj(θ)dθ. (3.14)

Since φ ∈ Z,
∫ 2π

0
φj(θ) dθ = 0. Hence

|Ωj | = πr2
j , j = 1, 2, (3.15)

satisfying the area constraint (1.19).
Like J , Js and Jl defined in (2.2) and (2.3) are also functionals of φ. More explicitly

Js(φ) =

2∑
j=1

∫ 2π

0

√√√√r2
j + 2φj +

(
φ′j
)2

r2
j + 2φj

dθ (3.16)

Jl(φ) =

2∑
k=1

γjj
2

∫ 2π

0

∫ √r2
j+2φj(θ)

0

∫ 2π

0

∫ √r2
j+2φj(η)

0

G(teiθ − qeiη)tq dqdη dtdθ

+ γ12

∫ 2π

0

∫ √r2
1+2φ1(θ)

0

∫ 2π

0

∫ √r2
2+2φ2(η)

0

G(−ζ + teiθ − qeiη)tq dqdη dtdθ. (3.17)
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Remark 3.1. In addition to φ, Jl(φ), and J (φ) consequently, also depend on ζ, as seen in the last line of
(3.17). However ζ is fixed until section 5.

The first variation of J is a nonlinear integro-differential operator S such that

dJ (φ+ εψ)

dε

∣∣∣∣∣
ε=0

= 〈S(φ), ψ〉. (3.18)

The operator S maps a neighborhood of 0 in X into Z. More precisely the domain of S is set to be

Dom(S) =
{
φ ∈ X : ‖φ‖X < dρ2

}
. (3.19)

Note that the d in (3.19) is the same as the d in (3.8), so Dom(S) is a subset of Dom(J ).
For functions f1 and f2 defined on S1, it is convenient to use the notation

f1 ' f2 (3.20)

if f1 and f2 differ by a constant. One can find the constant by averaging, i.e.

f1 − f2 =
1

2π

∫ 2π

0

f1(θ) dθ − 1

2π

∫ 2π

0

f2(θ) dθ. (3.21)

Write S = Ss + Sl where Ss and Sl are the first variations of Js and Jl respectively. They are also
operators from Dom(S) to Z, and calculations show

Ss,j(φ)(θ) '
r2
j + 2φj(θ) +

3(φ′j(θ))
2

r2
j+2φj(θ)

− φ′′j (θ)(
r2
j + 2φj(θ) +

(φ′j(θ))
2

r2
j+2φj(θ)

)3/2
, j = 1, 2. (3.22)

where the right side is the curvature of ∂Ωj . Note that ', instead of =, is used in (3.22). This is because
the first variation of Js is calculated in the space Y, where functions have zero average. The left side Ss,j(φ)
must have zero average but the curvature on the right side does not, and the two differ by a constant. If we
denote the right side of (3.22) by Kj(φj), then

Ss,j(φ) = Kj(φj)−Kj(φj) (3.23)

where Kj(φj) denotes the average of Kj(φj),

Kj(φj) =
1

2π

∫ 2π

0

Kj(φj)(θ) dθ. (3.24)

The components of Sl(φ) are

Sl,1(φ)(θ) ' γ11I(Ω1)

(
ξ1 +

√
r2
1 + 2φ1(θ)eiθ

)
+ γ12I(Ω2)

(
ξ1 +

√
r2
1 + 2φ1(θ)eiθ

)
, (3.25)

Sl,2(φ)(θ) ' γ12I(Ω1)

(
ξ2 +

√
r2
2 + 2φ2(θ)eiθ

)
+ γ22I(Ω2)

(
ξ2 +

√
r2
2 + 2φ2(θ)eiθ

)
. (3.26)

Again the left side and the right side in each of (3.25) and (3.26) differ by a constant. Let

G(z) = − 1

2π
log |z|+R(z) (3.27)

where by (2.8)

R(z) = − 1

2π
log

2π√
|Λ|

+
|z|2

4|Λ|
+H(z) (3.28)
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is smooth on (C\Λ) ∪ {0}. The Sl operator may be written in a more explicit form:

Sl,1(φ)(θ) ' −γ11

2π

∫ 2π

0

∫ √r2
1+2φ1(η)

0

log

∣∣∣∣√r2
1 + 2φ1(θ)eiθ − teiη

∣∣∣∣ t dtdη
+ γ11

∫ 2π

0

∫ √r2
1+2φ1(η)

0

R

(√
r2
1 + 2φ1(θ)eiθ − teiη

)
t dtdη

+ γ12

∫ 2π

0

∫ √r2
2+2φ2(η)

0

G

(
−ζ +

√
r2
1 + 2φ1(θ)eiθ − teiη

)
t dtdη (3.29)

Sl,2(φ)(θ) ' −γ22

2π

∫ 2π

0

∫ √r2
2+2φ2(η)

0

log

∣∣∣∣√r2
2 + 2φ2(θ)eiθ − teiη

∣∣∣∣ t dtdη
+ γ22

∫ 2π

0

∫ √r2
2+2φ2(η)

0

R

(√
r2
2 + 2φ2(θ)eiθ − teiη

)
t dtdη

+ γ12

∫ 2π

0

∫ √r2
1+2φ1(η)

0

G

(
ζ +

√
r2
2 + 2φ2(θ)eiθ − teiη

)
t dtdη. (3.30)

Comparing (3.22), (3.25), and (3.26) to (1.13) and (1.14), we see that if

S(φ) = 0, (3.31)

then the pair (Ω1,Ω2) described by φ is a stationary point of J .
In this paper, the O(·) notation is used. For instance O(|γ|ρ4) in the next lemma stands for a quantity

that can be bounded by C|γ|ρ4 uniformly in θ for some C > 0 where C is independent of γ, rj , and ζ.

Lemma 3.2. The first variation at the disc-disc configuration, represented by φ = (0, 0), is

S1(0, 0)(θ) = γ11πr
2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4)

S2(0, 0)(θ) = γ22πr
2
2∇H(0) · r2e

iθ + γ12πr
2
1∇G(ζ) · r2e

iθ +O(|γ|ρ4).

Proof. The curvature of a circle is the inverse of its radius, so

Ss,j(0, 0) ' 1

rj
, j = 1, 2. (3.32)

By Lemma 2.1 and dropping constant terms, one derives

Sl,1(0, 0)(θ) ' γ11

[
−r

2
1

2
log

2πr1√
|Λ|

+
3πr4

1

8|Λ|
+ πr2

1H(r1e
iθ)

]
+ γ12

[
πr2

2G(−ζ + r1e
iθ) +

πr4
2

8|Λ|

]
' γ11πr

2
1H(r1e

iθ) + γ12πr
2
2G(−ζ + r1e

iθ)

' γ11πr
2
1

(
H(0) +∇H(0) · r1e

iθ +O(ρ2)
)

+ γ12πr
2
2

(
G(−ζ) +∇G(−ζ) · r1e

iθ +O(ρ2)
)

' γ11πr
2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4) (3.33)

Sl,2(0, 0)(θ) ' γ22

[
−r

2
2

2
log

2πr2√
|Λ|

+
3πr4

2

8|Λ|
+ πr2

2H(r2e
iθ)

]
+ γ12

[
πr2

1G(ζ + r2e
iθ) +

πr4
1

8|Λ|

]
' γ22πr

2
2∇H(0) · r2e

iθ + γ12πr
2
1∇G(ζ) · r2e

iθ +O(|γ|ρ4). (3.34)

Now that

S1(0, 0)(θ) ' 1

r1
+ γ11πr

2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4)

' γ11πr
2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4)
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by (3.32) and (3.33), there is K ∈ R, independent of θ, such that

S1(0, 0)(θ) = γ11πr
2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4) +K. (3.35)

Since S(0, 0) ∈ Z, the average of S1(0, 0) vanishes. Integrating (3.35) with respect to θ yields

0 = 0 + 0 +O(|γ|ρ4) +K,

which implies
K = O(|γ|ρ4)

and
S1(0, 0)(θ) = γ11πr

2
1∇H(0) · r1e

iθ + γ12πr
2
2∇G(−ζ) · r1e

iθ +O(|γ|ρ4).

The same argument applies to S2(0, 0).

4 Second variation

The Fréchet derivative of S at (0, 0), which is the second variation of J at (0, 0), is a linear operator,

S ′(0, 0) : u ∈ X → S ′(0, 0)(u) ∈ Z. (4.1)

Calculations show

S ′1(0, 0)(u)(θ)

' − 1

r3
1

(u′′1(θ) + u1(θ))

− γ11

2π

∫ 2π

0

u1(η) log |r1e
iθ − r1e

iη|dη − γ11

2
u1(θ)

+ γ11

∫ 2π

0

u1(η)R(r1e
iθ − r1e

iη)dη + γ11
u1(θ)

r1

∫
B(0,r1)

∇R(r1e
iθ − z) · eiθdA(z)

+ γ12

∫ 2π

0

u2(η)G(−ζ + r1e
iθ − r2e

iη)dη + γ12
u1(θ)

r1

∫
B(0,r2)

∇G(−ζ + r1e
iθ − z) · eiθ dA(z) (4.2)

S ′2(0, 0)(u)(θ)

' − 1

r3
2

(u′′2(θ) + u2(θ))

− γ22

2π

∫ 2π

0

u2(η) log |r2e
iθ − r2e

iη|dη − γ22

2
u2(θ)

+ γ22

∫ 2π

0

u2(η)R(r2e
iθ − r2e

iη)dη + γ22
u2(θ)

r2

∫
B(0,r2)

∇R(r2e
iθ − z) · eiθdA(z)

+ γ12

∫ 2π

0

u1(η)G(ζ + r2e
iθ − r1e

iη)dη + γ12
u2(θ)

r2

∫
B(0,r1)

∇G(ζ + r2e
iθ − z) · eiθ dA(z). (4.3)

Write S ′(0, 0) as a sum of two parts: E and F where

Eju(θ) ' − 1

r3
j

(
u′′j (θ) + uj(θ)

)
− γjj

2π

∫ 2π

0

uj(η) log |rjeiθ − rjeiη| dη − γjj
2
uj (θ) , j = 1, 2, (4.4)
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is the major part, and

F1u(θ) ' γ11

∫ 2π

0

u1(η)R(r1e
iθ − r1e

iη)dη + γ11
u1(θ)

r1

∫
B(0,r1)

∇R(r1e
iθ − z) · eiθdA(z)

+ γ12

∫ 2π

0

u2(η)G(−ζ + r1e
iθ − r2e

iη)dη + γ12
u1(θ)

r1

∫
B(0,r2)

∇G(−ζ + r1e
iθ − z) · eiθ dA(z) (4.5)

F2u(θ) ' γ22

∫ 2π

0

u2(η)R(r2e
iθ − r2e

iη)dη + γ22
u2(θ)

r2

∫
B(0,r2)

∇R(r2e
iθ − z) · eiθdA(z)

+ γ12

∫ 2π

0

u1(η)G(ζ + r2e
iθ − r1e

iη)dη + γ12
u2(θ)

r2

∫
B(0,r1)

∇G(ζ + r2e
iθ − z) · eiθ dA(z) (4.6)

is the minor part.
Note that E1 and E2 are decoupled in Eu: E1 acts on u1 only and E2 acts on u2 only. To determine the

spectrum of E , decompose

Z =
∞
⊕
n=1
Z(n), where Z(n) =

{
A cosnθ +B sinnθ : A,B ∈ R2}, n = 1, 2, ... (4.7)

Since

log |1− eiθ| = −
∞∑
k=1

cos kθ

k
,

we deduce

Ej(einθ) =
n2 − 1

r3
j

einθ +
γjj
2n

einθ − γjj
2
einθ, n = 1, 2, ..., j = 1, 2. (4.8)

This means that, the eigenvalues of E are

µn,j =
n2 − 1

r3
j

+
γjj
2n
− γjj

2
, for n = 1, 2, 3, ..., and j = 1, 2. (4.9)

The corresponding eigenvectors are[
cosnθ

0

]
,

[
sinnθ

0

]
, if j = 1;

[
0

cosnθ

]
,

[
0

sinnθ

]
, if j = 2. (4.10)

These four vectors generate the invariant subspace Z(n).
Let Π be the orthogonal projection operator from Z to a subspace Z[, where

Z[ =

{
φ = (φ1, φ2) ∈ Z :

∫ 2π

0

φj cos θ dθ =

∫ 2π

0

φj sin θ dθ = 0, j = 1, 2,

}
. (4.11)

Then Z[ is the orthogonal compliment of Z(1) and

Z[ =
∞
⊕
n=2
Z(n). (4.12)

Also define

Y[ = Y ∩ Z[, X[ = X ∩ Z[. (4.13)

When φ ∈ Z[, the perturbed disc Ωj described by φj is considered to be centered at ξj .
We are more interested in ΠS ′(0, 0) and ΠE restricted to X[ instead of S ′(0, 0) and E on X . Since E maps

X[ into Z[, ΠE = E on X[.
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Lemma 4.1. There exists c2 > 0 such that

1.
〈ΠEu, u〉 ≥ 2c2ρ

−3||u||2Y

2.
||ΠEu||Z ≥ 2c2ρ

−3||u||X

for all u ∈ X[.

Proof. As ΠE agrees with E on X[, by (4.9) the eigenvalues of ΠE in X[ are

µn,j =
(n− 1)

2nr3
j

(
2n(n+ 1)− γjjr3

j

)
, n = 2, 3, ..., j = 1, 2.

According to condition 4 of Theorems 1.1 and 1.2, γjjr
3
j < 12− η. Hence

µn,j >
(n− 1)

2nr3
j

(2n(n+ 1)− 12 + η) .

Then there exists c > 0 such that

µn,j > cρ−3n2, n = 2, 3, ..., j = 1, 2. (4.14)

Given u ∈ X[ ⊂ Z[, one can expand it with respect to the eigenvectors (4.10) so that

u =

∞∑
n=2

(
An,1

[
cosnθ

0

]
+Bn,1

[
sinnθ

0

]
+An,2

[
0

cosnθ

]
+Bn,2

[
0

sinnθ

])
, (4.15)

ΠEu =

∞∑
n=2

(
An,1µn,1

[
cosnθ

0

]
+Bn,1µn,1

[
sinnθ

0

]
+An,2µn,2

[
0

cosnθ

]
+Bn,2µn,2

[
0

sinnθ

])
. (4.16)

They imply

〈ΠEu, u〉 = π

∞∑
n=2

2∑
j=1

(
A2
n,j +B2

n,j

)
µn,j , (4.17)

‖u‖2Y = π

∞∑
n=2

2∑
j=1

(
A2
n,j +B2

n,j

)
(1 + n2), (4.18)

‖ΠEu‖2Z = π

∞∑
n=2

2∑
j=1

(
A2
n,j +B2

n,j

)
µ2
n,j , (4.19)

‖u‖2X = π

∞∑
n=2

2∑
j=1

(
A2
n,j +B2

n,j

)
(1 + n2 + n4). (4.20)

Both parts of the lemma follow after one sets c2 = c/4.

Lemma 4.2. There exists C2 > 0 such that

‖Fu‖Z ≤ C2|γ|ρ ‖u‖Z

for all u ∈ X[.
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Proof. Note, for example,∫ 2π

0

u1(η)R
(
r1e

iθ − r1e
iη
)
dη =

∫ 2π

0

u1(η)
(
R(0) +∇R(0) ·

(
r1e

iθ − r1e
iη
))
dη +

∫ 2π

0

u1(η)O(ρ2) dη

=

∫ 2π

0

u1(η)O(ρ2) dη

u1(θ)

r1

∫
B(0,r1)

∇R(r1e
iθ − y) · eiθdy =

u1(θ)

r1
O(ρ2) = u1(θ)O(ρ),

by the facts that, since u ∈ Z[,∫ 2π

0

uj(η) dη =

∫ 2π

0

uj(η) cos η dη =

∫ 2π

0

uj(η) sin η dη = 0, j = 1, 2,

and the area of B(0, r1) is of order ρ2. Similarly estimates hold for the other terms in F1(u)(θ) and F2(u)(θ),
and the lemma follows.

Lemma 4.3. There exists c2 > 0 such that when ρ is sufficiently small,

1.
〈ΠS ′(0, 0)(u), u〉 ≥ c2ρ−3‖u‖2Y , for all u ∈ X[,

2.
‖ΠS ′(0, 0)(u)‖Z ≥ c2ρ−3‖u‖X , for all u ∈ X[,

3. the operator ΠS ′(0, 0) is one-to-one and onto from X[ to Z[.

Proof. In this proof and later let C0 > 0 such that

ρ3|γ| ≤ C0, (4.21)

by condition 4 of Theorems 1.1 and 1.2.
By Lemma 4.2, for all u ∈ X[ and sufficiently small ρ,

‖Fu‖Z ≤ C2|γ|ρ ‖u‖Z ≤ C2C0ρ
−2 ‖u‖Z ≤ c2ρ

−3‖u‖Z , (4.22)

and by Lemma 4.1.1,

〈ΠS ′(0, 0)(u), u〉 = 〈ΠEu, u〉+ 〈ΠFu, u〉
≥ 2c2ρ

−3‖u‖2Y − c2ρ−3‖u‖2Z
≥ c2ρ

−3‖u‖2Y ,

which proves part 1 of the lemma. For part 2, by Lemma 4.1.2 and (4.22),

‖ΠS ′(0, 0)(u)‖Z ≥ ‖ΠEu‖Z − ‖ΠFu‖Z
≥ 2c2ρ

−3‖u‖X − c2ρ−3‖u‖Z
≥ c2ρ

−3‖u‖X ,

for all u ∈ X[.
For part 3, a weaker version of part 2,

‖ΠS ′(0, 0)(u)‖Z ≥ c2ρ−3‖u‖Z , for all u ∈ X[, (4.23)

implies that ΠS ′(0, 0) is one-to-one.
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Let v ∈ Z[ be perpendicular to the range of ΠS ′(0, 0), i.e. 〈ΠS ′(0, 0)(u), v〉 = 0 for all u ∈ X[.
Since ΠS ′(0, 0) is a self-adjoint operator on Z[ with the domain X[ ⊂ Z[, one deduces that v ∈ X[ and
ΠS ′(0, 0)(v) = 0. By the injectivity of ΠS ′(0, 0), v = 0. Hence the range of ΠS ′(0, 0) is dense in Z[.

To show that ΠS ′(0, 0) is surjective, let w ∈ Z[. There exist un ∈ X[ such that ΠS ′(0, 0)(un)→ w in Z[.
Therefore ΠS ′(0, 0)(un) is a Cauchy sequence in Z[. By (4.23), un is also a Cauchy seqence in Z[. There
exists u ∈ Zb such that un → u in Zb. As a self-adjoint operator, ΠS ′(0, 0) has a closed graph in Z[ × Z[,
so (u,w) is on this graph. This means that u ∈ Xb and ΠS ′(0, 0)(u) = w.

5 Reduction

It is not possible to solve S(φ) = 0, (3.31), for every ζ ∈ (C/Λ)δ. Instead we solve the equation

ΠS(φ) = 0 (5.1)

for each ζ in this section. A solution of (5.1) is called a pseudo-solution of (3.31).

Lemma 5.1. There exists C1 > 0 such that

‖ΠS(0, 0)‖Z ≤ C1|γ|ρ4. (5.2)

Proof. This follows from Lemma 3.2 and the definition of the projection operator Π.

Also needed is an estimate on the second Fréchet derivative of S, i.e. the third variation of J .

Lemma 5.2. There exists C3 > 0 such that for all φ ∈ Dom(S), the following estimates hold for all u ∈ X
and v ∈ X ,

1.
|〈S ′′(φ)(u, v), v〉| ≤ C3

(
ρ−5 + |γ|ρ−2

)
‖u‖X ‖v‖

2
Y ,

2.
||S ′′(φ)(u, v)||Z ≤ C3

(
ρ−5 + |γ|ρ−2

)
‖u‖X ‖v‖X .

We refer to [23, Lemma 3.2] and [22, Lemma 6.1] for proofs of these results.

Lemma 5.3. When ρ is sufficiently small, there exists ϕ ∈ X[ for every ζ ∈ (C/Λ)δ such that ϕ solves (5.1)
and

‖ϕ‖X ≤
2C1

c2
|γ|ρ7.

Proof. Expand S(φ) as
S(φ) = S(0, 0) + S ′(0, 0)(φ) +R(φ) (5.3)

where R(φ), defined by (5.3), is a higher order term. Turn (5.1) to a fixed point form:

φ = T (φ) (5.4)

where
T (φ) = −(ΠS ′(0, 0))−1(ΠS(0, 0) + ΠR(φ)). (5.5)

is an operator defined on W = {φ ∈ X[ : ‖φ‖X ≤ ερ2} ⊂ Dom(S). Here ε > 0 is to be determined.
By Lemmas 5.1 and 4.3.2,

‖(ΠS ′(0, 0))−1ΠS(0, 0)‖X ≤
C1

c2
|γ|ρ7. (5.6)
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Lemma 5.2.2 implies that

‖R(φ)‖Z ≤ C3

(
ρ−5 + |γ|ρ−2

)
‖φ‖2X . (5.7)

By Lemma 4.3.2,

‖(ΠS ′(0, 0))−1ΠR(φ)‖X ≤ C3

c2

(
ρ−2 + |γ|ρ

)
‖φ‖2X . (5.8)

For φ ∈ W, by (4.21), (5.5), (5.6), and (5.8) one deduces

‖T (φ)‖X ≤
C1

c2
|γ|ρ7 +

C3

c2

(
ρ2 + |γ|ρ5

)
ε2 ≤

(C1

c2
C0ρ

2 +
C3

c2
ε2 +

C3

c2
C0ε

2
)
ρ2.

Take

ε = min
{ c2

4C3(1 + C0)
,
d

2

}
(5.9)

where d comes from (3.19), the domain of S. Let ρ be small enough such that C1

c2
C0ρ

2 < ε
2 and Lemma 4.3

holds. Then
‖T (φ)‖X ≤ ερ2.

Therefore T maps W into itself.
Next show that T is a contraction. Let φ, ψ ∈ W. First note that

T (φ)− T (ψ) = −(ΠS ′(0, 0))−1(Π) (R(φ)−R(ψ)) . (5.10)

Because

R(φ)−R(ψ) = S(φ)− S(ψ)− S ′(0, 0)(φ− ψ), (5.11)

one finds, with the help of Lemma 5.2.2, that

‖R(φ)−R(ψ)‖Z ≤ ‖S ′(ψ)(φ− ψ)− S ′(0, 0)(φ− ψ)‖Z +
C3

2

(
ρ−5 + |γ|ρ−2

)
‖φ− ψ‖2X

≤ C3

(
ρ−5 + |γ|ρ−2

)
‖ψ‖X ‖φ− ψ‖X +

C3

2

(
ρ−5 + |γ|ρ−2

)
‖φ− ψ‖2X

≤ C3

(
ρ−5 + |γ|ρ−2

)
(ε+ ε) ρ2‖φ− ψ‖X

≤ 2ε C3

(
ρ−3 + |γ|

)
‖φ− ψ‖X .

Then Lemma 4.3.2, (4.21) and (5.9) imply that

‖T (φ)− T (ψ)‖X ≤
2ε C3

c2
(1 + C0) ‖φ− ψ‖X ≤

1

2
‖φ− ψ‖X . (5.12)

Hence T is a contraction mapping, and a unique fixed point ϕ exists in W.
By the definition of W, ‖ϕ‖X = O(ρ2). However, this can be improved, if one revisits the equation

ϕ = T (ϕ) and derives from (5.5), (5.6) and (5.8) that

‖ϕ‖X ≤ ‖(ΠS ′(0, 0))−1ΠS(0, 0)‖X + ‖(ΠS ′(0, 0))−1ΠR(ϕ)‖X ≤
C1

c2
|γ|ρ7 +

C3

c2

(
ρ−2 + |γ|ρ

)
‖ϕ‖2X .

Rewrite the above as (
1− C3

c2

(
ρ−2 + |γ|ρ

)
‖ϕ‖X

)
‖ϕ‖X ≤

C1

c2
|γ|ρ7. (5.13)

In (5.13) estimate

C3

c2

(
ρ−2 + |γ|ρ

)
‖ϕ‖X ≤

C3

c2

(
1 + |γ|ρ3

)
ε ≤ C3

c2
(1 + C0) ε ≤ 1

4
(5.14)

by (4.21) and (5.9). The estimate of ϕ follows from (5.13) and (5.14).

19



The next two lemmas show some properties of the pseudo-solution ϕ. Lemma 5.4 says that ΠS ′(ϕ) is
positive definite, so ϕ locally minimizes J in X[. Lemma 5.5 gives a good estimate of J (ϕ) which is very
close to J (0, 0), the energy of the disc-disc configuration of the same relative displacement.

Lemma 5.4. When ρ is sufficiently small, for all u ∈ X[,

1.
〈ΠS ′(ϕ)(u), u〉 ≥ c2

2
ρ−3‖u‖2Y

2.
‖ΠS ′(ϕ)(u)‖Z ≥

c2
2
ρ−3‖u‖X .

Proof. By Lemma 5.2,

〈ΠS ′(ϕ)(u), u〉 = 〈ΠS ′(0, 0)(u), u〉+ 〈Π(S ′(ϕ)− S ′(0, 0))u, u〉
≥ c2ρ

−3‖u‖2Y − C3

(
ρ−5 + |γ|ρ−2

)
‖ϕ‖X ‖u‖2Y

≥
(
c2 −

2C1C3C0

c2
(1 + C0)ρ2

)
ρ−3‖u‖2Y ,

and

‖ΠS ′(ϕ)(u)‖Z ≥ ‖ΠS ′(0, 0)(u)‖Z − ‖Π(S ′(ϕ)− S ′(0, 0))(u)‖Z
≥ c2ρ

−3‖u‖X − C3

(
ρ−5 + |γ|ρ−2

)
‖ϕ‖X ‖u‖X

≥
(
c2 −

2C1C3C0

c2
(1 + C0)ρ2

)
ρ−3‖u‖X .

If ρ is sufficiently small, then 2C1C3C0

c2
(1 + C0)ρ2 ≤ c2

2 and both parts of the lemma follow.

Lemma 5.5. It holds uniformly for ζ ∈ (C/Λ)δ that

J (ϕ) =

2∑
j=1

(
2πrj +

γjj
2

(
−
πr4
j

2
log

2πrj√
|Λ|

+
πr4
j

8
+ π2r4

jH(0)

))
+ γ12π

2r2
1r

2
2G(ζ) +O(|γ|ρ6).

Proof. Expanding J (ϕ) yields

J (ϕ) = J (0, 0) + 〈S(0, 0), ϕ〉+
1

2
〈S ′(0, 0)(ϕ), ϕ〉+

1

6
〈S ′′(tϕ)(ϕ,ϕ), ϕ〉 (5.15)

for some t ∈ (0, 1). On the other hand expanding S(ϕ), and then applying Π on both sides give

‖ΠS(ϕ)−ΠS(0, 0)−ΠS ′(0, 0)(ϕ)‖Z ≤ sup
t∈(0,1)

1

2
‖ΠS ′′(tϕ)(ϕ,ϕ)‖Z . (5.16)

Since ΠS(ϕ) = 0, (5.16) shows that

‖ΠS(0, 0) + ΠS ′(0, 0)(ϕ)‖Z ≤ sup
t∈(0,1)

1

2
‖ΠS ′′(tϕ)(ϕ,ϕ)‖Z ,

which implies that

‖〈ΠS(0, 0), ϕ〉+ 〈ΠS ′(0, 0)(ϕ), ϕ〉‖Z ≤

(
sup
t∈(0,1)

1

2
‖ΠS ′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X . (5.17)
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Since ϕ ∈ X[,
〈ΠS(0, 0), ϕ〉 = 〈S(0, 0), ϕ〉, 〈ΠS ′(0, 0)(ϕ), ϕ〉 = 〈S ′(0, 0)(ϕ), ϕ〉. (5.18)

Then (5.17) shows that

‖〈S(0, 0), ϕ〉+ 〈S ′(0, 0)(ϕ), ϕ〉‖Z ≤

(
sup
t∈(0,1)

1

2
‖ΠS ′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X . (5.19)

By (5.19), (5.15) yields that

|J (ϕ)− J (0, 0)− 1

2
〈S(0, 0), ϕ〉| ≤ 5

12

(
sup
t∈(0,1)

‖S ′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X .

Therefore Lemma 5.1, (5.18), Lemma 5.2.2 and Lemma 5.3 imply that

|J (ϕ)− J (0, 0)| ≤ 1

2
|〈S(0, 0), ϕ〉|+ 5

12

(
sup
t∈(0,1)

‖S ′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X

≤ 1

2
(C1|γ|ρ4)

2C1

c2
|γ|ρ7 +

5

12
C3

(
ρ−5 + |γ|ρ−2

)(2C1

c2
|γ|ρ7

)3

= |γ|2ρ11

(
C2

1

c2
+

10C3C
3
1

3c32
(1 + |γ|ρ3)|γ|ρ5

)
.

Finally one uses Lemma 2.2 and (4.21) to complete the proof.

6 Stationary points

We emphasize the dependence of J and S on ζ and write them as J (·, ζ) and S(·, ζ) respectively. It is proved
in Lemma 5.3 that for every ζ ∈ (C/Λ)δ, there exists ϕ ∈ X[ such that ΠS(ϕ) = 0. This pseudo-solution
ϕ also depends on ζ, so we write it as ϕ(·, ζ). In this section we prove Theorems 1.1 and 1.2 by finding a
particular ζc such that at ζ = ζc,

S(ϕ(·, ζc), ζc) = 0. (6.1)

Then the pair of subsets in C/Λ specified by ϕ(·, ζc) is a stationary point of J . Define a function

J(ζ) = J (ϕ(·, ζ), ζ), ζ ∈ (C/Λ)δ. (6.2)

Lemma 6.1. If ζc ∈ (C/Λ)δ is a critical point of the function J , then ϕ(·, ζc) is a solution of (6.1).

Proof. There is a general first variation formula for (Ω1,Ω2) deformed to (Ωε,1,Ωε,2):

∂J (Ωε,1,Ωε,2)

∂ε

∣∣∣
ε=0

= −
2∑
j=1

∫
∂Ωj

(κj + γj1I(Ω1) + γj2I(Ω2))Nj ·Xj ds (6.3)

where ds is the length element; see [24, Lemma 2.4] or [25, Lemma 2.4]. Let (Ω1,Ω2) be the pair of perturbed
discs specified by ϕ(·, ζ) and the boundary of Ωj be parametrized by Rj ; namely

Rj(θ) = ξj +
√
r2
j + 2ϕj(θ, ζ) eiθ, j = 1, 2. (6.4)

The unit tangent and normal vectors of Rj are

Tj(θ) =
∂Rj(θ)
∂θ∣∣∂Rj(θ)
∂θ

∣∣ , and Nj(θ) = iTj(θ), (6.5)
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respectively. Since ds =
∣∣∂Rj(θ)

∂θ

∣∣dθ,
Tj(θ)

ds

dθ
=
∂Rj(θ)

∂θ
=

∂ϕj
∂θ√

r2
j + 2ϕj

eiθ +
√
r2
j + 2ϕj i eiθ (6.6)

Nj(θ)
ds

dθ
=

∂ϕj
∂θ√

r2
j + 2ϕj

i eiθ −
√
r2
j + 2ϕj e

iθ (6.7)

In (6.3), κj is the curvature of Rj , and Nj points inwards.
In this proof we generate four deformations by varying ξj = (ξ1

j , ξ
2
j ), j = 1, 2. They supply Xj in (6.3).

First take ξ1
1 to be a variable and keep the other ξkj ’s fixed. This amounts to moving Ω1 horizontally while

changing the shapes of Ω1 and Ω2 slightly. Then, with ζ = ξ2 − ξ1,

X1 =
∂R1

∂ξ1
1

= (1, 0) +

∂ϕ1

∂ζ1
∂ζ1

∂ξ1
1√

r2
1 + 2ϕ1

eiθ = (1, 0)−
∂ϕ1

∂ζ1√
r2
1 + 2ϕ1

eiθ (6.8)

N1 ·X1
ds

dθ
= −

∂ϕ1

∂θ√
r2
1 + 2ϕ1

sin θ −
√
r2
1 + 2ϕ1 cos θ +

∂ϕ1

∂ζ1
, (6.9)

X2 =
∂R2

∂ξ1
1

=

∂ϕ2

∂ζ1
∂ζ1

∂ξ1
1√

r2
2 + 2ϕ2

eiθ = −
∂ϕ2

∂ζ1√
r2
2 + 2ϕ2

eiθ, (6.10)

N2 ·X2
ds

dθ
=
∂ϕ2

∂ζ1
(6.11)

Since ϕ ∈ X[, ∫ 2π

0

ϕj dθ =

∫ 2π

0

ϕj cos θ dθ =

∫ 2π

0

ϕj sin θ dθ = 0, j = 1, 2. (6.12)

It follows that ∫ 2π

0

∂ϕj
∂ζk

dθ =

∫ 2π

0

∂ϕj
∂ζk

cos θ dθ =

∫ 2π

0

∂ϕj
∂ζk

sin θ dθ = 0, j = 1, 2, k = 1, 2. (6.13)

Because ∫
∂Ω1

N1 ·X1 ds =

∫ 2π

0

[
− d

dθ

(√
r2
1 + 2ϕ1 sin θ

)
+
∂ϕ1

∂ζ1

]
dθ = 0, (6.14)∫

∂Ω1

N2 ·X2 ds =

∫ 2π

0

∂ϕ2

∂ζ2
dθ = 0, (6.15)

by (6.13), one deduces from (3.22), (3.25), (3.26), and (6.3)

∂J (Ω1,Ω2)

∂ξ1
1

= −
2∑
j=1

∫
∂Ωj

Sj(ϕ, ζ)Nj ·Xj ds. (6.16)

Since ΠS(ϕ(·, ζ), ζ) = 0, there exist constants Aj(ζ) and Bj(ζ) depending on ζ such that

Sj(ϕ(·, ζ), ζ) = Aj(ζ) cos θ +Bj(ζ) sin θ, j = 1, 2. (6.17)
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When ξ2 − ξ1 = ζc, the left side of (6.16) vanishes and, with the help of (6.13),

0 = −
∫ 2π

0

(A1(ζc) cos θ +B1(ζc) sin θ)

(
−

∂ϕ1

∂θ√
r2
1 + 2ϕ1

sin θ −
√
r2
1 + 2ϕ1 cos θ +

∂ϕ1

∂ζ1

)
dθ

−
∫ 2π

0

(A2(ζc) cos θ +B2(ζc) sin θ)
∂ϕ2

∂ζ1
dθ

=

∫ 2π

0

(A1(ζc) cos θ +B1(ζc) sin θ)
d

dθ

(√
r2
1 + 2ϕ1 sin θ

)
dθ

= A1(ζc)

∫ 2π

0

√
r2
1 + 2ϕ1 sin2 θ dθ −B1(ζc)

∫ 2π

0

√
r2
1 + 2ϕ1 sin θ cos θ dθ. (6.18)

The two integrals in the last line are estimated by the bound on ϕ from Lemma 5.3 and one finds

A1(ζc)
(
πr1 +O(|γ|ρ6)

)
−B1(ζc)

(
0 +O(|γ|ρ6)

)
= 0. (6.19)

Next vary ξ2
1 while keeping the other ξkj ’s fixed to derive analogously

−A1(ζc)
(
0 +O(|γ|ρ6)

)
+B1(ζc)

(
πr1 +O(|γ|ρ6)

)
= 0.. (6.20)

Equations (6.19) and (6.20) form a homogeneous linear system for A1(ζc) and B1(ζc), and since the system
is nonsingular when ρ is small,

A1(ζc) = B1(ζc) = 0. (6.21)

Taking variations with respect to ξ1
2 and ξ2

2 shows in a similar way that

A2(ζc) = B2(ζc) = 0. (6.22)

By (6.21) and (6.22), (6.17) implies

Sj(ϕ(·, ζc), ζc) = 0, j = 1, 2, (6.23)

and this proves the lemma.

Proof of Theorem 1.1. Let ζρ be a minimum of J on (C/Λ)δ. It suffices to show that ζρ ∈ (C/Λ)δ, so ζρ is
a critical point of J and Lemma 6.1 applies. Let ζρ → ζ0 as ρ → 0, possibly along a sequence. By Lemma
5.5 and conditions 2 and 3 of Theorem 1.1,

1

γ12π2r2
1r

2
2

J(ζ)−
2∑
j=1

(
2πrj +

γjj
2

(
−
πr4
j

2
log

2πrj√
|Λ|

+
πr4
j

8
+ π2r4

jH(0)

))→ G(ζ), as ρ→ 0, (6.24)

uniformly with respect to ζ ∈ (C/Λ)δ.

If ζ0 were not a minimum of G in (C/Λ)δ, let ζ∗ be a minimum of G in (C/Λ)δ. Then G(ζ∗) < G(ζ0),
and, by (6.24), J(ζ∗) < J(ζρ) when ρ is small. This contradicts our assumption that ζρ is a minimum of J

on (C/Λ)δ. Now that ζ0 is a minimum of G in (C/Λ)δ, we deduce ζ0 ∈ (C/Λ)δ by (2.10). Then ζρ ∈ (C/Λ)δ
when ρ is sufficiently small.

Because the minimum ζρ of J is in the interior of (C/Λ)δ, ζρ is a critical point of J and ϕ(·, ζρ) is a
stationary point of J by Lemma 6.1. Since ζ0 is also a global minimum of G in C/Λ by (2.10), any limit of
the relative displacement ζρ as ρ→ 0 along a sequence is a global minimum of G.

The stationary point ϕ(·, ζρ) is in a sense stable. In the first step of our Lyapunov-Schmidt reduction
procedure, the pseudo-solution ϕ(·, ζ) is constructed as a fixed point and its second variation ΠS ′(ϕ) is
positive definite, Lemma 5.4. This means that ϕ(·, ζ) locally minimizes J among the pairs whose relative
displacement equals ζ described by the members in X[. In the second step of the Lyapunov-Schmidt reduc-
tion, ϕ(·, ζρ) is found as a minimum of J among ϕ(·, ζ) with respect to the relative displacement ζ ∈ (C/Λ)δ.
Therefore as a minimum of minimum, we claim a sense of stability for ϕ(·, ζρ).
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Proof of Theorem 1.2. Let ζ∗ be a non-degenerate critical point of Green’s function G. Make δ smaller if
necessary, so that ζ∗ ∈ (C/Λ)δ. One proceeds to show that for sufficiently small ρ, there exists a critical
point ζρ of the function J such that as ρ→ 0, ζρ → ζ∗. The theorem then follows from Lemma 6.1.

Suppose that this assertion is false. Then there exist ρn → 0 and ε > 0, such that J has no critical point
in the closed disc B(ζ∗, ε) ⊂ (C/Λ)δ if ρ = ρn, and ζ∗ is the only critical point of G in B(ζ∗, ε).

Note that J(ζ) = J (ϕ(·, ζ), ζ) depends on ζ in two ways. First ϕ(·, ζ) depends on ζ; second the functional
J depends on G which contains ζ in its variable as in (3.17). Then the derivative of J with respect to ζ1,
the first cordinate of ζ, is

∂J

∂ζ1
=
DJ
Dϕ

∂ϕ

∂ζ1
+
DJ
Dζ1

=
〈
S(ϕ),

∂ϕ

∂ζ1

〉
+
DJ
Dζ1

=
DJ
Dζ1

. (6.25)

Here the expression DJ
Dϕ is just the first variation of J at ϕ and DJ

Dϕ
∂ϕ
∂ζ1 = 〈S(ϕ), ∂ϕ∂ζ1 〉. Since ΠS(ϕ) = 0,

S(ϕ) ⊥ Z[. But ϕ ∈ X[ implies that ∂ϕ
∂ζ1 ∈ X[ ⊂ Z[. Hence 〈S(ϕ), ∂ϕ∂ζ1 〉 = 0. For DJ

Dζ1 , by (3.17) and G being
even,

∂J

∂ζ1
=
DJ
Dζ1

= γ12

∫ 2π

0

∫ √r2
1+2ϕ1(θ)

0

∫ 2π

0

∫ √r2
2+2ϕ2(η)

0

∂

∂ζ1
G(−ζ + teiθ − qeiη)tq dqdηdtdθ

= γ12

∫ 2π

0

∫ √r2
1+2ϕ1(θ)

0

∫ 2π

0

∫ √r2
2+2ϕ2(η)

0

(∂G(ζ)

∂z1
+O(ρ)

)
tq dqdη dtdθ

= γ12π
2r2

1r
2
2

∂G(ζ)

∂z1
+O(γ12ρ

5).

Similarly,
∂J

∂ζ2
= γ12π

2r2
1r

2
2

∂G(ζ)

∂z2
+O(γ12ρ

5).

Hence,
1

γ12π2r2
1r

2
2

∇J(ζ) = ∇G(ζ) +O(ρ) (6.26)

by conditions 2 and 3 of Theorem 1.2, and

1

γ12π2r2
1r

2
2

∇J → ∇G uniformly in (C/Λ)δ, as n→∞. (6.27)

Since ζ∗ is non-degenerate and the only critical point of G in B(ζ∗, ε), and J has no critical point in B(ζ∗, ε),
by the topological degree theory (see [14, Chapter 1]),

deg
(
∇G,B(ζ∗, ε), (0, 0)

)
= −1, or 1, (6.28)

deg

(
1

γ12π2r2
1r

2
2

∇J,B(ζ∗, ε), (0, 0)

)
= 0. (6.29)

However (6.27) implies that

deg
(
∇G,B(ζ∗, ε), (0, 0)

)
= deg

(
1

γ12π2r2
1r

2
2

∇J,B(ζ∗, ε), (0, 0)

)
, (6.30)

when ρn is sufficiently small. A contradiction.
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7 Shape versus size

In the last two sections we study the impact of the underlying lattice Λ on the disc-disc structure. The
subscript Λ is now restored in notations like JΛ, IΛ, GΛ, and HΛ. When we compare lattices, it is more
appropriate to consider the energy per area instead of the energy; namely

J̃Λ(Ω1,Ω2) =
1

|Λ|
JΛ(Ω1,Ω2). (7.1)

Since there are stationary points with relative displacements close to half periods (provided the half periods
are non-degenerate as critical points ofGΛ) by Theorem 1.2 and according to Lemma 5.3, any stationary point
ϕ(·, ζc) is very well approximated by a disc-disc configuration φ = (0, 0) of the same relative displacement,
we shall be content with an analysis of the energy per area of disc-disc configurations, instead of disc-disc
stationary points, with their relative displacements equal to half periods.

The role played by the size of a lattice can be separated from the role played by the shape of the lattice.
Write a lattice as tΛ with t > 0 and |Λ| = 1, then t measures its size and Λ its shape. Also write an
admissible pair as tΩ = (tΩ1, tΩ2), so its energy per area becomes

J̃tΛ(tΩ) =
(1

t

)2

JtΛ(tΩ)

=
1

t

(1

2

3∑
j=1

PC/Λ(Ωj)
)

+ t2
2∑

j,k=1

γjk
2

∫
C/Λ
∇IΛ(Ωj)(z) · ∇IΛ(Ωk)(z) dz. (7.2)

With respect to t, (7.2) is minimized at

t = tΩ =

(
1
2

∑3
j=1 PC/Λ(Ωj)∑2

j,k=1 γjk
∫
C/Λ∇IΛ(Ωj)(z) · ∇IΛ(Ωk)(z) dz

)1/3

(7.3)

and the minimum value is

J̃tΩΛ(tΩΩ) =
3

2

(1

2

3∑
j=1

PC/Λ(Ωj)
)2/3( 2∑

j,k=1

γjk

∫
C/Λ
∇IΛ(Ωj)(z) · ∇IΛ(Ωk)(z) dz

)1/3

=
3

2

(
Js,Λ(Ω1,Ω2)

)2/3(
2Jl,Λ(Ω1,Ω2)

)1/3

. (7.4)

As explained earlier, we set
(Ω1,Ω2) = (B(0, r1), B(h, r2)) := B, (7.5)

where h is a half period; namely
h 6∈ Λ, but 2h ∈ Λ. (7.6)

There are three Λ-inequivalent half periods. If (α1, α2) is a basis of Λ, then they are

α1

2
,
α2

2
,
α1 + α2

2
. (7.7)

To ensure that the discs do not overlap, we require that (Λ, h) ∈ Ar1,r2 and the radii r1 and r2 are sufficiently
small as in the conditions 1 and 2 before (1.24).

Note that
Js,Λ(B) = 2πr1 + 2πr2, (7.8)

is independent of Λ and h, so to minimize

J̃tBΛ(tBB) =
3

2

(
Js,Λ(B)

)2/3(
2Jl,Λ(B)

)1/3

(7.9)
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with respect to Λ and h, it suffices to minimize Jl,Λ(B) with respect to (Λ, h) with |Λ| = 1 and h being a
half period of Λ. This is also equivalent to minimizing JΛ(B) with respect to (Λ, h), as in the statement of
Theorem 1.3.

Lemma 7.1. Let (α1, α2) be a basis of Λ, |Λ| = 1, and τ = α2

α1
∈ H. Then

Jl,Λ(B(0, r1), B(h, r2)) =

(
γ11π

2r4
1 + γ22π

2r4
2

2

)(
g∗(τ)− 1− b

4π
log 2

)
+

2∑
j=1

γjj
2

(
−
πr4
j

2
log(2πrj) +

πr4
j

8
+
π2r6

j

4

)
+ γ12

(
π2(r2

1r
4
2 + r4

1r
2
2)

8

)
.

Here

1. g∗(τ) = b g(τ) + (1− b) g (2τ) if h =
α1

2
,

2. g∗(τ) = b g(τ) + (1− b) g
(τ

2

)
if h =

α2

2
,

3. g∗(τ) = b g(τ) + (1− b) g
(
τ + 1

2

)
if h =

α1 + α2

2
,

where b is given in (1.27),

g(τ) = − 1

4π
log
∣∣∣ Im(τ)η4(τ)

∣∣∣, (7.10)

and η is Dedekind’s eta function:

η(τ) = e
πiτ
12

∞∏
n=1

(
1− e2πinτ

)
. (7.11)

Proof. By Lemma 2.2,

Jl,Λ(B) =

2∑
j=1

γjj
2

(
−
πr4
j

2
log(2πrj) +

πr4
j

8
+ π2r4

jHΛ(0) +
π2r6

j

4

)

+ γ12

(
π2r2

1r
2
2GΛ(h) +

π2(r2
1r

4
2 + r2

2r
4
1)

8

)
=

(
γ11π

2r4
1 + γ22π

2r4
2

)
2

HΛ(0) + γ12π
2r2

1r
2
2GΛ(h)

+
γ11

2

(
−πr

4
1

2
log(2πr1) +

πr4
1

8
+
π2r6

1

4

)
+
γ22

2

(
−πr

4
2

2
log(2πr2) +

πr4
2

8
+
π2r6

2

4

)
+ γ12

(
π2(r2

1r
4
2 + r4

1r
2
2)

8

)
.

Only HΛ(0) and GΛ(h) depend on Λ and only GΛ(h) depends on h, so we focus on(
γ11π

2r4
1 + γ22π

2r4
2

)
2

HΛ(0) + γ12π
2r2

1r
2
2GΛ(h)

=
(γ11π

2r4
1 + γ22π

2r4
2 − 2γ12π

2r2
1r

2
2)

2
HΛ(0) + γ12π

2r2
1r

2
2

(
HΛ(0) +GΛ(h)

)
=

(
γ11π

2r4
1 + γ22π

2r4
2

2

)(
bHΛ(0) + (1− b)

(
HΛ(0) +GΛ(h)

))
where

b =
γ11r

4
1 + γ22r

4
2 − 2γ12r

2
1r

2
2

γ11r4
1 + γ22r4

2

, 1− b =
2γ12r

2
1r

2
2

γ11r4
1 + γ22r4

2

.
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The lemma will follow after one deduces the following identities.

HΛ(0) = − 1

4π
log
∣∣∣ Im(τ)η4(τ)

∣∣∣ (7.12)

HΛ(0) +GΛ

(α1

2

)
= − 1

4π
log
∣∣∣ Im(2τ)η4(2τ)

∣∣∣− 1

4π
log 2 (7.13)

HΛ(0) +GΛ

(α2

2

)
= − 1

4π
log
∣∣∣ Im(τ

2

)
η4
(τ

2

) ∣∣∣− 1

4π
log 2 (7.14)

HΛ(0) +GΛ

(
α1 + α2

2

)
= − 1

4π
log
∣∣∣ Im(τ + 1

2

)
η4

(
τ + 1

2

) ∣∣∣− 1

4π
log 2 (7.15)

To show (7.12), let z → 0 in (2.9) to find

HΛ(0) = − 1

2π
log
∣∣∣ e( τ

12

)(
− i

α1

) ∞∏
n=1

(1− e(nτ))
2
∣∣∣

= − 1

4π
log
∣∣∣ Im(τ) e

(τ
6

) ∞∏
n=1

(1− e(nτ))4
∣∣∣

= − 1

4π
log
∣∣∣ Im(τ)η4(τ)

∣∣∣
since ∣∣∣− i

α1

∣∣∣2 =
1

|α1|2
= Im

α1α2

|α1|2
= Im

(
α2

α1

)
= Im(τ)

by Im(α1α2) = |Λ| = 1.
By (2.6) and (7.12),

GΛ

(α1

2

)
= − 1

2π
log
∣∣∣ e( τ

12

)
(2)

∞∏
n=1

(1 + e(nτ))2
∣∣∣,

HΛ(0) +GΛ

(α1

2

)
= − 1

4π
log
∣∣∣2 Im(2τ) e

(τ
3

) ∞∏
n=1

(1− e(2nτ))
4
∣∣∣

= − 1

4π
log
∣∣∣ Im(2τ)η4(2τ)

∣∣∣− 1

4π
log 2,

which is (7.13).
To see (7.14), note that, since Im(α1α2) = 1,

α2
2α1

16iα1
=

α2

16iα1
(α1α2) =

α2

16iα1
(α1α2 + 2i) =

|α2|2

16i
+
τ

8
,

and consequently by (2.6),

GΛ

(α2

2

)
= − 1

2π
log
∣∣∣ e(− τ

24

)(
1− e

(τ
2

)) ∞∏
n=1

(
1− e

(
nτ +

τ

2

))(
1− e

(
nτ − τ

2

)) ∣∣∣
= − 1

4π
log
∣∣∣ e(− τ

12

)(
1− e

(τ
2

))2 ∞∏
n=1

(
1− e

(
(2n+ 1)

τ

2

))2 (
1− e

(
(2n− 1)

τ

2

))2 ∣∣∣
= − 1

4π
log
∣∣∣ e(− τ

12

) ∞∏
n=1

(
1− e

(
(2n− 1)

τ

2

))4 ∣∣∣.
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By (7.12),

HΛ(0) +GΛ

(α2

2

)
= − 1

4π
log
∣∣∣ Im(τ) e

( τ
12

)( ∞∏
n=1

(1− e(nτ))
4

)( ∞∏
n=1

(
1− e

(
(2n− 1)

τ

2

))4
)∣∣∣

= − 1

4π
log
∣∣∣ Im(τ) e

( τ
12

) ∞∏
n=1

(
1− e

(
n
τ

2

))4 ∣∣∣
= − 1

4π
log
∣∣∣ Im(τ

2

)
η4
(τ

2

) ∣∣∣− 1

4π
log 2.

Finally for (7.15), start with

(α1 + α2)2α1

16iα1
=
|α1 + α2|2(α1 + α2)α1

16i(α1 + α2)α1

=
|α1 + α2|2

(
(α1 + α2)α1 + 2i

)
16i(α1 + α2)α1

=
|α1 + α2|2

16i
+
α1 + α2

8α1

=
|α1 + α2|2

16i
+
τ + 1

8
,

so that

GΛ

(
α1 + α2

2

)
= − 1

2π
log
∣∣∣ e(− τ

24

)(
1 + e

(τ
2

)) ∞∏
n=1

(
1 + e

((
n+

1

2

)
τ

))(
1 + e

((
n− 1

2

)
τ

)) ∣∣∣
= − 1

4π
log
∣∣∣ e(− τ

12

) ∞∏
n=1

(
1 + e

((
n− 1

2

)
τ

))4 ∣∣∣,
and

HΛ(0) +GΛ

(
α1 + α2

2

)
= − 1

4π
log
∣∣∣ Im(τ) e

( τ
12

) ∞∏
n=1

(1− e(nτ))
4
∞∏
n=1

(
1 + e

((
n− 1

2

)
τ

))4 ∣∣∣
= − 1

4π
log
∣∣∣ Im(τ + 1

2

)
e

(
τ + 1

12

) ∞∏
n=1

(
1− e

(
n
τ + 1

2

))4 ∣∣∣− 1

4π
log 2

= − 1

4π
log
∣∣∣ Im(τ + 1

2

)
η4

(
τ + 1

2

) ∣∣∣− 1

4π
log 2.

Here, to simplify the two infinite products, one uses the identity

∞∏
n=1

(1− e(nτ))

∞∏
n=1

(
1 + e

((
n− 1

2

)
τ

))
=

∞∏
n=1

(
1− e

(
2n
τ + 1

2

)) ∞∏
n=1

(
1− e

(
(2n− 1)

τ + 1

2

))

=

∞∏
n=1

(
1− e

(
n
τ + 1

2

))
.

This completes the proof of the lemma.

Remark 7.2. Although Jl,Λ(B(0, r1), B(h, r2)) is defined only for (Λ, h) ∈ Ar1,r2 , the three g∗’s found in
Lemma 7.1 are meaningful for all (Λ, h) pairs as long as |Λ| = 1 and h is a half period of Λ, even if (Λ, h)
is not in Ar1,r2 .
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Figure 2: The fundamental domain FSL(2,Z), the fundamental domain FΓθ , and the set W .

8 Optimal lattice

The modular group SL(2,Z) is the set of all two by two matrices of integer entries with determinants equal
to 1,

SL(2,Z) =

{[
d1 d2

d4 d3

]
: dj ∈ Z, j = 1, 2, 3, 4, d1d3 − d2d4 = 1

}
. (8.1)

This group is generated by [
1 1
0 1

]
and

[
0 −1
1 0

]
. (8.2)

It acts on H by the linear fractional transform

τ →Mτ =
d1τ + d2

d4τ + d3
, τ ∈ H, M =

[
d1 d2

d4 d3

]
∈ SL(2,Z). (8.3)

A fundamental domain of this action by SL(2,Z) on H is

FSL(2,Z) =

{
τ ∈ H : |τ | > 1, −1

2
< Re τ <

1

2

}
∪

{
τ ∈ H : Re τ =

1

2
, Im τ ≥

√
3

2

}

∪
{
τ ∈ H : |τ | = 1, 0 ≤ Re τ <

1

2

}
; (8.4)

see the left plot of Figure 2 and consult [6, VI.1] for a proof.

Remark 8.1. We use the term fundamental domain in the strict sense: every orbit of the action SL(2,Z)
on H has one and only one element in FSL(2,Z).

Also needed is a subgroup of SL(2,Z), called the theta group Γθ,

Γθ =

{
M ∈ SL(2,Z) : M ≡

[
1 0
0 1

]
mod 2, or M ≡

[
0 1
1 0

]
mod 2

}
. (8.5)

This group is generated by [
1 2
0 1

]
and

[
0 −1
1 0

]
; (8.6)

see [6, Appendix to VI.5] for more on the theta group. A fundamental domain of the action by Γθ on H is

FΓθ = {τ ∈ H : |τ | > 1, −1 < Re τ < 1} ∪ {τ ∈ H : Re τ = 1}
∪ {τ ∈ H : |τ | = 1, 0 ≤ Re τ < 1} ; (8.7)
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see the center plot of Figure 2.
Denote g∗ in the third case of Lemma 7.1 by gb:

gb(τ) = b g(τ) + (1− b) g
(
τ + 1

2

)
, τ ∈ H, b ∈ [0, 1]. (8.8)

Some of the properties of gb below hold even if b ∈ R. We state so explicitly in those cases.

Lemma 8.2. The following transformation rules hold for g and gb.

1. For all M ∈ SL(2,Z) and τ ∈ H,
g(Mτ) = g(τ).

2. For all M ∈ Γθ, τ ∈ H, and b ∈ R,

g

(
Mτ + 1

2

)
= g

(
τ + 1

2

)
, and gb(Mτ) = gb(τ).

3. For all τ ∈ H and b ∈ R,

g(−τ) = g(τ), g

(
−τ + 1

2

)
= g

(
τ + 1

2

)
and gb(−τ) = gb(τ).

4. Under the transform τ → σ = τ−1
τ+1 of H,

g(τ) = g

(
σ + 1

2

)
, and g

(
τ + 1

2

)
= g(σ), τ ∈ H and σ =

τ − 1

τ + 1
∈ H;

consequently, for all b ∈ R,

gb(σ) = g1−b(τ), τ ∈ H and σ =
τ − 1

τ + 1
∈ H.

Proof. Dedekind’s eta function has the transformation properties that for all τ ∈ H,

η(τ + 1) = exp

(
πi

12

)
η(τ) and η

(
− 1

τ

)
=
√
−iτ η(τ) (8.9)

where
√
· stands for the principal branch of square root; see [2, Chapter 2]. It follows that

g(τ + 1) = g(τ) and g

(
−1

τ

)
= g(τ), τ ∈ H. (8.10)

Hence g(τ) is invariant under the generators (8.2), and consequently invariant under the modular group
SL(2,Z). This proves part 1.

To prove part 2, consider the transforms τ → τ + 2 and τ → − 1
τ by the generators (8.6) of Γθ, and use

the transformation properties of g in (8.10) to derive

g

(
(τ + 2) + 1

2

)
= g

(
τ + 1

2
+ 1

)
= g

(
τ + 1

2

)
g

(− 1
τ + 1

2

)
= g

(
τ − 1

2τ

)
= g

(
−τ − 1

2τ

)
= g

(
2τ

τ + 1

)
= g

(
−2

τ + 1

)
= g

(
τ + 1

2

)
Part 3 follows from the definitions (7.10) and (7.11) of g and η.
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For part 4, note that the transform σ = τ−1
τ+1 and its inverse τ = −σ−1

σ−1 are both maps from H onto H,
but they are not actions by elements of SL(2,Z). Nevertheless,

g

(
σ + 1

2

)
= g

(
τ−1
τ+1 + 1

2

)
= g

(
τ

τ + 1

)
= g(τ) (8.11)

g

(
τ + 1

2

)
= g

(
−σ−1
σ−1 + 1

2

)
= g

(
−1

σ − 1

)
= g(σ) (8.12)

since τ → τ
τ+1 and σ → −1

σ−1 are both actions by elements in SL(2,Z) under which g is invariant.

An important number B is defined in [10]. When b = B, the second derivative of gb(τ) with respect to
Im τ vanishes at i; namely

∂2gb(τ)

∂(Im τ)2

∣∣∣
b=B,τ=i

= 0. (8.13)

One can solve (8.13) for B and write it as a quotient of series and find its numerical value:

B =
1 +

∑∞
n=1

4π2n2(−e−π)n

(1−(−e−π)n)2∑∞
n=1

4π2n2(−e−π)n

(1−(−e−π)n)2 −
∑∞
n=1

16π2n2e−2nπ

(1−e−2nπ)2

=
−0.2982...

−1.2982...− 0.2982...

= 0.1867... (8.14)

The next two lemmas were proved by Luo, Ren, and Wei in [10].

Lemma 8.3 ([10, Lemma 4.4]). The following properties hold for t→ gb(ti), t ∈ (0,∞).

1. When b ∈ [0, B), the function t→ gb(ti), t > 0, has exactly three critical points at 1
qb

, 1, and qb, where

qb ∈ (1,
√

3]. Moreover

(a)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

< 0 if t ∈
(

0, 1
qb

)
,

(b)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

> 0 if t ∈
(

1
qb
, 1
)

,

(c)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

< 0 if t ∈ (1, qb),

(d)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

> 0 if t ∈ (qb,∞).

As b increases from 0 to B, qb decreases from
√

3 towards 1.

2. When b ∈ [B, 1], the function t→ gb(ti), t > 0, has only one critical point at 1, and

(a)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

< 0 if t ∈ (0, 1),

(b)
∂gb(τ)

∂ Im τ

∣∣∣
τ=ti

> 0 if t ∈ (1,∞).

Define a subset W and its closure WH in H as follows.

W = {τ ∈ H : 0 < Re τ < 1, |τ | > 1}, (8.15)

WH = {τ ∈ H : 0 ≤ Re τ ≤ 1, |τ | ≥ 1}. (8.16)

See the right plot of Figure 2.
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Lemma 8.4 ([10, Lemma 5.2]). Let b ∈ [0, 1−B] and W be given in (8.15). Then

∂gb(τ)

∂(Re τ)
> 0, for all τ ∈W.

Remark 8.5. The function gb here is equal to − 1
4πfb in [10].

Now we are ready to prove the main theorem.

Proof of Theorem 1.3. We temporarily dispense with the requirement (Λ, h) ∈ Ar1,r2 and allow discs B(0, r1)
and B(h, r2) to overlap. According to Remark 7.2 the three g∗’s in Lemma 7.1 are defined for all (Λ, h),
provided that |Λ| = 1 and h is a half period of Λ, including those (Λ, h)’s not in Ar1,r2 .

First assume b ∈ [0, 1−B], and consider the third case of Lemma 7.1 where g∗ = gb. We show that gb in
H is minimized at τb, where

τb =

{
qbi if b ∈ [0, B)
i if b ∈ [B, 1−B]

, (8.17)

and the points in the orbit of τb under the group Γθ. Recall that qb ∈ (1,
√

3) is given in Lemma 8.3.1.
Consider gb restricted to WH. Lemma 8.4 asserts that gb is strictly increasing in the horizontal direction

in W , so it can only attain a minimum in WH on the part of the unit circle in the first quadrant, i.e. {τ ∈
H : 0 < Re τ < 1, |τ | = 1}, or on the part of the imaginary axis above i, i.e. {τ ∈ H : Re τ = 0, Im τ ≥ 1}.

The unit circle can be ruled out. By Lemma 8.2.4

gb(σ) = g1−b(τ), τ ∈ H, σ =
τ − 1

τ + 1
∈ H. (8.18)

Take τ = ti, t > 1, to be on the imaginary axis. Then

σ =
t2 − 1

t2 + 1
+

2t

t2 + 1
i

is on the unit circle. As τ moves from i to∞ upwards along the imaginary axis, σ moves from i to 1 clockwise
along the unit circle. When b ∈ [0, 1−B], 1−b ∈ [B, 1]. Since t→ g1−b(ti) is strictly increasing for t ∈ (1,∞)
by Lemma 8.3.2, gb(σ) is strictly increasing when σ moves from i to 1 clockwise along the unit circle. Then
gb cannot attain a minimum on {σ ∈ H : 0 < Reσ < 1, |σ| = 1}.

Therefore in WH, gb can only achieve a minimum on {τ ∈ H : Re τ = 0, Im τ ≥ 1}. By Lemma 8.3, this
minimum is qbi if b ∈ [0, B) and is i if b ∈ [B, 1−B]; according to (8.17), it is denoted τb.

By the invariance gb(−τ) = gb(τ), τ ∈ H, in Lemma 8.2.3, when restricted to FΓθ , gb achieves a unique
minimum at τb. Since FΓθ is a fundamental domain of the theta group Γθ and gb is invariant under Γθ, gb
in H is minimized at the orbit of τb, {Tτb : T ∈ Γθ}, under Γθ when b ∈ [0, 1−B].

Next consider the case b ∈ (1−B, 1]. Since 1− b ∈ [0, B), the above result applies to g1−b which in H is
minimized at {Tτ1−b : T ∈ Γθ}. Lemma 8.2.4 asserts that

gb(σ) = g1−b(τ), τ ∈ H and σ =
τ − 1

τ + 1
∈ H.

Hence gb in H is minimized at {ATτ1−b : T ∈ Γθ} where

A =

[
1 −1
1 1

]
. (8.19)

Define
τb = Aτ1−b, b ∈ (1−B, 1], (8.20)

where τ1−b on the right side is given by (8.17); more explicitly,

τb =
q2
1−b − 1

q2
1−b + 1

+
2q1−b

q2
1−b + 1

i, b ∈ (1−B, 1] (8.21)
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where q1−b ∈ (1,
√

3] is given in Lemma 8.3.1. Note that in this case, τb is on the arc {τ ∈ H : 0 < Re τ ≤
1
2 , |τ | = 1}.

From the definition (8.5) of the theta group, it is easy to see that

AΓθA
−1 = Γθ. (8.22)

One writes ATτ1−b = ATA−1τb by (8.20). Hence, as in the b ∈ [0, 1−B] case, when b ∈ (1−B, 1], gb in H
is minimized at {Tτb : T ∈ Γθ}.

In summary, for each b ∈ [0, 1], gb in H is minimized at

{Tτb : T ∈ Γθ}, (8.23)

where τb is given by (8.17) and (8.21). Moreover,

1. when b = 0, τ0 =
√

3i;

2. when b ∈ (0, B), τb is on the segment {τ ∈ H : Re τ = 0, 1 < Im τ <
√

3} of the imaginary axis, and
as b increases from 0 to B, τb moves from

√
3 i to i;

3. when b ∈ [B, 1−B], τb = i;

4. when b ∈ (1 − B, 1), τb is on the arc {τ ∈ H : 0 < Re τ < 1
2 , |τ | = 1} of the unit circle, and as b

increases from 1−B to 1, τb moves from i clockwise to eπi/3;

5. when b = 1, τ1 = eπi/3.

Let αb = (αb,1, αb,2) be a basis associated with τb, i.e. τb =
αb,2
αb,1

. The corresponding half period is

hb =
αb,1 + αb,2

2
. (8.24)

The fundamental parallelogram Pαb is a non-square rectangle in cases 1 and 2; Pαb is a square in case 3; Pαb
is a rhombus in cases 4 and 5.

The function gb arises in case 3 of Lemma 7.1 where the half period h is the center point α1+α2

2 . It
remains to study the other two half periods, α1

2 and α2

2 . Consider case 1 of Lemma 7.1 where h = α1

2 under
a basis (α1, α2) of lattice Λ. Let

M1 =

[
1 1
−1 0

]
∈ SL(2,Z), (8.25)

and introduce a new basis (β1, β2) of the same lattice Λ by[
β2

β1

]
= M1

[
α2

α1

]
. (8.26)

Then, with σ = β2

β1
,

σ =
β2

β1
=
α2 + α1

−α2
= −1− α1

α2
= −1− 1

τ
, (8.27)

and the half period h is

h =
α1

2
=
β1 + β2

2
, (8.28)

which is the center of Pβ , the fundamental parallelogram of the new basis. This reduces case 1 of Lemma

7.1 to case 3 under the basis (β1, β2), with σ = β2

β1
. Consequently,

b g(τ) + (1− b) g (2τ) = gb(σ). (8.29)
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For case 2 of Lemma 7.1 where h = α2

2 under a basis (α1, α2), let

M2 =

[
1 −1
0 1

]
∈ SL(2,Z), (8.30)

and (β1, β2) be a new basis of the same lattice by[
β2

β1

]
= M2

[
α2

α1

]
. (8.31)

Then

σ =
β2

β1
=
α2 − α1

α1
=
α2

α1
− 1 = τ − 1, (8.32)

and the half period h is

h =
α2

2
=
β1 + β2

2
. (8.33)

This again reduces to case 3 of Lemma 7.1 under the basis (β1, β2), with σ = β2

β1
, and consequently

b g(τ) + (1− b) g
(τ

2

)
= gb(σ). (8.34)

All three cases of half periods have been reduced to the minimization of gb in H. Each b ∈ [0, 1] determines
τb by (8.17) and (8.21). Any lattice Λb of unit area with a basis (αb,1, αb,2) such that

αb,2
αb,1

= τb and with a

half period hb =
αb,1+αb,2

2 , minimizes Jl,Λ(B(0, r1), B(h, r2)) of Lemma 7.1. The five assertions of Theorem
1.3 regarding the shape of the fundamental parallelogram Pαb follow from the remark after (8.23).

Now we reinstate the requirement (Λ, h) ∈ Ar1,r2 . This removes some (Λ, h) pairs from consideration.
However, for every b ∈ [0, 1], any lattice Λb specified by τb and the center point hb of the associated
fundamental parallelogram belongs to Ar1,r2 . Hence, this (Λb, hb), associated with the minimum τb of gb, is
also a minimum of the problem (1.24).

Finally we show that the minimum of (1.24) is unique up to rotation. Let (Λ, h) and (Λ′, h′) both
minimize problem (1.24). Choose a basis (α1, α2) for Λ, with τ = α2

α1
, so that h = α1+α2

2 . Similarly choose

(α′1, α
′
2), τ ′ =

α′2
α′1

, for Λ′ with h′ =
α′1+α′2

2 . As both τ and τ ′ minimize gb in H, by (8.23) there exists M ∈ Γθ

such that τ ′ = Mτ ; namely

α′2
α′1

=
d1α2 + d2α1

d4α2 + d3α1
, where M =

[
d1 d2

d4 d3

]
∈ Γθ. (8.35)

Then there exists κ ∈ C\{0} such that[
α′2
α′1

]
= κ

[
d1 d2

d4 d3

] [
α2

α1

]
, (8.36)

which means
Λ′ = κΛ. (8.37)

Since |Λ| = |Λ′| = 1, |κ| = 1 and Λ′ is a rotation of Λ by κ.
Moreover,

h′ =
α′1 + α′2

2

= κ
(d2 + d3)α1 + (d1 + d4)α2

2
.

By (8.5),
d2 + d3 ≡ d1 + d4 ≡ 1 mod 2,
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and hence

(d2 + d3)α1 + (d1 + d4)α2

2
≡ α1 + α2

2
mod Λ

= h.

Therefore
h′ = κh, (8.38)

and h′ is also a rotation of h by κ.

In the proof of Theorem 1.3, the half periods α1

2 and α2

2 are transformed to the center β1+β2

2 of a new
basis (β1, β2) by M1 and M2 in SL(2,Z) respectively, so the center is not preserved under the modular group
SL(2,Z). However if one transforms a basis by the generators of the theta group Γθ in (8.6) from (α1, α2)
to (β1, β2), then

β1 + β2

2
=
α1 + α2 + 2α1

2
≡ α1 + α2

2
mod Λ (8.39)

β1 + β2

2
=
α2 − α1

2
≡ α1 + α2

2
mod Λ (8.40)

for the two generators respectively. Therefore the center is preserved under the action of the theta group.
The theta group is a non-normal subgroup of the modular group of index three. One can write down a

right coset decomposition
SL(2,Z) = Γθ ∪ ΓθM1 ∪ ΓθM2. (8.41)

Every element in ΓθM1 transforms α1

2 to the center of another fundamental parallelogram; the elements in
ΓθM2 do the same to α2

2 .
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