The N(1440) Revisited Using SAID Facility

Igor Strakovsky The George Washington University

Based on work in collaboration with R. Arndt, W. Briscoe, R. Workman

- What we know about N(1440) [phenom/exp]
 - $-\pi N PWA$
 - direct measurements
 - $\pi PR PWA$
- How much we can learn from $\pi EPR PWA$
- Summary

User Group Meeting 2005, June 22, 2005

N(1440) bio

- N(1440) was born in 1963 (M = 1485 MeV)
 [B.T. Feld and L.D. Roper, Proc of the Siena Intern Conf on Elem Part (Italian Phys Soc, Bologna, Italy, 1963), p. 400]
- The first official report is

[L.D. Roper, Phys Rev Lett 12, 340 (1964)]

• More bio details are in

[http://arts.bev.net/roperldavid/roperres.htm]

N(1440)P₁₁ within πN PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035208 (2004)]

• One of the most convincing ways to study N*s and Δ *s is π N PWA

Complex Energy Plane for P₁₁

P₁₁ via Argand and Speed plots

 Is standard BW an appropriate form to extract N(1440) from the set of several nearby singularities (2 poles and πΔ branch point with a very prominent cut) ?!!

W = 1080 [20] 2280 MeV

Sp(W) = |dT/dW|
 peak at W=M (pole)
 at NR→ 0
 [G. Hoehler,]

UGM05, June 22, 2005 Igor Strakovsky, GWU

5

Inelastic $\pi N \rightarrow \pi \pi N$

• $\pi^- p \rightarrow \pi^+ \pi^- n$ and $\pi^0 \pi^0 n$ are essential but not critical ⁶

Direct Measurement: $e^+e^- \rightarrow J/\psi \rightarrow p\pi^-\bar{n} + \bar{p}\pi^+n$ [M. Ablikim *et al.* (BES Collaboration), hep-ex/0405030]

 PWA: J^P=1/2⁺ M=1358± 6±16 MeV Γ= 179±26±50 MeV

• Looks similar as pole in πN

Direct Measurement at SATURNE II: $\alpha p \rightarrow \alpha' X$

[H.P. Morsch and P. Zupranski, Phys Rev C 61, 024002 (2000)]

M=1390±20 MeV
 Γ= 190±30 MeV

• Looks similar as pole in πN

N(1440) within π PR PWA

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 66, 055213 (2002)]

 P₁₁ is less prominent within dominant waves

9

P_{11} ($M_{1-}^{1/2}$) within $\pi PR PWA$

• ${}_{p}A_{1/2}$ =-67±2 10⁻³ GeV^{-1/2} PDG =-65±4

• ${}_{n}A_{1/2}$ = 47± 5 10⁻³ GeV^{-1/2} PDG = 40±10

10

P₁₁ (M^{1/2}₁₋) in Different Approaches [L. Tiator *et al.* Nstar2004, March 2004]

Sensitivity of the EM Couplings Extraction

[R. Arndt, W. Briscoe, IS, R. Workman, L. Tiator, in progress]

• A-form: $T=(1+it_{\pi N})(Born+A)+Rt_{\pi N}+(C+iD)(Imt_{\pi N}-|t_{\pi N}|^2)$ o C-form: $T=(1+it_{\pi N})(Born+A)+Rt_{\pi N}e^{i\phi}$

Some Conclusion about Sensitivity

- PionPR does allow to determine EM couplings at fixed M, Γ , and X came from $\pi N PWA$
- Uncertainties of EM couplings depend from:
 - W range used in the BW fit (same as in $\pi N PWA$)
 - NR parameterization
 - Fitting procedure (data, amps, etc)
 - Exp data errs (both stat and syst)

π^{0} p Xsection variations within π EPR

[R. Arndt, W. Briscoe, IS, R. Workman, Nstar2002, Oct 2002]

JLab Hall A proposal PR-05-010

Structure of the Roper resonance from measurements of the double-polarization $p(\vec{e}, e'\vec{p})\pi^0$ reaction

- W = 1380 1500 MeV
 - $Q^2 = 0.13 0.93 \ GeV^2$

Observables: P_y , P_x/h , and P_z/h [about 50data] Systematics = 3%

P_{11} ($M_{1-}^{1/2}$ and $S_{1-}^{1/2}$) within πEPR [R. Arndt, W. Briscoe, IS, R. Workman, in progress]

UGM05, June 22, 2005 Igor Strakovsky, GWU

 $P_{y} vs P_{11} (M_{1-}^{1/2} and S_{1-}^{1/2})$

- P_y at low W is sensitive to small Q² high W is sensitive to large Q²
- Scalar is less sensitive than magnetic
- Expected $\Delta Py = 0.02$

 $P_{x}/h vs P_{11} (M_{1-}^{1/2} and S_{1-}^{1/2})$

 Scalar is less sensitive than magnetic at low Q²

• Expected $\Delta P_x/h = 0.01-0.02$

 $P_{11} (M_{1-}^{1/2} \text{ and } S_{1-}^{1/2})$

• P_z/h is less sensitive vs P_y and P_x/h

• Expected $\Delta P_z/h = 0.01-0.07$

¹⁹

Summary

- Huge amount (more than 45 k data) of CLAS πEPR data included unpol and both single and double pol measurements is a critical source to determine A(W,Q²) and N* EM couplings
- There is no chance to get a model independent info about neutron couplings at Q² > 0 because of lack of data
- Scalar component of P_{11} is less sensitive to the double pol measurements than magnetic in Q^2 dependence
- Each pole found at πN PWA can provide different Q² dependence in pionEPR

Thanks

I thank Dick Arndt, Yakov Azimov, Bill Briscoe, Cole Smith, and Ron Workman for very valuable discussions.

Backup

22

Prehistory of N(1440)

[found by C. Smith, June 2005]

- BNL, LHBC: π[±]p at 6 GeV/c
 [R.B. Bell et a/Phys Rev Lett 20, 164 (1968)]
- π^+n : Significance[N_s/ $\sqrt{(N_b+N_s)}$]= 3.1 σ π^-n : Significance[N_s/ $\sqrt{(N_b+N_s)}$]= 2.8 σ

 $A_{1,T}$ vs P_{11} ($M_{1-}^{1/2}$ and $S_{1-}^{1/2}$)

• A_{LT'} requires a high accuracy measurements