Why Intense Pion Beams at GSI ?

lgor Strakovsky

The George Washington University

There are Several Attractive & High Profile Tasks:

- $\pi N \rightarrow \pi N$, ηN , $\eta' N$, ϕN , ωN , $K\Lambda$, & $K\Sigma$ [including **polarized** measurements for $K\Lambda \& K\Sigma$].
- $\pi N \rightarrow \pi \pi N$ [$\pi \Delta \& \rho N$ contribution].
- Inverse Pion Electroproduction $\pi^-p \rightarrow e^+e^-n$.
- Exotics:

Igor Strakovs

• N(1680) via ηN , K Λ , & $\pi \Delta$ decay channels. The width of N(1680) is much less than any known non-strange N^{*}.

 The HADES potential is to make a significant contribution to our knowledge of Baryon Resonances and properties of them.

PMA for non-strange Baryons & SAND Database

Originally: PWA arose as the technology to determine amplitude of the reaction via fitting scattering data which is a non-trivial mathematical problem [Solution of ill-posed problem - Hadamard, Tikhonov, et al]

Resonances appeared as a by-product

[Bound states objects with quantum numbers and mass, lifetime, *etc*]

That is the strategy of the GW/VPI πN PWA since 1987

5/17/2012

• GW SAID N* program consists of $\pi N \rightarrow \pi N \longrightarrow \gamma N \rightarrow \pi N \longrightarrow \gamma^* N \rightarrow \pi N$ As was established by Dick Arndt on 1997

• Assuming dominance of 2-hadronic channels $[\pi N \text{ elastic } \& \pi^- p \rightarrow \eta n]$, we parameterize $\gamma^* N \rightarrow \pi N$ in terms of $\pi N \rightarrow \pi N$ amplitudes

Center for Nuclear Studies Data Analysis Center

Partial-Wave Analyses at GW

[See Instructions] Pion-Nucleon Pion-Pion-Nucleon Kaon-Nucleon Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton

Analyses From Other Sites Mainz (MAID – Analyses) Nijmegen (Nuckeon-Nuckeon OnLine)

Contact

Richard A. Arndt ⁺ William J. Briscoe Ron L. Workman Igor I. Strakovsky Mark Paris

Center for Nuclear Studies Department of Physics The George Washington Un -Virginia Campus-20101 Academic Way Asilgor, StrakovskysA 5

• One of the most convincing ways to study Spectroscopy of N* & Δ^* is πN PWA

 Non-strange objects in the PDG Listings come mainly from: Karlsruhe-Helsinki, Carnegie-Mellon-Berkeley, & GW/VPI

• The main source of EM couplings is the GW/VPI analysis

Where is a Resonance

Igor Strakovsky

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

GW DAC Search for N^* and Δ^*

We are considering a resonance as a **Pole** in the complex plane which is not far away from the physical axis

- <u>Applied</u> directly to the data via BW + Bckgr
- <u>Assume</u>: $S \rightarrow S_R S_B$ $S_R = 1 + 2iT_R$ $T_R = (\Gamma_e/2) / [W_R - W - i(\Gamma_e/2 + \Gamma_I/2)]$ $\Gamma = \Gamma_e + \Gamma_I \quad \Gamma_e = \rho_e \Gamma R \quad \Gamma_I = \rho_i \Gamma (1 - R)$ $T_B = K_B (1 - iK_B)^{-1} \quad K_B = a + b(W - W_R) + c$
- <u>Map</u> $\chi^2[W_R,\Gamma]$ while searching all other PW parameters Look for significant improvement
- <u>Subjective variables are</u>
 - Energy binning
 - Strength of constraints
 - Which PW to be searched

 <u>Standard PWA</u>
Tends (by construction) to miss narrow Resonances with Γ < 30 MeV
Reveals only wide Resonances, but not too wide [Γ < 500 MeV] and possessing not too small BR [BR > 0.04]
<u>Modified PWA</u>
Allows to put a resonance by hands with subsequent refitting the data Then the search will allow to see how reliable/tolerable it is

Baryon Resonance Production, Krakow, Poland, May 2012

GW DAC [SAID] for $\pi N \rightarrow \pi N & \pi^- \rho \rightarrow \eta \pi$

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

• <u>1st generation</u> ('57–'79) Used by CMB79 and KH84 analyses	Reaction	Data	χ ²	
10k π^{\pm} p each & 1.5k CXS	π⁺p→ π⁺p	13,354	27,136)
17% data is polarized	π⁻p→ π⁻p	11,978	22,632	[0 – 2600 MeV] → 10 data/MeV
• <u>2nd generation</u> ('80–'06)	π⁻ p→ π ^o n	3,115	6,068	J
→ SAID fits 13k π [±] p each, 3k CXS & 0.3k π ⁻ p→ηn	π- p→ η n	257	650	→ [550 – 800 MeV] → 1 data/MeV
25% data is polarized	DR constraint	2,775	671	27 σ ^{tot} & 37 P data
PSI] are the main source of new	Total	31,479	57,157	above 800 MeV → 0.03 data/MeV
measurements There is no discrimination against data		DRs have	e been derived	

 <u>3rd generation</u> (07'+) New data may come from J-PARC, HADES, *etc*

5/17/2012

Baryon Resonance Production, Krakow, Poland, May 2012

from the *first principles*

 $\pi \rho \rightarrow \eta \pi Puzzle$

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

Partial Waves [[(21) (20]

[R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

 <u>Overall</u>: the difference between KH and GW/VPI is rather small but... resonances may be essentially different

Summary of M^{*} and Δ^{*} Finding from GW π M PWA [R. Arndt, W. Briscoe, IS, R. Workman, Phys Rev C 74, 045205 (2006)]

Standard PWA

• Allows to determine the N^{*}s, Δ^* s, and their quantum numbers using

- The complex energy plane &
- Breit-Wigner technique
- Tends (by construction) to miss narrow Resonances with Γ < 30 MeV
- Reveals only wide Resonances, but not too wide (Γ < 500 MeV) &

possessing not too small BR (BR > 4%)

particle data group	• <u>PDG10 states</u>	The latest GWU analysis (Arndt06) finds no evidence for those resonances	
	PDG10 *** PDG10 **	$ \Delta(1600)P_{33}, N(1700)D_{13}, N(1710)P_{11}, \Delta(1920)P_{33} \\ N(1900)P_{13}, \Delta(1900)S_{31}, N(1990)F_{17}, \Delta(2000)F_{35}, \\ N(2080)D_{13}, N(2200)D_{15}, \Delta(2300)H_{39}, \Delta(2750)I_{313} \\ \Delta(1750)P_{31}, \Delta(1940)D_{33}, N(2090)S_{11}, N(2100)P_{11}, \\ \Delta(2150)S_{24}, \Delta(2200)G_{25}, \Delta(2350)D_{25}, \Delta(2390)E_{25} $	

<u>Our study</u> do	es suggest several 'new' N*s & Δ *s:
PDG10 ****	∆(2420)H ₃₁₁
PDG10 ***	∆(1930)D ₃₅ , N(1900)F ₁₅
PDG10 **	∆(2400)G ₃₉
PDG10 new	N(2245)H ₁₁₁

 $TEP for \pi^{-+} p \rightarrow \pi^{-+} p & \pi^{-+} p \rightarrow \mathcal{N} \Lambda$

Igor Strakovsky 12

5/17/2012

$\pi \land \rightarrow \pi \pi \land \land \land Measurements$

$\pi \longrightarrow \pi \pi \pi / in \ Isobar Model$

[D.M. Manley, R. Arndt, Y. Goradia, V. Teplitz, Phys Rev D 30, 904 (1984)]

 $\pi N \rightarrow \pi \pi N$ in Isobar Model at low Energies

[V. Kozhevnikov & S. Sherman, Phys Atom Nucl 71, 1860 (2008)]

SAID for Pion Electro Prod

determine n-couplings at $Q^2 > 0$

5/17/2012

Baryon Resonance Production, Krakow, Poland, May 2012

 $\gamma^* \mathbf{n} \rightarrow \pi^0 \mathbf{n}$

No Data

Igor Strakovsky 18

 $1 2 3 4 5 Q^2(GeV^2)$

Inverse Pion Electroproduction (PE)

• IPE is the only process which allows the determination of EM nucleon & pion formfactors in the intervals

 $0 < k^2 < 4 M^2 = 3.53 \text{ GeV}^2$ $0 < k^2 < 4 m_{\pi} = 0.08 \text{ GeV}^2$

which are kinematically unattainable from e^+e^- initial states.

• IPE $\pi^-p \rightarrow e^+e^-n$ measurements will significantly complement the current electroproduction $\gamma^*N \rightarrow \pi N$ study for the evolution of baryon properties with increasing momentum transfer by investigation of the case for the *time-like virtual photon*.

5/17/2012

Experimental Difficulties of IPE

• Difficulties in the experimental study of IPE arise from the need of a high rejection of competitive processes:

The Xsection of π⁻p elastic is dσ/dΩ ~ 10⁻²⁷ cm²/sr and is concentrated in the forward direction.

Therefore e^- and e^+ of IPE are conveniently detected at $\sim 90^{\circ}$ with respect of π^- -beam, where the elastically scattered hadrons are strongly reduced.

• Xsection for π^+ production, i.e., $\pi^- p \rightarrow n\pi^- \pi^+$ is about **1000** times greater than that of IPE.

The corresponding pions at **90**^o are very soft and can be suppressed strongly by threshold Cherenkov counters.

• The reactions with a **gamma** ray converted into a **Dalitz pair**, contribute a rather unpleasant background.

The most important processes are $\pi^- p \rightarrow n\pi^0 \& \pi^- p \rightarrow n\gamma$, which contribute

~ 60% and 40% of the counting rate due to capture in hydrogen of π^- at rest against 0.7% from IPE.

Igor Strakovsk

Spectroscopy of Baryons

- Many more states in the **QCD** inspired **models** than currently observed.
- Properties even of lowest-lying and isolated states often not too well understood.

- Problems:
 - All states are broad.
 - All states overlap.

- Prolific source of N* & Δ^* baryons: $\pi N \rightarrow \pi N$, e^+e^-n , ηN , ωN , $\eta' N$, ϕN , $K\Lambda$, $K\Sigma$, & multi-meson final states [$\pi\Delta \otimes \rho N$ included].
- Measure many channels with different combinations of quantum numbers.

HADES [1.4 - 2 GeV] for Baryon Spectroscopy [K. Nakamura et a/[RPP] J Phys G 37, 075021 (2010)]

A quick check of the PDG listings reveals that resonance parameters of many established states are not well determined.

13: 7 **	*** 2	** * 4	** 2 *		Statu	s as se	en in –	_	
Particle	L21.2	Overall status	Νπ	Nn	ΛK	ΣK	$\Delta \pi$	Νρ	$N\gamma$
N(1440)	D								,
N(1440) N(1520)	P ₁₁	****	****			= `			***
N(1520)	D ₁₃	****	****	***			****	****	****
N(1650)	511	****	****	***			*	**	* * *
N(1650) N(1675)	511 D	****	****	*	***	**	***	**	* * *
N(1675) N(1680)	D15 E	****	****		*		****	*	****
N(1080) N(1700)	Г 15 Для	****	****	-			****	****	****
N(1710)	D13 D.	***			**		**		***
N(1720)	P10	****	7	7	**		*	-	**
N(1900)	P13	**	**	[++	+	+	*	++
N(1990)	F17	**	**	*	*	*		÷	*
N(2000)	F15	**	**	*	*	*	*	**	
N(2080)	D_{13}	**	**	*	*				*
N(2090)	S_{11}	*	*			اد باد باد باد	ماد ماد 👝 ما	* • *	
N(2100)	P_{11}	*	*	*	13:	6***1	* 3 * *	* 2 *	* 2 *
$\Delta(1232)$	P_{33}	****	****	F					****
$\Delta(1600)$	P_{33}	***	***	0			***	*	**
$\Delta(1620)$	S_{31}	****	****	г			****	****	***
$\Delta(1700)$	D_{33}	****	****	Ь			***	**	***
$\Delta(1750)$	P_{31}	*	*	i	i				
$\Delta(1900)$	S_{31}	**	**		d		*	**	*
$\Delta(1905)$	F_{35}	****	***		d	*	**	**	* **
$\Delta(1910)$	P_{31}	****	****		е		*	*	*
$\Delta(1920)$	P_{33}	***	***		n		**		*
$\Delta(1930)$	D_{35}	***	***						**
$\Delta(1940)$	D_{33}	*	*	\mathbf{F}					
$\Delta(1950)$	F_{37}	****	****	0			****	*	****
$\Delta(2000)$	F_{35}	**		r		-	**		

Baryon Resonance Production, Krakow, Poland, May 2012

 $\Sigma(2030)$ F₁₇

**

several others

HADES for Flavor-spin SU(6) [K. Nakamura et al [RPP] J Phys G 37, 075021 (2010)]

• Reliable theoretical and phenomenological [PW & coupled channel] analyses need high-precision complementary hadron induced measurements as, e.g.,

- **SAID** may extend the current **K-matrix** approach to add new hadronic channels which will provide a constraint for PWA.
- Hadronic measurements would complement current studies using EM probes at JLab, CB@MAMI-C, CB-ELSA, & SPring-8.

Baryon Resonance Production, Krakow, Poland, May 2012

[K. Nakamura et a/ [RPP] J Phys G 37, 075021 (2010)]

- Spread of Γ , Γ_{π}/Γ , & Γ_{η}/Γ , selected by **PDG**, is very large
- Total width is too large, ≥ 100 MeV

Baryon Resonance Production, Krakow, Poland, May 2012

P., Puzzle above N(1440)

[R. Arndt, W. Briscoe, M. Paris, IS, R. Workman, Chinese Phys C 33, 1063 (2009)]

Modified TN PWA & Expected Decay Properties of N(1680) [R. Arndt, Ya. Azimov, M. Polyakov, IS, R. Workman, Phys Rev C 69, 035208 (2004)]

/17/2012

Direct Evidences for 1/1680 in Photoproduction

[Unpol Measurements]

N (1710) - Current Status

More details about **N(1680)** are at the recent **Edinburgh** Workshop http://gwdac.phys.gwu.edu/~igor/Edinburgh**2009**/

Igor Strakovsky

Narrow Nucleon Resonances: Predictions, Evidences, Perspectives June 8 - 10

Interpretation of the signals is still open question

• The width of N(1680) is much less than any known non-strange N*

Baryon Resonance Production, Krakow, Poland, May 2012

CONTRACTOR OF THE OWNER OWNER

igor@gwu.edu

Igor Strakovsky 32

ŧ

Observation of a Narrow Structure in $p(\gamma, K_s)X$ via Interference with ϕ -meson Production

[M. J. Amaryan *et al,* Phys Rev C **85**, 035209 (<mark>2012</mark>)]

• If HADES is interested in, then let us talk about it as well...

More Events are coming...

Baryon Resonance Production, Krakow, Poland, May 2012

N (1100) – Current Status

[Ya. Azimov, R. Arndt, IS, R. Workman, Phys. Rev. C 68, 045204 (2003); Ya. Azimov, Phys. Lett. 32B, 499 (1970)]

• UNITARY PARTNERS (?)

Hunting for 1 (1100)

Predictions for 1/ (1100)

[Ya. Azimov, R. Arndt, IS, R. Workman, Phys. Rev. C 68, 045204 (2003)]

Baryon Resonance Production, Krakow, Poland, May 2012

M (1100) Partners

