Deuteron as an Effective Neutron Targ

he George Washington University

rakovsk

- Single Pion PhotoProd
- Proton Multipoles
- FSI for $\gamma n \rightarrow \pi^- p$
- CLAS $\gamma n \rightarrow \pi^- p$ data for PWA
- Neutron Multipoles
- Polarized Measurements
- Summary & Prospects

PMA for non-strange Baryons & SAID Database

Originally: PWA arose as the technology to determine amplitude of the reaction via fitting scattering data which is a non-trivial mathematical problem Center for Nuclear Studies [Solution of ill-posed problem **Data Analysis Center** - Hadamard, Tikhonov, et al **Below 4 GeV** Resonances appeared as a by-product Partial-Wave Analyses at GW [Bound states objects with quantum [See Instructions] numbers and mass, lifetime, *etc]* [W = 1320 to 1930 MeV] 31.402 Pion-Nucleon Pion-Pion-Nucleon 241,214 evts Kaon-Nucleon That is the strategy of the 5,267 38.162 Nucleon-Nucleon GW/VPI πN PWA since 1987 **Pion Photoproduction** 26,554 113,900 **Pion Electroproduction** 9.086 Kaon Photoproduction 6,235 Eta Photoproduction Eta-Prime Photoproduction 1.030 Pion-Deuteron (elastic) 1,914 Pion-Deuteron to Proton+Proton 6.083 For $\pi \rightarrow 2\pi$, we use log-likelihood while for the rest - least-squares technologies 5/23/2012

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

N^* and Δ^* States coupled to πN

[SAID: http://gwdac.phys.gwu.edu/]

Partial-Wave Analyses at GW

• GW SAID N* program consists of $\pi N \rightarrow \pi N$ $\gamma^* N \rightarrow \pi N$ As was established by Dick Arndt on 1997

Assuming dominance of 2-hadronic channels
 [πN elastic & π⁻p→ηn], we parameterize
 γ*N→πN in terms of πN→πN amplitudes

[See Instructions] Pion-Nucleon Pion-Pion-Nucleon Kaon-Nucleon Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton

Analyses From Other Sites Mainz (MAID – Analyses) Nijmegen (Nuckon-Nuckon OnLine)

Contact

Richard A. Arndt⁺ William J. Briscoe Ron L. Workman Igor I. Strakovsky Mark Paris

Center for Nuclear Studies Department of Physics The George Washington University -Virginia Campus-20101 Academic Way Algor Strakovsky ISA

• One of the most convincing ways to study Spectroscopy of N* & Δ^* is πN PWA

 Non-strange objects in the PDG Listings come mainly from: Karlsruhe-Helsinki, Carnegie-Mellon-Berkeley, & GW/VPI

• The main source of EM couplings is the GW/VPI analysis

SAID for Pion Photoproduction

[W. Chen, et al, arXiv:1203.4412 [hep-ph]

5/23/2012

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

Recent SAD results for Pion Photoproduction

Solution	Energy Limit (MeV)	χ^2/N_{Data}	N _{Data}
GB12	2700	2.09	26,179
CM12	2700	2.01	25,814
SN11	2700	2.08	25,553
SP09	2700	2.05	24,912
FA06	3000	2.18	25,524
SM02	2000	2.01	17,571
SM95	2000	2.37	13,415

• The overall SAID χ^2 has remained stable against the growing database, which has increased by a factor of 2 since 1995

[most of this increase coming from data from **photon-tagging** facilities].

Minimization and Normalization Factor for Pion Prod [7]/Data]

In fitting the data, the stated exp syst errs have been used as an overall norm adjustment factor for the angular distribution

• Modified χ^2 function, to be minimized

• Normalization freedom provides a significant improvement for our best fit results, we cannot ignore experimental input

 $\chi^2 = \sum_{i} \left(\frac{X\theta_i - \theta_i^{\exp}}{\epsilon_i} \right)^2 + \left(\frac{X - 1}{\epsilon_X} \right)^2$

χ²/Data	GB12		SM02		MAID07-	
Reaction	Norm	UnNorm	Norm	UnNorm	Norm	UnNorm
γр→π⁰р	2.2	3.6	3.2	5.7	7.7	12.3
γp→π⁺n	1.9	3.4	2.1	3.9	8.1	11.7
γn→π⁻p	2.1	6.5	1.8	2.5	2.9	3.8
γn → π⁰n	3.3	5.3	2.8	2.8	6.4	6.4

[systematics plays important role]

 θ_i^{exp} measured, ϵ_i stat error, θ_i calculated, X norm const, ϵ_x its error

Modified χ^2 [Norm] Standard χ^2 [UnNorm]

- If the systematic uncertainty varies with angle
 - This procedure may be considered as a first approximation

	• MAID is valid below W = 2 GeV		
	• For MAID07, the normalization constants were searched to minimize χ^2 (no adjustment of the partial waves was possible)		
	 MAID07 does not include recent CLAS π⁰p , π⁺n , & π⁻p LEPS π⁰p GRAAL π⁻p & π⁰n data 		
[D. Drechsel, <i>et al,</i> Eur Phys J A 34, 69 (2007)]			

Igor Strakovsky

7

Proton Multipoles for CM12

[R. Workman, W. Briscoe, M. Paris, IS, arXiv:1202.0845 - to be published in Phys Rev C (2012)]

• <u>Overall</u>: the difference between MAID07 or BoGa and SAID-CM12 is rather small but... Resonances may be essentially different

Single Pion Photoproduction

• Only with good data on both **proton** and **neutron** targets, one can hope to disentangle the **isoscalar** & **isovector EM** couplings of the various $N^* & \Delta^*$ resonances,

as well as the isospin properties of the non-resonant background amplitudes

- The radiative decay width of the neutral baryons may be extracted from $\pi^- \& \pi^0$ photoproduction off a **neutron**, which involves a **bound neutron target** and requires the use of a <u>model-dependent nuclear corrections</u>.
- The lack of $\gamma n \rightarrow \pi^- p \& \gamma n \rightarrow \pi^0 n$ data does not allow us to be as confident about the determination of neutron couplings relative to those of the proton.

 $\gamma n \rightarrow \pi^- \rho$ Experiment

- The existing $\gamma n \rightarrow \pi^- p$ database contains mainly differential cross sections (17% of which are from **polarized** measurements).
- Many of these are old bremsstrahlung measurements with limited angular coverages and large energy binnings (100 - 200 MeV). In several cases, the systematic uncertainties have not been given.
- At lower energies (E_γ < 700 MeV), there are data sets for the inverse π⁻ photoproduction reaction: π⁻p→γn. This process is free from complications associated with a **deuteron target**.
- However, the disadvantage of using $\pi^- p \rightarrow \gamma n$ is the 5 to 500 times larger cross section for $\pi^- p \rightarrow \pi^0 n \rightarrow \gamma \gamma n$.

• The CLAS cross section set has quadrupled the world database for $\gamma n \rightarrow \pi^- p$ above 1 GeV.

Where we Are now

Some of the N* baryons [N(1675)5/2⁻, for instance] have stronger EM couplings to the neutron than to the proton but parameters are very uncertain

$$N(1675) D_{15} I(J^P) = \frac{1}{2}(\frac{5}{2})$$
 Status: ****

PDG10: N(1675)5/2⁻→pγ , helicity-1/2 ampl A1/2: +0.019±0.008 N(1675)5/2⁻→nγ , helicity-1/2 ampl A1/2: -0.043±0.012

 SAID
 N(1675)5/2⁻→pγ , helicity-3/2 ampl A3/2: +0.016±0.001

 N(1675)5/2⁻→pγ , helicity-3/2 ampl A3/2: -0.058±0.002

• **PDG** estimate for the $A_{1/2} \& A_{3/2}$ decay amplitudes of the N(1720)3/2⁺ state are consistent with zero, while the recent **SAID** determination gives small but non-vanishing values

$$N(1720) P_{13} I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ****

PDG10SAIDN(1720)3/2+ \rightarrow py, helicity-1/2 ampl A1/2: +0.018±0.030+0.095±0.002N(1720)3/2+ \rightarrow py, helicity-3/2 ampl A3/2: -0.019±0.020-0.048±0.002

• Other unresolved issues relate to the second P_{11} , N(1710)1/2⁺, that are not seen in the recent πN PWA, contrary to other PWAs used by the PDG10

$$N(1710) P_{11} I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters **111B** 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G **33** 1 (2006).

The latest GWU analysis (ARNDT 06) finds no evidence for this resonance.

FSI and
$$\gamma d \rightarrow \pi \bar{\rho} p \longrightarrow \gamma n \rightarrow \pi \bar{\rho}$$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

 $\gamma d \rightarrow \pi \rho p$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012 Igor Strakovsky

FSI for CLAS $\gamma_{\mu} \rightarrow \pi^{-}\rho$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

CLAS data vs. previous Brem Measurements [W. Chen, et al, arXiv:1203.4412 [hep-ph]

• Principal π^- experiments below 1 GeV were done at Meson Factories: LAMPF, TRIUMF, & PSI

• Previous measurements used a modified Glauber approach and the procedure of unfolding the Fermi motion of the neutron target.

CLAS g10 for yn > TT

[W. Chen, et al, arXiv:1203.4412 [hep-ph]

Neutron Multipoles for GB12

[W. Chen, et al, arXiv:1203.4412 [hep-ph]

More CLAS for $\gamma n \rightarrow \pi^- p$

[g13: P. Mattione, et al, in progress]

• Complementary measurements of π^- Photo Prod, required for an isospin decomposition of the multipoles

MAR-lab for the Shreshold

 $\gamma \pi \rightarrow \pi^- \rho$ at Threshold

New MAX-lab data will provide a constraint for PWA

Complete Experiment in Pion Photo Production

Direct Amplitude Reconstruction in Pion Photo Production

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012 Igor Strakovsky

World Neutral and Charged Pion Photo Prod Data

Neutron data / Proton data = 2793/23212 = 0.12

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

Recent GRAAL \sum_{i} for $\vec{\gamma} n \rightarrow \pi^{\circ} n$

[R. Di Salvo, et al, Eur Phys J A 42, 151 (2009)]

• The difference between previous Pion Prod and new GRAAL measurements may result in significant changes in the neutron couplings • 216 GRAAL Σ s are 60% of the World π^0 n data

5/23/2012

Recent GRAAL \geq for $\vec{\gamma}n \rightarrow \pi^- p$

[G. Mandaglio, et al, Phys Rev C 82, 045209 (2010)]

• Previous $\gamma n \rightarrow \pi^- p$ measurements provided a better constraint vs. $\gamma n \rightarrow \pi^0 n$ case

E + Neutron Multipole

5/23/2012

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

Preliminary Σ Measurement I

5/23/2012 Daria Sokhan Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

JLab Users' Meeting - 8 June 2010

Preliminary Σ Measurement II

5/23/2012 Daria <u>Sokhan</u> Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012

JLab Users' Meeting – 8 June 2010

HD-ICE for Polarized Measurements for $\gamma_n \rightarrow \pi^- p$

ourtesy of Natalie Walford, CLAS Meeting, May2012

No FSI included

Igor Strakovsky

36

5/23/2012

There were several attempts to estimate FSI for dear point

• There are no estimations below and above the Δ -region

• The effect from **FSI** is small and at the lowest energy

has a noticeable impact on Σ

Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012 Igor Strakovsky

37

Next Step is $\gamma_n \rightarrow \pi^n$

[M. Schwamb, Phys Rep 485, 109 (2010)]

Pion Electroproduction on the Mentron

GW DAC for Pion Electro Prod

Q² dependence

Database Problems:

Most of data are unPolarize measurements There are no ^m data and ^{*}

very few *π* [no Pol measurement

e n-ouplings at Q² > 0

1 2 3 4 5 6 $Q^{2}(GeV^{2})$

πp

CLAS for $\gamma^* \pi \rightarrow \pi^0 \pi$

BoNuS Vs Models, 5 GeV, W = 1.525

- Pion Photo Prod measurements on the 'neutron' target are necessary to determine neutron couplings at $Q^2 = 0$ GeV²
- Future experiments on the reactions $\gamma d \rightarrow \pi NN$ are welcome, especially at small angles $\theta < 30^{\circ}$, where data are absent
- JLab FROST & HD-ICE, CB@MAMI-C, LEPS II, CB-ELSA, & MAX-lab data could yield surprises
- Complete experiment would make possible a direct reconstruction of helicity amplitudes for Pseudo-Scalar Meson Photo Prod
- Pion Electro Prod measurements on the 'neutron' target are necessary to determine neutron couplings at $Q^2 > 0$ GeV² $e'_{f} = \pi$

JHQJIKS

igor@gwu.edu

iugene Pasyuk © 201

Pion Photoproduction with Polarized Beam and Polarized Target $l\pi$ $L = l_{\gamma N} + 1$ $l_{2I,2J}$ Ν EL, ML E_{l+}, M_{l+} Multipole components of the electromagnetic radiation

Angular momentum and parity conservation

$$J^P(\gamma N) = J^P(R) = J^P(\pi N)$$

Angular momentum

$$L \pm \frac{1}{2} = J = l_{\pi} \pm \frac{1}{2}$$

EL:

 $(-1)^{L} = (-1)^{l_{\pi}+1} \Longrightarrow \left| L - l_{\pi} \right| = 1$ Hall-B/ Physics Analysis Center Meeting, Newport News, VA, May 2012 4/12/2012 ML: $(-1)^{L+1} = (-1)^{l_{\pi}+1} \Longrightarrow L = l_{\pi}$

Multipole amplitudes:

$$E_{l+,}E_{l-,}M_{l+,}M_{l-}$$

$$I = l + \frac{1}{2}$$

$$J = l - \frac{1}{2}$$

