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A successivity in a linear order is a pair of elements with no other elements between them. A
recursive Hnear order with recursive snccessivities % is recursively categorical if every recursive
Finear order with recursive successivities isomorphic to % is in fact recursively isomorphic to %,
We characterize those recursive linear orders with recursive successivities that are recursively
eategorical as precisely those with order type k, +g, +ky+g,+- - +g, +k, where each k; is
a finite order type, non-empty for i{2,...,n—1} and each g is an order type from among
{w, 0*, ot+a* iUk mk<ol

1. Introduction

A strocture ¥ is said to be recursive if it has a recursive universe A, and the
atomic formulae uniformly denote recursive relations. Two such structures ¥, B
on recursive universes A, B respectively, are recursively isomorphic if there is a
recursive function f: A — B which is an isomorphism from 9 to 3. A recursive
structure % is recursively categorical if every recursive structure isomorphic to U is
also recursively isomorphic to 2.

Many results characterizing recursively categorical models of various theories
have been obtained. Metakides and Nerode [7] considered algebraic closures of a
given field; Boolean algebras were considered independently by LaRoche [5] and
Goncharov [3] and Abelian p-groups by Smith [11]. In addition to linear orders
[9], Remmel studied recursive Boolean algebras with recursive atoms [8] and
together with Manaster in [6] dense two-dimensional partial orderings. Schwarz
[10] characterized recursively categorical recursive linear orders with the block
relation recursive; and Goncharov 4], structures with a language with only unary
predicates.

In [2] Dzgoev and Goncharov introduce a property (‘branching’) satisfied, in a
recursive structure, by certain formulae. Their main result is that if there is a
universal formula that branches in a recursive structure, then the structure is not
recursively categorical. In [2] and [4] this general result is used to obtain many of
the above-mentioned characterizations.

* These resalts form part of the author’s Ph.D. Thesis “Recursive propegties of isomorphism types”
presented at Monash University, Australia; under the supervision of John Crossley.
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In [9] Remmel leaves open the problem of characterizing those recursive linear
orders with recursive successivities that are recursively categorical. In Theorem 4
we characterize them as precisely those that can be partitioned, by a finite number
of points, into intervals, each of which either has finitely many blocks or is of
arder type k +  for some finite k.

2. Intrinsically recursive relations

A relation R on a recursive structure % is intrinsically re. on % if for every
recursive structure B and isomorphism g: B =%, g"(R) is r.e.

In [1] Ash and Nerode present a condition sufficient for a relation R to be
intrinsically r.e. on a structure %, Assuming a certain amount of extra decidability
of ¥, they show this condition to be also pecessary. We present a condition
necessary for R to be intrinsically r.e. on ¥ which does not require this decidabil-
ity assumption. The condition is in general not sufficient, but will enable us to
obtain results in certain cases.

The structure 9 will have as its universe the recursive set A ={a,, a,,...}. We
write A, for the set {a,,...,q} and define %, to be the recursive structure
obtained by restricting the relations of 2 to the set A

We use {m, s) to denote ordered pairs of integers.

Theorem 1. If % is a recursive structure with language consisting solely of a finite
number of predicate symbols, and R is a recursive relation on U, then (1) implies
).

(1) There is a recursive function f from N? into N such that for every m eN there
is a sequence d€R for which there are infinitely many seN with embeddings
&: U, = Wpisy With & the identity on A, and $(@)¢R.

(2} R is not intrinsically r.e. on U,

Proof. We shall construct a recursive structure 98 and an isomorphism g: 8 =% so
that g~*(R) is not r.e. B will have the recursive universe B ={b, b,, .. .} and we
write B, for {b,, b, . .., b }. At each stage s of the construction we shall define an
integer s'=(s— 1)’ and a bijection g,: B, ~> A,.. To simplify notation we take R to
be a one-place relation. Let Wy, Wy, ... be a list of all r.e. subsets of B; thatis, a
list of all candidates for g~(R). W? is the part of W, enumerated by stage s. Our
construction will ensure that we meet the following list of requirements for
e=0,1,2,....

Q,: W, # gz (R).

For some e and s we shall define dieB,NW: with the intention that if
W, 2 g }(R), then d, =lim, d: will exist and lie in W, —g™(R).
The following phrases are used in the description of the construction.
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Q, requires attention at stage s+1 if ess+1, A, €A, B,c B, and dj is
undefined.

Q, is injured at stage s+1 if g.,(d)#g/(d). In this case we say ds*t is
undefined. Otherwise we define d:** to be di.

An element b B, may be used to attack Q, at stage s+1 if

(i) be We, and

(ii) there is an embedding ¢ : Ay ~> Wpim ey Such that ¢ is the identity on A
and $(g, (B¢ R.

(Here m is the maximum of ny, n, with n, = the least integer with A, Ug,(B,) <
A, and n, = the last stage when a requirement Q,. with ¢’ <e was attacked.)

We now describe the construction.

Stage 0. Define 0'=0 and gq:b, > ao.

Stage s+ 1. Check if ‘there is a Q, requiring attention at stage s 4+ 1 which may
be attacked at stage s+ 1. If there is no such Q, define (s+1Y=5+1, extend g,
10 b1 Bussy — A1y i the obvious way, and go to the next stage. If there is
such a Q,, then choose the least one and the least b (in the listing of B) which
may be used to attack this Q, at stage s+ 1 and do so in the following manner.
Define (s + 1)’ = f(m, s'y and g, ., to be g,° ¢ on B,, and extend it in any way to a
bijection from B .;y to Ay, Define di*' to be b and go 1o the next stage.

This completes the description of the construction. Notice that if there is a stage
after which no requirement from among Qq, Qy, . .., Q., is ever attacked, then
after this stage the requirement Q, is never injured. It follows, by induction on e,
that each requirement Q, is attacked at most finitely many times. This implies
that g =lim, g, exists and is a bijection from B to A. If we consider 8B, 1o be the
recursive structure defined on B, in such a way as to make g 1B, — U, an
isomorphism, we notice that the diagram of ;. is contained in that of B,y for
every s. This ensures that B=lim, B, is a recursive structure and g is an
isomorphism from B to U.

We now prove that all the requirements Q, are met. Suppose not. Let e be the
jeast with W, =g 1(R). Let s be a stage after which no requirement Q, with
¢' < e is attacked. Consider the A, in the definition of “b may be used to attack
Q,”. For Q, this m remains fixed after stage s. Consider any element a of R
satisfying the hypothesis of our theorem for this m. Go to a stage when g has
taken on its final value on a; g~*(a)= Db, say. Since W, =g " '(R), at some further
stage b will enter W, and it is clear that at some stage after this b may be used to
attack Q,. Thus Q, would be attacked and never injured, contradicting the
assumption that W, = g }(R).

3. 1-Recursive linear orders

In this section we consider the class of 1-recursive linear orders. A linear order
is 1-recursive if it has a recursive universe and the existential formulae uniformly
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denote recursive relations. We begin by proving that a linear order is 1-recursive
if and only if it is a recursive linear order with the suceessivity relation recussive.

We begin with some terminology. For elements a and b of a linear order, we
write (g, b) for the open interval between a and b. That is, the set

{xra<x<blU{x:b<x<aj

For n<w, S, {x,y) denotes the binary relation satisfied by any pair a, b with
exactly n elements between them. That is

S.(a,b) & (a#b and |(a, b)|=n).

The relation S(x, y) is therefore satisfied by any pair of elements between which
" there are no other elements. This relation will play a particularly important role in
what is to follow. We write S(x, y) for S,(x, y) and call it the successivity relation.
We define the block relation B(x, y) as that satisfied by any pair a, b between
which there are only finitely many elements; that is, with a# b and with (a, b}
finite or empty. It is clear that the following equivalence holds in the theory of
linear order.

By« V Sy

i=0,1,2,...

The block containing an element a is the set of elements separated from a by at
most finitely many other elements; that is, the set

{ayUix: B(a, x)}.

By an arrangement of the variables x,, ..., X, we mean a finite conjunction of
the form

Y=0, A0,/ N0, _y,

where y,,..., Y, is some permutation of x,,..., x, and each formula 8, is either
Y, <¥is1 OF ¥; =Y., We first show that every quantifier-free  formula
a(xy, ..., %,) is {either trivial or) equivalent to the disjunction of a finite number
of arrangements of the variables x,, ..., X,. It is not difficult to see that if 4 is an
arrangement of x,, ..., X, then one of the implications > g or P—>"lor is a
consequence of the theory of linear order. Notice that there are a finite number of
arrangements of the variables x,, ..., x,. It follows that o is equivalent to the
" disjunction of all those arrangements ¢ for which the implication ¢ - ¢ holds.
Thus every quantifier-free formula o{x;,...,x,) is equivalent to a disjunction
Y, v+« v, of a finite number of arrangements of the variables x,, ..., x,.
Consider now an existential formula A% o(%, §). It follows that X (X, §) is
equivalent to the finite disjunction

Az ¢y (%, P v vATE,E P,
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where each ¢ is an arrangement of the variables %, ¥. Consider any one of these
formulae 3% (X §). It is not difficult to see that we can remove the variables %
from the formula by replacing it with a finite conjunction of formulae which
represent some of the following statements (for some elements y,, y, of § and
integers n).

@ y = ¥

(i) v, <Y

(iii) There are at least n elements less than y,.

(iv) There are at least n_elements greater than y,.

(v} There are at least n elements between y, and y,.

All of the above may be done in an effective manner. Consider now a recursive
linear order ¥ with the successivity relation recursive. It is clear that (i) and (i)
represent recursive relations in 2. Since U has at most one least and at most one
greatest element and since S(x,v) is recursive, (i) and (iv) also represent
recursive relations. The fact that S(x, y) is recursive implies the same of (v). We
therefore have the following result.

A linear order is 1-recursive if and only if it has a recursive universe and the
relations = and S{x, y) are both recursive.

‘We define for a class A of order types, a class A(A) of order types as follows. A
linear order has order type in A(A) if it has a finite number of points p,<p, <
-+ +<Ip,., such that each one of the intervals

(”"00= P()), (pO: Pl): Gy (Pm—b Pm), (pm’ OO)

is either finite or has order type in A. By {(—, a) and (a, ) we mean the open
intervals to the left and right of a, respectively. W A(A) will mean the order type
of U is in A(A),

We use @ and o™ to represent the order types of the positive and negative
integers respectively, The order type of the rationals is n and for k<o, k-n is
the order type of the structure obtained by replacing each point in the rationais
with a block of length k.

Notice that A({w, 0*, @+ w*}) is the class of all order types with only finitely
many blocks (each of which is finite or is w or ©*). A 1-recursive linear order in
this class also has the block relation B(x, v) recursive. This is because we can list
the elemenis of the separate blocks by choosing an element from each block and
then enumerating successivities.

For k <w we write F, for the class of all order types with all blocks of length
=k. We write F for the class of all order types with no blocks of infinite iength.
Notice that F=J, _, F,, but they are not equal. We write F__ for {, ., F.

Consider a linear order % and a subset M of A. We say a block (of %) is
represented in M if some element of this block is in M. We say ¢y, ..., ¢, is the
ordering of M in U if co<cy<:--<¢, m W and M={co, ..., Cnt
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Theorem 2. If U is a-1-recursive linear order with the block relation recursive the
following are equivalent.

() Hed (F_, Uio, oF, o +o™}.

(2) Every 1-recursive linear order isomorphic to W has the block relation recur-
sive,

Proof. It is easy to see that (1) implies (2). This follows from the fact that in a
linear order in F,, elements a and b are in separate blocks if and only if there are
(at least) k& eclements between them. Consider a structure % not in A(F_ U
{w, ©*, w+o®}). We shall use Theorem 1 to show that the relation B(x, y) is not
intrinsically recursive on . The role of the relation R will be played by —B(x, v).
The function f from N? into N is defined as follows. For {(m, s)eN?, if m = s define
fim,s)=s. H m<s let ¢y, ¢y, ..., ¢, be the ordering of A, in U and let ¢c_,; and
sy denote —oo and o respectively. For ie{0,..., m+1} and =5 we say that
(€,_1» ¢} is large in W, if there are at least four blocks represented in (¢4, ¢ )N A,
Define f(m, 5} 10 be the least ¢t >s for which either ‘

() thereis an ie{0, ..., m+1} with (¢;_y, ¢;) not large in ¥, but large in ¥U; or

(i) there is an i {0, ..., m+ 1} with (¢_y, ¢} large in %, and with {¢;.;, )N A,
containing a block of length at least 2s. '

We show that f is defined on every pair {m, s)eN? Consider the ordering
Cgs - -+ » Cn OF A, in Y. Under the assumption that statement (1) of our theorem is
false it follows that there is an i€{0,..., m+1} such that the interval (¢;,_;, ¢;)
contains an infinite number of blocks of length greater than 2s. This interval will
then satisfy either (i) or (i) and so define f{(m, s). Each f(m, s) can be found
effectively since W is I-recursive and has the block relation recursive. Thus f is a
recursive function from N? into N, We now show that f satisfies the rest of the
hypothesis of Theorem 1.

Consider any natural number m. For this m, f{m, 5} is defined via (i) for only
finitely many s; since if (¢;..;, ¢) is large in 2, it is large in ¥, also. Thus f(m, s)
is defined via (ii) for infinitely many s. It follows that there is an i€{0, ..., m +1}
such that the interval (c,_,, ¢,) satisfies (i) for infinitely many s (and t = f(m, s)).
Consider any pair a, b in this interval with ¢,_;, a, b and ¢ all from separate
blocks. It is clear that for infinitely many s there is an embedding ¢: %, — g, o
with ¢ the identity on A, and ¢(a) and ¢(b) in the same block. Thus f satisfies
the hypothesis of Theorem 1. The relation B(x, v} is therefore not infrinsically
recursive on 9; that is, there is a 1-recursive linear order isomorphic to % with the
block relation non-recursive. This proves our result.

In a linear order, the block containing an element a is the set {a}U{x: B{q, x)}.
For k<, we define the relation M, {x)} as that satisfied by any element a with

exactly k elements in the block containing a.

Theorem 3. Let We F be a 1-recursive linear order. If the relations M, (x) fori<w
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are uniformly recursive on ¥, then the following are equivalent.

(1) Hedal{k - n:k<awl

(2) Every 1-recursive linear order isomorphic to U has the relations M,(x) for
i <, uniformly recursive.

Proof. Evidently (1) implies (2). We shall prove the converse by repeated
applications of Theorem 1. Notice that if (2) is true, then since ¥ e F, every
l-recursive linear order isomorphic to % has the block relation recursive. By
Theorem 2, this implies that % e F, for some finite n. Consider a structure % not
in A(F,_,U{n + n}). We shall apply Theorem 1 to show that (2) is false.

The role of the relation R is played by M (x). We define a function f from N?
into i satisfying the hypothesis of Theorem 1. For (m, s)eN?, if m =5 define
flm, s)=s5. If m <5 consider ¢, ..., c,, the ordering of A_ in ¥ and write ¢_,
and ¢, for — and « respectively. For {€{0, ..., m + 1} and t =5 we say that the
interval (¢;_,, ¢;) is large in %, if there are at least three blocks of length less than
n represented in (¢.q, ¢} N A, Define f{m, 5) to be the least > 5 for which either

(i) thereisan ie{0,..., m+1} with (¢, ¢;) not large in %, but large in 2(,; or

(ii) thereis an ie{0, ..., m+1} with (¢4, ;) large in ¥, and with (¢;_y, )N A,
containing at least 2s blocks of length n.

Consider any m eN. It follows from the assumption that A& AF, _, U{n -}
that there is an ie{0,..., m+1} such that the interval (¢,_,, ) contains an
infinite number of blocks of length n and an infinite number of length less than n.
Arguing from this fact we can show, as in the previous theorem, that f is a
recursive function from N? into N. Again as in the previous theorem, it follows
that there is an interval (¢, ,, ¢;} which satisfies (ii} for infinitely many s (and
t=f(m, 5)). Any element b of this interval {c,_,, ¢;} with ¢,_,, b and ¢, in separate
blocks and b in a block of length less than n, will satisfy the hypothesis of
Theorem 1 for this m.

We have deduced from the assumption that the relation M, (x} is intrinsically
recursive on %, that

He A(F,_,U{n-nd.

This means that there are points p,<p,<<- - -<p_ in % such that each one of the
intervals '

(—OO, p(}): (p(}: P1)’ Py (pm—-l’ pm)! (pm’ 00)

has order type in F,_, U{n - n}. Consider the l-recursive linear order ¥’ formed
by removing those of order type n-.m. It is clear that the relations
M(x), ..., M,_(x) are intrinsically recursive on ¥’ {(since they were on %). Using
Theorem 1 we can show that since M, _, is intrinsically recursive on %’ and
WeF,_, that

A'edF, ,U{n—1) - nh;
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and therefore that

e A(F, ,U{(n—1)-m,n-n}.
Repeated applications of this argument will prove that

NeA(k - n k<o)

We use the last few results to characterize by their order types l-recussive
linear orders that are recursively categorical. Notice that if a recursively categori-
cal l-recursive linear order has the block relation recursive, then it has the block
relation intrinsically recursive. Theorem 2 would then enable us to describe to
some extent the order type of this linear order. Unfortunately, this tactic does not
work in general. In [8] Remmel shows that there is a l-recursive linear order
whose isomorphism type contains no copy with the block relation recursive. In
Lemma 1 we present a weaker result that is sufficient for our needs.

YLemma 1. If % is a recursively categorical 1-recursive linear order, it has the block
relation B{x, y) intrinsically recursive.

Proof. The tactic is to attempt to construct a l-recursive linear order B isomor-
phic but not recursively isomorphic to 2. I U is recursively categorical this
construction will fail and we shall deduce from this that % has the block relation
recursive.

“The recursive universe of 8 will be B ={b,, b, ...}. At each stage s we shall
define an integer s’ > (s — 1) and a bijection g, from B, to A,. The structure B, is
defined on B,. in such a way so as to make g, an isomorphism from 3B,. to A, We
shall arrange that the diagram of B, is contained in that of B,y and therefore
that B8 =1lim, 9, exists and is a l-recursive linear order isomorphic to %. Let
fo» f1r - - - be a list of all partial recursive functions from B to A and f¢ the part of
f, enumerated by stage s. Our construction will attempt to meet the following lList
of requirements for e=0,1,2,....

Q,: f, is not an isomorphism from B to .

We define some phrases used in the description. We say a pair of elements a, b
is connected in ¥, if there are (a finite number of) points ¢; <cy <+ + < ¢, in A
such that every pair ¢, ¢, 15 a successivity in % and ¢, =a and ¢, =b (or ¢, =b
and ¢, =a). _

A, allows us to attack Q, at stage s+1 if there are elements ¢, d in By
satisfying the following three properties.

(i) g.(c) is not connected in U, to any element from among g(d), ap, ..., 0,
gs(bﬁ)n ey gs(be)- ’

(i) ¢ and d are in dom(fs); f,{c) and f,(d) are in A, and f,(c) is not connected
to §.(d}y in ¥,

(iii) Either g (c) is connected to g, (d) in %,, or f,{c) is connected to f.(d) in
A

me *
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In case such a pair ¢, d exists we choose the least such pair and define A(Q,) to

be A, with n defined as follows. Property (ii1) states that at least one of two pairs

of elements is connected in 9. Let x, y be a pair that is and p, g be the other.
Then n is the least integer =m such that either

(iv) p, g is connected in %, ; or

&) |, N A=l Y NA,L

By (iii) and the fact that ¥ is l-recursive, we can find A(Q,) effectively {from
m). Notice that A(Q,) allows us to attack Q, at stage s+ 1.

At each stage s the mapping g, is defined as follows.

Stage 0. Define 0/ =0 and g,: by~ a,.

Stage s+ 1. Check whether A,.., allows us to attack a Q, with e=ss-+ 1 which
has not yet been attacked. ¥ not, define (s +1)' =s'+1 and extend g, to g, in
the obvious way. If A, does allow us to attack 2 Q, withe=<s+1 which has not
yet been attacked, let Q, be the least such (with respect to ). Find A(Q, ) and
check whether A(Q, )} aliows us to attack a Q, with e <e; which has not yet been
attacked. Let Q, be the least such. Find A(Q,) and check whether A(Q,) allows
us to attack a Q with e <e, which has not yet been attacked. Continue this
process until we find a Q, such that it is the least requirement not yet attacked
which A(Q,) allows us to attack at this stage. Let ¢, d be the least pair satisfying
(D), (i) and (i) for Q, and A(Q,) and attack this Q, as follows.

Define Ay to be A(Q,). If (iv) is false or if o, @) NAL#1(x ¥INA,]in (v),
then extend g, in any way to g,.,, consider Q, attacked and go to the next stage.
Otherwise define g, in such a way that

(D g0 @ N Al =1 =Hgr1(0) gur(dI N AGn],

(2) g,.., is the same as g, on the points a,, ..., a, and by, ..., b, ; and

(3) the diagram of B, is contained in that of B y.

It is possible to define g, ,, in such a way because c, d satisfy properties (1) and
(i). Consider (O, attacked and go to the next stage.

Notice that by attacking Q, via a pair ¢, d we ensure that the intervals {c, d)
and (£.(c), £, (d)) are of different lengths in % and ¥ respectively and therefore that
Q, is met. Arguing as in Theorem 1 we see that (since each Q, is attacked at most
once), g=lim, g, exists and is an jsomorphism from B to %; and that Bisa
1-recursive linear order. We now show that 9 has the block relation recursive.

9 is recursively categorical and therefore there is a least e with f. an isomorph-
ism from B to % Consider a stage after which no requirement Q,- with &' <e is
ever attacked. After this stage g remains fixed on the elements ag, ..., a, and
by, ..., b, Consider a further stage ¢ when all pairs from among
Qoo v v vy G 8lbo)s o .5 & (b, } which share the same block in % are connected in
A, Gwen elements ¢,, ¢, in A we wish to decide whether or not the pair ¢, ¢,
share a block in . Let f7%(c,) =d, and f;1(¢,) = d,. Perform the construction up
to the first stage m =t when ¢, and ¢, are in A, Nran(f*) and d, and d, are in
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B.... We show that the pair c,, ¢, share a block in % if and only if either ¢, is
connected to ¢, or g,(d,) is connected to g,(d,) in U,

Heither ¢, is connected to cyor g (d)to g (d)in %‘{ . then since f, and g are
isomorphisms from B to %, it is clear that ¢, and ¢, share the same block in %. If
¢, and c, share a block in % but ¢, is not connected to ¢, and g, (d,) is not
connected to g,.(d,) in %,,.; then there is a first stage s+ 1(>m) when either c, is
connected to ¢, or g,.,(d,) to g,.(d,) in ¥, We show that A, allows us to
attack Q, via the elements d,, d, at this stage. By the choice of s+1 and the fact
that s = { we see that property (i) is satisfied. Again the choice of s+ 1 implies that
(ii) and (iii) are satisfied. Therefore requirement Q, would be aitacked at stage
s+1, contradicting the choice of e.

Once we have selected the stage t, we can for any pair ¢,, ¢, in A effectively
find the stage m. We therefore have an effective procedure for deciding whether
or not a pair of elements in A satisfies the block relation in .

Define the predecessor relation P(x)} to be that satisfied by any element a with
an immediate predecessor b; that is, b<<a and S(b, a). The successor relation S(x)
is satisfied by any element with an immediate successor.

Lemma 2. Let o be a recursive linear order with no blocks of infinite length. If %
has the block relation recursive, then the isomorphism type of W contains

(1) a 1-recursive linear order with the relations B{(x, y) and P(x) both recursive,
and

() a 1-recursive linear order with the relations B(x, v) and S(x) both recursive.

Proof. We construct a recursive linear order with recursive successivities, B,
isomorphic to % such that 8 has the predecessor relation P(x) recursive. 38 will
have recursive universe B={b, b,,...}. At each stage s we shall define a
bijection g.:B,— A, We define on each B, a structure ¥, with the relations
=, 8(x, y) and P(x) recursive as follows,

For a, b in B, define:

(i) a=<b in B, if and only if g(a)=<g/ (b) in U,

(i1) S{a, b) in B, if and only if there are no elements between a and b in B,
and Ak B(g,(d), g, (b)),

(fif) —1P(a) in B, if and only if for every ¢<<a in B, gfc) and gla) are in
separate blocks in A.

These relations are clearly recursive. We ensure that the diagram of B, is
contained in that of B, ,, and therefore that 8 =lim, B, is a recursive structure.
We define gs as follows.

Stage 0. Define g,: by, — a,.

Stage s+ 1. Consider D, the block containing a,,,. If DN A, is empty, then
define g...(b.,,)=a_,, and let g ., be the same as g, on the elements of B,

If DN A, is non-empty, let ¢; <e, << -- <, be the ordering of g; (DN A;) in
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9B, and let d; <d, <+ - - <d,,, be the ordering of DN A, .y in ¥U. Define g.4(c)=
d for i=1,....n g (b.,)=d, ., and let g ., be the same as g, on all other
elements.

Tt is clear that the diagram of B, is contained in that of %5 , ;. Notice that for
every ac A the number of stages s at which gi'(a)# gii(a) is at most the
size of the block containing a. Since % has no blocks of infinite length, this implies
that g =lim, g, exists, that B =1lim, B, is a recursive linear order with recursive
successivities and recursive predecessor relation P(x) and that g:8—% is an
isomorphism.

In like manner we can consiruct a recusive linear order with recursive
successivities, €, isomorphic to U, such that € has the successor relation S(x)
recursive.

Theorem 4. For a 1-recursive linear order U the following are equivalent.
(D) HeAdk - n:k<o}{o, 0" o+ o™},
(2) Every 1-recursive linear order isomorphic to U is recursively isomorphic to Y.

Proof. The usual back-and-forth argument may be used to show that (1) implies
(2). We use the last few results to prove the converse. Let % satisfy statement (2).
It follows from Lemma 1 that % has the block relation recursive. The block
relation is preserved under isomorphism and is therefore intrinsically recursive on
. This means {Theorem 2) that the order type of W is in

AF ., U{w, 0™, 0+ o).

It is therefore possible to partition ¥ by a finite number of points po<py; <<
p,. so that each one of the intervals (—w,pg),...,{(p,,*) has order type in
F_, U, 0¥, o +0*}. Consider % the 1-recursive linear order formed by remov-
ing those of order type w, ®* or w+w®. It is clear that W e F and that ¥’ is
recursively categorical, Since 9 has the block relation recursive, so has %' and
therefore by Lemma 2, the relations B(x, y), P(x) and S(x) are all recursive in ¥'.
Since 9 has no blocks of infinite length it follows that 9’ has the relations M, (x)
for i < uniformly recursive and hence intrinsically uniformly recursive. There-
fore by Theorem 3,

MNedAd(k k<o), -
and so
NeAdk -1k <ot o, a¥, o+ a™}.
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