N^{*} as a Flavor Partner of the Θ^{+}. Where are we now?

Igor Strakovsky The George Washington University

Based on work in collaboration with
R. Arndt, Ya. Azimov, W. Briscoe, M. Polyakov, R. Workman

- Antidecuplet
- Is $N^{*}=N(1710)$?
- How to search for alternatives? Modified PWA
- Theoretical expectations
- Experimental evidence for N*
- Summary

Eta Photoproduction Workshop, Bochum, DE, Feb 23-25, $2006{ }^{1}$

Tentative unitary Antidecuplet with Θ^{+}

$N(1710)$ - What was known

[S. Eidelman et al (PDG) Phys Lett B 592, 1 (2004)]

- It would be more natural for the same unitary multiplet (with Θ^{+}and N^{*}) to have comparable widths
- The spread of Γ, separated by PDG, is very large

Standard Resonances in Standard PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

- One of the most convincing ways to study $N^{*} s$ and $\Delta^{*} s$ is $\pi \mathrm{N}$ PWA
- Standard PWA reveals only wide resonances, but not too wide ($\Gamma<500 \mathrm{MeV}$)
- PWA (by construction) tends to miss narrow resonances with Γ < 30 MeV

Narrow Resonances in PWA

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

- We assume the existence of a Res and refit over the whole database
- Insertion of narrow resonances in PWA for elastic case: $\quad e^{2 i \delta} \Rightarrow e^{2 i \delta_{R}} e^{2 i \delta_{B}}$

$$
e_{R}^{2 i i_{R}}=\left(M_{R}-W+i \Gamma_{R} / 2\right) /\left(M_{R}-W-i \Gamma_{R} / 2\right)
$$

inelastic case: $\eta e^{2 i \delta} \Rightarrow\langle a| S|a\rangle=r_{a} A(W) e^{2 i \delta}{ }_{R}+\left(1-r_{a}\right) B(W)$

$$
\begin{aligned}
& r_{a}=B R(R \rightarrow a) \quad\left|A\left(M_{R}\right)\right|=1 \\
\eta \leq 1 \Rightarrow & r_{a}|A(W)|+\left(1-r_{a}\right)|B(W)| \leq 1
\end{aligned}
$$

- How does this insertion change χ^{2} ?
(Will it decrease ?)

Modified π N PWA

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

- $\Delta \chi^{2}$ due to insertion of a resonance into $P_{11}\left(J^{P}=\frac{1}{2}+\right)$

- At $\left|M_{R}-W\right| \gg \Gamma_{R}$. Res contributes $\sim \Gamma_{e l} /\left(M_{R}-W\right)$
- Two candidates: $M_{R}=1680 \mathrm{MeV} 1730 \mathrm{MeV}$

$$
\Gamma_{\pi N}<0.5 \mathrm{MeV}<0.3 \mathrm{MeV}
$$

- The procedure is less sensitive to $\Gamma_{\text {tot }}$

Modified PWA

- Refitting
- Worse description
\Rightarrow a Res with corresponding M and Γ is not supported
- Better description
\Rightarrow a Res may exis \dagger
\Rightarrow effect can be due to various corrections (eg, thresholds)
\Rightarrow both possibilities can contribute
Some additional checks are necessary
- A true Res should provide the effect only in a particular PW
- While NonRes source may show similar effects in various PWs

Check other Partial Waves

- $\Delta \chi^{2}$ due to insertion of a Res into $S_{11}\left(J^{P}=1 / 2^{-}\right)$
- $\Delta \chi^{2}$ due to insertion of a Res into $P_{13}\left(J^{P}=3 / 2^{+}\right)$
- No effects at $M=1680 \mathrm{MeV}$ and possible (small) effects at $M=1730 \mathrm{MeV}$

D_{15} within πN PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

- Because of a special interest to $N(1675) D_{15}$, let us check the situation

- $N(1675) D_{15}$ has a standard BW and pole
- It is unnatural to have two nearby resonances
with the same quantum numbers

$N(1675) D_{15}$ - What is known

[S. Eidelman et al (PDG) Phys Lett B 592, 1 (2004)]

PWA-BW	Ref	Mass (MeV)	Width(MeV)	$\Gamma_{\pi N} / \Gamma$
	KH79	1679 ± 8	120 ± 15	0.38 ± 0.03
	CMU80	1675 ± 10	160 ± 20	0.38 ± 0.05
	KSU92	1676 ± 2	159 ± 7	0.47 ± 0.02
	GW04	1676.2 ± 0.6	151.8 ± 3.0	0.400 ± 0.002
PWA-Pole		$\operatorname{Re}(\mathrm{MeV})$	$-2 \times \operatorname{Im}(\mathrm{MeV})$	
	CMU80	1660 ± 10	140 ± 10	
	KH93	1656	126	
	GW04	1659	146	

$N(1675) D_{15}$ - What is known Other Channels

- $\Gamma_{\pi \mathrm{N}} / \Gamma=0.40 \pm 0.05$ [PDG]
- $\Gamma_{\pi \Delta} / \Gamma=0.496 \pm 0.003$ [KSU92]
- $\Gamma_{\rho \mathrm{N}} / \Gamma=0.03 \pm 0.02$ [KSU92]
- $\Gamma_{\mathrm{K} \Lambda} / \Gamma=0.036 \quad$ [Ruth80]
- $\Gamma_{\eta \mathrm{N}} / \Gamma=0.00 \pm 0.01$ [CMU00]
- There is really no room for large $B R$ of $N(1675) D_{15}$ into other decay channels

Conclusion from Modified π N PWA for S- and P-waves

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208(2004)]

- 1680 MeV - only one partial wave $\left(\mathrm{P}_{11}\right)$ reveals the effect: support to the resonance, $\Gamma_{\pi N}<0.5 \mathrm{MeV}$
- $1730 \mathrm{MeV}-\mathrm{P}_{11}$ may also reveal a resonance with $\Gamma_{\pi \mathrm{N}}<0.3 \mathrm{MeV}$ but differently: resonance is still possible, if accompanied by different corrections
- The Res at 1730 MeV may appear in P_{13} or S_{11} (less probable), if accompanied by different corrections [eg, thresholds: $\mathrm{N} \omega$ (1720), Np (1710) ?, $\mathrm{K} \mathrm{\Sigma}(1685)$]
- The rest of partial waves $\left(D_{15}\right.$, etc) do not support narrow states

Θ^{+}Flavor Partner, $\mathrm{N}^{\star}\left(\mathrm{J}^{P}=\frac{1}{2}{ }^{+}\right)$

[R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

- If $\Gamma_{\Theta} \leq 1 \mathrm{MeV}$, then expected structure for decays of the Θ-partner N^{\star} looks as follows:
$-\Gamma\left(N^{*} \rightarrow \pi \Delta\right) \sim 6 \mathrm{MeV}$ [forbidden for $\overline{10}$, open due to $\overline{10}-8$ mixing]
$-\Gamma\left(\mathrm{N}^{\star} \rightarrow \eta \mathrm{N}\right) \sim 0.5-2 \mathrm{MeV}$
$-\Gamma\left(N^{\star} \rightarrow K \Lambda\right) \sim 0.5-1.5 \mathrm{MeV}$
$-\Gamma\left(\mathrm{N}^{\star} \rightarrow \pi \mathrm{N}\right) \sim 0.3-0.5 \mathrm{MeV}$ [non-trivial cancellation due to mixing is required]
$-\Gamma\left(\mathrm{N}^{\star} \rightarrow \pi \pi \mathrm{N}\right)$ [out of $\pi \Delta$]?
$-\Gamma\left(N^{\star} \rightarrow K \Sigma\right)$ is small ?
$-\Gamma\left(N^{*} \rightarrow\right.$ all $) \sim 10 \mathrm{MeV}\left[\Gamma_{\pi N} / \Gamma_{\text {tot }}<10 \%\right]$
Ratio of modes πN and ηN is sensitive to the mixing

Preliminary Evidences for Narrow State(s) of M ~ 1700 MeV

- GRAAL: $\gamma n \rightarrow \eta n, K^{0} \Lambda$, and $K^{+} \Sigma^{-}$
- CB-ELSA: $\gamma n \rightarrow \eta n$
- JLab Hall A: H(e, $\left.e^{\prime} \pi^{+}\right) X^{0}$
- STAR: $A u A u \rightarrow \Lambda K_{s}$
- COSY-TOF: $p p \rightarrow \Lambda K^{+} p$
- ITEP: $\pi^{-} p \rightarrow \pi^{-} p$ and $K^{0} \Lambda$ [in preparation]

GRAAL [V. Kuznetsov, hep-ex/0409032, NSTAR 2004, March 2004] $\gamma n \rightarrow \eta n$ vs $\gamma \mathrm{P} \rightarrow \eta \mathrm{p}$

- For $\overline{10}, \sigma(n) \gg \sigma(p)$ [M. Polyakov, A. Ratke, Eur Phys J A 18, 691 (2003)]
- Fermi motion for n-target is a problem

MAID about GRAAL Observation

[V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005]

- MAID2000 demonstrates a shoulder structure near $N(1675) D_{15}$
- MAID2000 claims to reproduce the rise in the ratio of the neutron/proton cross sections
- However, the experimental structure looks more narrow

MAID about GRAAL Observation

[V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005]

GRAAL [V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005] Very preliminary: $\gamma n \rightarrow \eta n$

- The SAID soln for the η production off proton scaled by factor 0.6, as has been suggested by previous experiments, fits well the Xsection off the neutron in the region of the $\mathrm{N}(1535) \mathrm{D}_{15}$ below $\mathrm{W} \sim 1.62 \mathrm{GeV}$
- The sum of the SAID soln, scaled by 0.6 , and the simulated contribution of a narrow state ($M=1.675 \mathrm{GeV}, \Delta \mathrm{W}=10 \mathrm{MeV}$), fits well Xsection on the neutron up to $\mathrm{W} \approx 1.7 \mathrm{GeV}$!
- This state appears as a wider bump in Xsection due to Fermi motion

GRAAL [V. Kuznetsov, hep-ex/0601002, NSTAR 2005, Oct 2005] Very preliminary: $\gamma n \rightarrow \eta n$

GRAAL [V. Kuznetsov, Trento, Feb 2004]

 Very-very preliminary: $\gamma n \rightarrow K^{0} \Lambda, K^{+} \Sigma$

CB-ELSA [I. Jaegle, NSTAR 2005, Oct 2005] Very preliminary: $\gamma n \rightarrow \eta n$

- Independent CB-ELSA measurements

JLab Hall A [B. Wojtsekhowski, Yi Qiang, E-04-012]

Very-very preliminary $H\left(e, e^{\prime} \pi^{+}\right) X^{0}$, data taken in May of 2004

STAR [S. Kabana, hep-ex/0406032, Jamaica, March 2004] Preliminary: AuAu $\rightarrow \Lambda K_{s}$

Summary

- Narrowness of Θ^{+}required reanalysis of all its flavor partners
We did it for ' $\mathrm{N}(1710)$ ' using modified $\pi \mathrm{N}$ PWA
- If Θ^{+}is indeed a narrow state with $\Gamma_{\Theta} \leq 1 \mathrm{MeV}$, then other members of the flavor 10 are, most probably, narrow as well
Their properties are sensitive to the structure of mixing which can be rather complicated
- Further measurements/analyses are necessary !!

Backup

COSY-TOF [W. Eyrich, Pentaquark 2004, July 2004] Very preliminary: $p p \rightarrow \Lambda K^{+} p$

$\mathbf{N}^{*}(1710)$ contributes strongly
Influence of $\mathrm{p} \wedge-\mathrm{FSI}$
In progress: Investigation of Dalitz plots \rightarrow width

P_{11} within $\pi \mathrm{N}$ PWA

[R. Arndt, W. Briscoe, IS, R. Workman, M. Pavan, Phys Rev C 69, 035213 (2004)]

- If Θ^{+}does not survive, 'damned' questions revive
- 'Why are there no strongly bound exotic states..., like those of two quarks and two antiquarks or four quarks and one antiquark ?'
[H. Lipkin, Phys Lett 45B, 267 (1973)]
- '...either these states will be found by experimentalists or our confined, quark-gluon theory of hadrons is as yet lacking in some fundamental, dynamical ingredient which will forbid the existence of these states or elevate them to much higher masses.'
[R. Jaffe and K. Johnson, Phys Lett 60B, 201 (1976)]

Separation of Res and Nres in $\gamma p \rightarrow \pi N, I=1 / 2,3 / 2$ [R. Arndt, W. Briscoe, IS, R. Workman, L. Tiator, in progress]

- A-form: $T=\left(1+i \dagger_{\pi N}\right)(B o r n+A)+R \dagger_{\pi N^{+}}(C+i D)\left(I m \dagger_{\pi N^{-}}\left|\dagger_{\pi N}\right|^{2}\right)$
o C-form: $T=\left(1+i t_{\pi N}\right)(B o r n+A)+R t_{\pi N} e^{i \phi}$

Θ^{+}and Φ - What is known

[S. Eidelman et al (PDG) Phys Lett B 592, 1 (2004)]

The measured mass looks similar to expectation of the $\chi S A$
[D. Diakonov, V. Petrov, M. Polyakov, Z Phys A 359, 305 (1997)]

