N^{*} as a Flavor Partner of the Θ^+ . Where are we now?

Igor Strakovsky The George Washington University

Based on work in collaboration with

R. Arndt, Ya. Azimov, W. Briscoe, M. Polyakov, R. Workman

- Antidecuplet
- Is N* = N(1710)?
- How to search for alternatives ? Modified PWA
- Theoretical expectations
- Experimental evidence for N*
- Summary

Eta Photoproduction Workshop, Bochum, DE, Feb 23-25, 2006¹

Tentative unitary Antidecuplet with Θ^{+}

GMO: equidistant, expected $\delta m(\sigma) = (M_{\Phi} - M_{\Theta})/3$ depends on σ -term =107 MeV at σ = 67 MeV [SAID] =180 MeV at σ = 45 MeV [Karlsruhe]

• δm agrees with the GW SAID σ -term, if M_{Θ} = 1540 MeV and M_{Φ} = 1862 MeV

Mixing tends to shift GMO masses for N* and Σ^{\star} stronger, than for Θ and Φ

SAID: [R. Arndt *et al,* Phys Rev C **69**, 035213 (2004)] Karlsruhe: [G. Hoehler, Springer, 1983]

N(1710) - What was known

[S. Eidelman et a/(PDG) Phys Lett B 592, 1 (2004)]

χSA	DPP97	1710 (inp)	~40 (est)	
PWA-BW	Ref	Mass(MeV)	Width(MeV)	
	KH79	1723± 9	120± 15	
	CMU80	1700±50	90± 30	
	KSU92	1717±28	480±230	
	GW04	nots	seen 🗕 🚽	No BW, No pole, No Sp
PWA-Pole		Re(MeV)	-2×Im(MeV)	
	CMU80	1690±20	80± 20 /	
	CMU90	1698	88	
	KH93	1690	200	(Sp)
	<i>G</i> W04	not	seen 🖌	

- It would be more natural for the same unitary multiplet (with ⊕⁺ and N^{*}) to have comparable widths
- The spread of Γ , separated by PDG, is very large

Standard Resonances in Standard PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

- One of the most convincing ways to study N*s and $\Delta^{*}s$ is πN PWA
- Standard PWA reveals only wide resonances, but not too wide ($\Gamma < 500$ MeV)
- PWA (by construction) tends to miss narrow resonances with Γ < 30 MeV

Narrow Resonances in PWA

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

- We assume the existence of a Res and refit over the whole database
- Insertion of narrow resonances in PWA for elastic case: $e^{2i\delta} \Rightarrow e^{2i\delta}_{R} e^{2i\delta}_{B}$ $e^{2i\delta}_{R} = (M_{R} - W + i\Gamma_{R}/2)/(M_{R} - W - i\Gamma_{R}/2)$

 $\begin{array}{l} \text{inelastic case: } \eta \; e^{2i\delta} \Rightarrow \langle a|S|a \rangle = r_a \; A(W) \; e^{2i\delta}_R + (1 - r_a) \; B(W) \\ r_a = \; BR(R \rightarrow a) \qquad |A(M_R)| = 1 \qquad \Sigma r_a = 1 \\ \eta \leq 1 \Rightarrow \; r_a \; |A(W)| + (1 - r_a) \; |B(W)| \leq 1 \end{array}$

 How does this insertion change χ²? (Will it decrease ?)

Modified $\pi N PWA$

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

• $\Delta \chi^2$ due to insertion of a resonance into $P_{11}(J^P = \frac{1}{2})$

• At $|M_R - W| \gg \Gamma_R$, Res contributes ~ $\Gamma_{el}/(M_R - W)$

- Two candidates: $M_R = 1680 \text{ MeV}$ 1730 MeV $\Gamma_{\pi N} < 0.5 \text{ MeV}$ < 0.3 MeV
- The procedure is less sensitive to Γ_{tot}

Modified PWA

- Refitting
 - <u>Worse</u> description
 - \Rightarrow a **Res** with corresponding M and Γ is not supported
 - <u>Better</u> description

⇒ a Res may exist
 ⇒ effect can be due to various corrections (*eg*, thresholds)
 ⇒ both possibilities can contribute
 Some additional checks are necessary

- A true **Res** should provide the effect only in a particular PW
- While NonRes source may show similar effects in various PWs

Check other Partial Waves

• $\Delta \chi^2$ due to insertion of a Res into S₁₁ (J^P = 1/2⁻)

• $\Delta \chi^2$ due to insertion of a Res into P₁₃ (J^P = 3/2⁺)

 No effects at M = 1680 MeV and possible (small) effects at M = 1730 MeV

8

D_{15} within πN PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

N(1675)D₁₅ - What is known

[S. Eidelman et a/(PDG) Phys Lett B 592, 1 (2004)]

PWA-BW	Ref	Mass(MeV)	Width(MeV)	$\Gamma_{\pi N}/\Gamma$
	KH79	1679± 8	120±15	0.38±0.03
	CMU80	1675±10	160±20	0.38±0.05
	KSU92	1676± 2	159± 7	0.47±0.02
	GW04	1676.2±0.6	151.8±3.0	0.400±0.002
PWA-Pole		Re(MeV)	-2xIm(MeV)	
	CMU80	1660±10	140±10	
	KH93	1656	126	
	<i>G</i> W04	1659	146	

N(1675)D₁₅ - What is known Other Channels

- $\Gamma_{\pi N}/\Gamma$ = 0.40±0.05 [PDG]
- $\Gamma_{\pi\Delta}/\Gamma$ = 0.496±0.003 [KSU92]
- $\Gamma_{\rho N}/\Gamma$ = 0.03±0.02 [KSU92]
- $\Gamma_{K\Lambda}/\Gamma$ = 0.036 [Ruth80]
- $\Gamma_{\eta N}/\Gamma$ = 0.00±0.01 [CMU00]

 There is really no room for large BR of N(1675)D₁₅ into other decay channels

Conclusion from Modified πN PWA for S- and P-waves

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208(2004)]

- 1680 MeV only one partial wave (P₁₁) reveals the effect: support to the resonance, $\Gamma_{\pi N} < 0.5$ MeV
- 1730 MeV P_{11} may also reveal a resonance with $\Gamma_{\pi N} < 0.3$ MeV but differently: resonance is still possible, if accompanied by different corrections
- The Res at 1730 MeV may appear in P₁₃ or S₁₁ (less probable), if accompanied by different corrections [*eg*, thresholds: $N\omega(1720)$, Np(1710) ?, K $\Sigma(1685)$]
- The rest of partial waves (D₁₅, *etc*) do not support narrow states

Θ^+ Flavor Partner, N*(J^P = $\frac{1}{2}^+$)

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

- If $\Gamma_{\Theta} \leq 1$ MeV, then expected structure for decays of the Θ -partner N* looks as follows:
 - $\Gamma(N^* \rightarrow \pi \Delta) \sim 6$ MeV [forbidden for $\overline{10}$, open due to $\overline{10}$ -8 mixing]
 - Γ(N*→ηN) ~ 0.5 2 MeV
 - Γ(N*→KΛ) ~ 0.5 1.5 MeV
 - $\Gamma(N^* \rightarrow \pi N) \sim 0.3 0.5$ MeV [non-trivial cancellation due to mixing is required]
 - $\Gamma(N^* \rightarrow \pi \pi N)$ [out of $\pi \Delta$] ?
 - $\Gamma(N^* \rightarrow K\Sigma)$ is small ?
 - $\Gamma(N^* \rightarrow all) \sim 10 \text{ MeV } [\Gamma_{\pi N}/\Gamma_{tot} < 10 \%]$

Ratio of modes πN and ηN is sensitive to the mixing

Preliminary Evidences for Narrow State(s) of M ~ 1700 MeV

- **GRAAL**: $\gamma n \rightarrow \eta n$, $K^0 \Lambda$, and $K^+ \Sigma^-$
- CB-ELSA: γn→ηn
- JLab Hall A: $H(e,e'\pi^+)X^0$
- **STAR**: $AuAu \rightarrow \Lambda K_s$
- COSY-TOF: pp→ΛK⁺p
- **ITEP**: $\pi^-p \rightarrow \pi^-p$ and $K^0\Lambda$ [in preparation]

GRAAL [V. Kuznetsov, hep-ex/0409032, NSTAR 2004, March 2004] $\gamma n \rightarrow \eta n \quad vs \quad \gamma p \rightarrow \eta p$

• For $\overline{10}$, $\sigma(n) \gg \sigma(p)$ [M. Polyakov, A. Ratke, Eur Phys J A 18, 691 (2003)]

Fermi motion for n-target is a problem

MAID about GRAAL Observation

[V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005]

- MAID2000 demonstrates

 a shoulder structure near
 N(1675)D₁₅
- MAID2000 claims to reproduce the rise in the ratio of the neutron/proton cross sections
- However, the experimental structure looks more narrow

MAID about GRAAL Observation

[V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005]

GRAAL [V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005] Very preliminary: γn→ηn

- The SAID soln for the η production off proton scaled by factor 0.6, as has been suggested by previous experiments, fits well the Xsection off the neutron in the region of the N(1535)D₁₅ below W ~1.62 GeV
- The sum of the SAID soln, scaled by 0.6, and the simulated contribution of a narrow state (M = 1.675 GeV, △W = 10 MeV), fits well Xsection on the neutron up to W ≈ 1.7 GeV !

• This state appears as a wider bump in Xsection due to Fermi motion

GRAAL [V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005] Very preliminary: γn→ηn

GRAAL [V. Kuznetsov, Trento, Feb 2004]

Very-very preliminary: $\gamma n \rightarrow K^0 \Lambda$, $K^+\Sigma$

CB-ELSA [I. Jaegle, NSTAR 2005, Oct 2005] Very preliminary: γn→ηn

• Independent CB-ELSA measurements confirm the GRAAL observation

JLab Hall A [B. Wojtsekhowski, Yi Qiang, E-04-012] Very-very preliminary $H(e,e'\pi^{+})X^{0}$, data taken in May of 2004

$$\Delta \chi^2 = \chi^2 (R+B) - \chi^2 (B)$$

- $E_0 = 5 \text{ GeV}$ $\theta_{e'} = 6^0$ $\theta_{\pi} = 0^0 \Delta \Theta = \pm 2^0$ $\sigma_{MM} = 1.3 \text{ MeV}$
- Signal N(1680) and N(1730) (if any) is small (agrees with expectations)
- The UL result is strong for Γ ~1 MeV and becomes softer for Γ ~10 MeV
- Extraction of $\Gamma_{\pi N}$ needs model assumptions

STAR [S. Kabana, hep-ex/0406032, Jamaica, March 2004] Preliminary: $AuAu \rightarrow \Lambda K_s$

Summary

- Narrowness of Θ⁺ required reanalysis of all its flavor partners
 We did it for `N(1710)' using modified πN PWA
- If Θ^+ is indeed a narrow state with $\Gamma_{\Theta} \leq 1$ MeV, then other members of the flavor 10 are, most probably, narrow as well
 - Their properties are sensitive to the structure of mixing which can be rather complicated
- Further measurements/analyses are necessary !!

Backup

COSY-TOF [W. Eyrich, Pentaquark 2004, July 2004] Very preliminary: $pp \rightarrow \Lambda K^+ p$

N^{*}(1710) contributes strongly

Influence of $p\Lambda$ -FSI

In progress: Investigation of Dalitz plots -> width

P_{11} within πN PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

• If Θ^+ does not survive, `damned' questions revive

- `Why are there no strongly bound exotic states..., like those of two quarks and two antiquarks or four quarks and one antiquark ?'
 [H. Lipkin, Phys Lett 45B, 267 (1973)]
- `...either these states will be found by experimentalists or our confined, quark-gluon theory of hadrons is as yet lacking in some fundamental, dynamical ingredient which will forbid the existence of these states or elevate them to much higher masses.'

[R. Jaffe and K. Johnson, Phys Lett 60B, 201 (1976)]

Separation of Res and Nres in $\gamma p \rightarrow \pi N$, I=1/2, 3/2 [R. Arndt, W. Briscoe, IS, R. Workman, L. Tiator, in progress]

• A-form: $T=(1+it_{\pi N})(Born+A)+Rt_{\pi N}+(C+iD)(Imt_{\pi N}-|t_{\pi N}|^2)_{29}$ o C-form: $T=(1+it_{\pi N})(Born+A)+Rt_{\pi N}e^{i\phi}$

Θ^+ and $\Phi - What$ is known [S. Eidelman *et al* (PDG) Phys Lett B **592**, 1 (2004)]

	Experiment	Mass (MeV)	Width (MeV)				
⊖(1540) *	LEPS	1540 ± 10	<25				
	DIANA	1539 ± 2	< 9				
	CLAS (d)	1542 ± 5	<21				
	SAPHIR	$1540\pm4\pm2$	<25	Only one pw P_{01} admits the			
	ITEP (v)	1533 ± 5	<20	effect at 1540 - 1450 MeV with Γ < 1 MeV			
	CLAS (p)	1555 ±10	<26	[R. Arndt, IS, R. Workman, Phys Rev C 68 , 042201 (2003)]			
	PDG average	1539.2 ± 1.6	- /				
	GWU	1545	≤ 1	With additional			
	LBNL	1540	0.9±0.3 ←	assumption and unknown systematics			
Ф(1860)	NA49	1862±2	<18	[R. Cahn and G. Trilling, Phys Rev D 69 , 011501 (2004)]			
The measured mass looks similar to expectation of the χSA [D. Diakonov, V. Petrov, M. Polyakov, Z Phys A 359 , 305 (1997)]							