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Usmg hazard networks to determine risk reduct10n
strategies
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In many cases, the interdependencies among the hazards in a system can be expressed by means of a hazard nerwork, in -
which the nodes correspond to the hazards and the links indicate how they depend on one another. We formulate a set
of mathematical optimization models which apply in such circumstances and can be used to determine the best
protection or prevention strategy based on the estimated costs of mitigation. We illustrate how the model works in three
different situations: (1) when total mitigation of any hazard eliminates all the hazards that folfow it, (2) when a number
of hazards must be totally mitigated to achieve the same effect, and (3) when partial mitigation helps to reduce the risks

associated with subsequent hazards. The models developed and illustrated.are readily scalable and should apply to a

wide range of risk management problems.
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Background

The notion of hazard networks, which we introduce here,
was motivated by the discussion of risk networks in the
project management literature, as evidenced by Chapman
and Ward.! In earlier studies related to construction
management, Ren® discussed the basic patterns of risk
relationships in a system, as did Diekmann® with the aid of
influence diagrams. More recently, risk networks were
discussed by Rodrigues* in relation to analysing risk using
system dynamics, and by Kuismanen et ¢/ in conjunction
with the concept of risk inter-relation management. The
principal coniribution of this research is intended to be
the generalization of these concepts and the application
of optimization methods to the related decision-making
processes.

The hazard network concept

In general, operating a system means conducting a number
of different interrelated activities. When risks are involved
there will be associated hazards related to the conditions in
which the activities are conducted (eg, at a construction site)
or on the nature of the activitics themselves (eg, the
operation of machinery). The presence of these hazards
can give rise directly to events with associated losses, and
those events or losses can bring about new hazards (eg, a fire
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can weaken a structure, creating a collapse hazard). For
simplicity, we assume that there is one and only one possible
loss event E; corresponding to each hazard H; and that E;
either occurs or not. If the probability (or relative frequency
of occurrence) of E; is P; and the consequence (loss or
dan&age) is Cj, then the associated risk (or expected loss or
damage) is rJ, P,C;. (More generally, when hazard H; has
multiple correspondmg foss events E;, (n=1, 2,... N) Wlth
associated probabilities P, the single risk value 7; becomes
the expected value Z,P;,Cp,. This can be readily generalized
to multiple types of consequences, provided they are
additive). Strictly speaking, each P; is conditional in nature
because it is the probability that event F; occurs given
hazard H}

Now suppose that the occurrence of the event dssocmted
with one hazard can create another hazard, indicating an
interdependency between the two hazards. For example, a
worker who suffers an injury while operating a machine
might lose control and create a hazard to other workers
nearby. When a number of such situations exist in a system,
we can represent the interactions involved by constructing a
network model in which the nodes represent hazards and the
arcs represent interdependencies between them. In this
model, each node j corresponds to a hazard H; and has an -
assoc1ated I‘ISk rJ,, ‘each arc (j, k) indicates that the occurrence
of E; (theI event associated with hazard H, ) will create
another hazard Hy, and the absence of an arc (/, k) means
that the occurrence of E; will not result in hazard H,. We
shall refer to this model as a huzzard network. If any node in
this model has no incoming arcs, it means that the associated
hazard cannot be created by an event but exists instead
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because of the conditions under which the system is
operated. Any node that has no outgeing arcs indicates that
the associated event cannot create other hazards. When a
node has multiple incoming arcs, the indication is that. the

associated hazard can be created by a combination of events.

For simplicity, we assume that the hazard is created either by
the intersection or the union of these events. In the former
case, every one of the events must oceur to create the hazard,
while in the latter case, the occurrence of any of the events

will create the hazard. A node that has multiple outgoing °

arcs indicates that the event associated with that hazard can,
either alone or in conjunction with other events, create more
than one other hazard. .

The hazard network concept should. prove to hbe
particularly useful for analysing the risks associated with
cascading events, where an initiating event can trigger other
events by creating a succession of hazards. Unlike event
trees, which only show which events can give rise to other
events, depending on whether they happen or not, a hazard
network shows all of the hazards in a system, identifying
which ones are existing hazards and which ones can be
created, individually or jointly, by the events associated with
other hazards. The hazard network model thus contains
more useful information for examining alternative ap-
proaches to risk reduction and determining optimal inter-
vention strategies.

The distinction between hazard networks and Bayesian
networks should also be explained. Bayesian networks
provide a graphical means of displaying the probabilistic
interdependencies among a large set of random variables.
They help in understanding causal relationships and
predicting the impacts of intervention. In a Bayesian
network the nodes represent the random variables and the
arcs show which ones are interdependent. The nodes that
connect to any given node are referred to as the parents of
that node. Probability distributions relate the conditional
probability of each variable to each possible set of parents
for the node corresponding to that variable. Thus, in a risk
management context, the variables could be the outcomes of
different loss events, related to one another by the
conditional probability' distribution of the loss outcome of
each event given the loss’ outcomes of its parent events.
Comparatively, in our hazard networks each node corre-
sponds to a particular outcome (a hazard arises) rather than
a random variable (the magnitude of a loss outcome).
Additionally, each arc in a hazard network corresponds to-a
particular event that can cause one hazard to lead to another
(with' some probability) rather than the existence of an
interdependence  between -two random variables (the loss
outcomes of two different events); in both cases an arc
represents interdependence but in one case it is between
hazards and in the other it is not. These differences are
consistent with the differences cited earlier between event
trees and hazard networks, which is not surprising given the
correspondence between Bayesian networks and- decision

3
Figmre 1 A simple hazard network.

or event trees. See Jensen® for a comprehensive discussion
of Bayesian networks and King’ on the use of Bayesian

- networks in causal modelling and intervention analysis for

operational risk management.

To iltustrate an clementary hazard network having a
number of the features discussed above, suppose the first
activity of concern is driving a car, which exposes the driver
to an accident hazard ()} that can result in vehicle damage
(£1). This damage can create an electrical hazard (H,) that
can resuit in a short circuit (E3), as well as a fuel hazard (F3)
that can result in a major leak (E;). Together, the short
circuit and fuel leak can produce an ignition hazard (Hy)
that can result in a fire (E;). The hazard network thus has
four nodes numbered 1-4 connected by four directed arcs
(1,2}, (1,3), (2,4) and (3,4), as shown in Figure 1. Note that
there is no standard way to show on a network diagram that
the incoming arcs at node 4 correspond to a conjoint set of
events (E, and Ej).

In the cases we consider below, we will dlstmgulsh
between situations in which risk reduction measures are
totally effective or only partially so, in which unions of
events are included or not, and in which downstream effects
of risk reductions extend beyond immediately succeedmg
hazards or not.

Preventive versus protective hazard mitigation

For a given hazard network, the total risk is the sum
of the risks associated with the hazards. Each risk is reduced
by mitigating the associated hazard, where the mitigation
effort may be focused on probability reduction or conse-
quence reduction. Hazard mitigation, which may be partial
or total, can be preventive or protective in nature. We will
use the term preventive hazard mitigation to refer to any
effort that reduces the probability of a loss event. Likewise,
we will use the term protective hazard mitigation to refer
to any effort that reduces the consequence of a loss
event. Preventive and protective measures are both achieved:
at a cost.

To illustrate, in the vehicle accident example the risk of a
fire can be reduced either by designing the vehicle to contain.
any fuel leaks or by building the vehicle with flame retardant’
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materials to keep any fires from spreading. The fuel leak
containment measure is preventive in nature because it
reduces the likelihood of a fire, while the flame retardant
measure, which reduces the extent of fire damage, is
protective in nature,”

Our purpose here is to develop a series of mathematical
models for determining optimal risk reduction strategies for
hazard networks, given a variety of assumptions for hazard
mitigation. Below we specify three different cases for the
model assumptions:

1. Each hazard can either be mitigated completely or
not at all, using either a protective or preventive measure.
A hazard is avoided when any of the events that
can create it is kept from occurring by mitigating or
avoiding any preceding hazard. This fmplies that only a
single event or an intersection of multiple events can
create a hazard. We will refer to these as single-trigger
hazards.

2, Same as the first case, except that additional hazards
are included which can only be avoided when ol
of the events that can create it are kept from occur-
ring by mitigating or avoiding the preceding hazards.
Only a union of multiple events can create each
sich hazard, which we will refer to as a nudtiple-trigger
hazard.

3. Same as the first case, except that the hazards can be
partially mitigated and the effects of any risk reduction
are limited to immediately succeeding hazards.

Case 1—binary risk reduction with single-trigger hazards

This simple version of the risk reduction model helps the
system manager decide which hazards will be mitigated using
the resources under his or her control. We assume that the
only resource involved is a hazard mitigation budget, but the
extension to multiple resources is straightforward. Hssen-
tially, the budget will be allocated among the available
hazard mitigation options. If there is more than one option
per hazard, only the least expensive one will be included in
the model. Without difficulty, the model can be altered to
take the form of minimizing the total cost of achieving a
specified reduction in the overall risk.

Introducing additional notation, we let ¢; be the cost of
mitigating hazard H; and we denote the decision variables by
¥;, where

y; =1 if H;ismitigated and 0 otherwise

When a hazard H; is mitigated we assume that every hazard
that could be created (ie, triggered) by the event £-—whether
alone or in conjunction with other events—is avoided, as is
every hazard that could be created in a similar way by the
events associated with the avoided hazards, and so forth. To
flag. each- mitigated or avoided hazard -we introduce the

indicator variables x;, where
x; = 0 if H; has been mitigated or avoided and 1 otherwise.

Thus, if funds are spent to mitigate H;then y;=1and x;=0
as a direct result of the mitigation. Furthermore, as an
indirect result of the mitigation (ie, due to hazard
avoidance), x; =0 for every node k& that succeeds node j in
the hazard network.

To formulate the optimization model we require some
additional notatiom:

N the number of nodes in the hazard network

J the set of nodes j in the network

/7 the initial risk associated with H;

S(7) the set of nodes k that succeed node j in the network
£(j) the set of nodes & that precede node 7 in the network
b the hazard mitigation budget :‘ :

In a network sense, node & succeeds node j if and only if it is
on a directed path from node j to the final node in the
network. Likewise, node &k precedes node j if and only if it is
on a directed path from the initial node in the network to
node j. Assuming the risks are additive, the optimization
model is then

Min z= Zr}’xj :
(1)

J
st ox + Z xp < N(1 —y) forall jeJ

keS(j)
3 we<N(1-y;) foralljet (2)
kes() :
xjél - |y + Z vi| foralljer . (3)

ke P

D ayi<h (4)

i

x,¥ =0,1 forall jeJ

The objective function measures the total risk associated
with the hazards that have not been mitigated or avoided
(ie, the ones for which x;=1). When the decision is made
to mitigate H,, the right-hand side of the first constraint
requires that hazard and every succeeding hazard to be
mitigated or avoided. The second constraint requires that,
as a further consequence of that decision, none of the
succeeding hazards will be eligible for mitigation—other-
wise, unnecessary expenditure could be incurred. Given a set
of values for the decision variables, the third constraint
prevents H; from being mitigated or avoided unless the
decision has been made to mitigate it or any of the hazards
that precede it—otherwise, no-cost hazard avoidance would
be possible. Finaily, the fourth constraint ensures that the
hazard mitigation budget is not exceeded.
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Example

Figure 2 shows a hazard network with eight nodes and
hazards Hy to Hg. Hs, Hs, Hg, and Hy are all single-trigger
hazards. H; is avoided if H or H; is mitigated because both
events must occur to create Hs; similarly, Hs is avoided if H;
or Hy is mitigated and Hy is avoided if Hs, Hg or Hy is
mitigated. To avoid Hy, only H; needs to be mitigated. For

2

_' Figure 2 Hazard network for the Case 1-3 examples.

Table 1 Model data for the Case 1 and 2 examples
Risk Cost Predecessors Successors
J 7 G P 8¢j)
i 5 14 — 3,5,6,8
2 5 6 — 3,5,6,8
3 5 4 1,2 5,6,8
4 5 1 — 5,8
5 5 3 1,2,34 g
6 5 2 1,23 8
7 5 3 — 8
8 5 4 1,2,3,4,5,6,7,8 —
Table 2  Solutions to the Case 1 and 2 examples

J X; ¥
{a} Case !
1 1 0
2 0 1
3 0 0
4 0 1
5 0 0
] 0 0
7 0 1
8 0. 0
{h) Case 2
1 1 0
2 ] L
3 1 0
4 0 - 1
5 0 0
6 0 1
7 0 1.
8 0- 0

gach node, Table 1 shows the magnitudes of the risks, the
mitigation costs, and the set. of predecessor and successor
nodes. The hazard mitigation budget is. 10.

Part (a) of Table 2 shows the optimal solution: Of the
eight hazards, only H| is neither mitigated nor avoided;
hence only risk 1 is not reduced, resulting in a value of 5 for
the optimal residual risk z*. Hazards Hu, H,, and F; are
mitigated at a total cost of 10, which causes the remaining
hazards (Hs, Hs, Hg and Hyg) to be avoided.

Case 2—binary risk reduction with multiple-trigger
hazards

We now extend the above model to admit the possibility of
multiple-trigger hazards created by the union of multiple
events. Under these circumstances, we include situations in
which a hazard can be created unless every one of the
immediately preceding hazards is mitigated or avoided.

In the Case 1 model, constraints (1), (2), and (3) were
based on the fact that mitigating a hazard automatically
avoided all of the downstream hazards, but in the Case 2
model, this is no longer the case. Now mitigating or avoiding
a hazard H; will not necessarily cause a subsequent hazard
H; to be avoided if H; or some hazard between H; and H,
may be a multi-trigger hazard. To incorporate this feature
we introduce a new set of coefficients o which we define as
follows, where A(f, k) is the set of all paths from 7 to & and
Jas is the set of all nodes corresponding to multiple-trigger
hazards: :

Az= 1if there exists at least one path in A{j, k) that does not
contain a node in Jyr :
Ag= 0 if every path in A(f, k) contains a node in J,

The value of each A can be determined by first identifying
every node in the network that belongs to J,, and then
generating every path from / to & to find out which ones, if
any, contain a node in Jy,. The K-shortest paths algorithm as
discussed by Eppstein® is an ideal tool for generating the
paths in these circumstances. k

The modified versions of the three constraint sets are then
of the form S

X+ > A <N(1-y) foralljes . (1)
o, S ! | )

3 LNl —y) foralljel —  (2)
keS()

xzl— -+ Z AV forall jeJ (39
keP() ' :
These new constraints have the following implications: in
constraint (1) Hy is not avoided by mitigating H; if every
path from j to k contains a. multiple-trigger node; in
constramt (2'), the need to prevent Hy is not precluded by
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preventing H; if every path from j to & contains a multiple-
trigger node; and in constraint (3), H; is not avoided when
H} is prevented if every path from £ to j contains a multiple-
trigger node.

Constraint (4) is unchanged, but two new constraints are
needed. Defining the set =(;) to be the set of immediate
predecessors to node j, where jeJuy, and letting #fz(j)] be
the number of nodes in that set, the constraints are

n[a{f)|x; = Z x; forall jegyy (5)
ken())
Z Apxp =N forall jedy (6)
keS() .

Constraint (5) requires that if any of the immediate
predecessors of a multiple-trigger hazard H; is neither
mitigated nor avoided then H; cannot be avoided. Constraint
(6) requires that, when a multi-trigger hazard H, is mitigated
or avoided, every successor H, will be mitigated if all the
paths from j to k£ contain a multi-trigger node.

Example

This example is the same one used for Case 1, except that Hy
is now a multiple-trigger hazard, which means that Hx is not
avoided unless H, and H; are both mitigated. We have
Ju=1{3}, =(3)={1,2}, and nz(3)]=2. The non-empty sets
of all paths A(j, k) are displayed in Table 2. The corres-
ponding values of 1z are zero unless node 3 is absent from a
path, in which case Ax=1.

Part (b) of Table 2 contains the optimal soluticn. The
total residual risk is minimized at z*=10 and the total
mitigation cost is 8. The selected strategy is to mitigate
hazards 2, 4, 6, and 7. The residual risks are then associated
with hazards H, and H;, where H; was left unmitigated and
H, & multi-trigger hazard, could only have been avoided by
mitigating both Hy and /.

Continuous risk redunction with single-trigger hazards
and no downstream impacts

Unlike the first two cases, in which hazard mitigation was
either 0 or 100%, in this case we allow for the possibility of
partial mitigation. Before, whether the focus of the mitiga-
tion was of a preventive (probability-related) or protective
(consequence-related) nature, the impacts were the same:
total elimination of the target hazard, total avoidance of any
immediately succeeding single-trigger hazards, and—in the
absence of any intervening multi-trigger hazards—total
avoidance of all downstream single-trigger hazards.

Now, however, we need to differentiate between taking
preventive and protective steps, because we are making the
following basic assumptions, given that a direct link exists
between two hazards H; and Hj in a hazard network:

1. A less-than-total preventive measure that reduces the
probability component of risk #; (ie, the probability of Ep
does not reduce risk r; because the consequence of E; is
unchanged.

2. A less-than-total protective measure taken to reduce the
consequence component of risk r; (ie, the consequence of
E)) does reduce r; because the event E; that creates Hj
becomes less severe, which makes the next event E;. less
likely or less severe, or both.

Based on this understanding, we now proceed to
formulate an optimization model for determining the best
combination of non-binary prevention and protection
decisions in a hazard network, given a total risk reduction
budget.

Let w; represent the fractional reduction in the conse-
quence C; associated with risk r;, where 0<<w;<1. As wy
increases from 0 to [, we assume two things happen: (1) r,
declines linearly from r; to 0, and (2) a fractional reduction
in risk is triggered for every node that immediately succeeds
node j. We assume further that each such reduction does not
begin until a certain lower threshold value of w; is reached
(which could be zero) and terminates when a certain upper
threshold value of w; is reached (which could be 1), and that
the reduction is linear in between.

Note that this version of the continuous risk reduction
model is based on two simplifying assumptions: (1) unlike
Case 2, there are no multiple-trigger hazards, and (2) unlike
Cases 1 and 2, there are no downstream impacts beyond
the nodes that immediately succeed the nodes where risk
reductions involving protective measures are made (ie, where
hazards are mitigated to some degree). The second assump-
tion is most realistic in situations where the only effect that a
protective risk reduction measure at any node j has on an
immediately succeeding node k is to partially reduce the
probability component of the risk r.. Under those circum-
stances the effect is strictly preventive in nature, and
according to the differentiation articulated above, such an
effect will not generate any further risk reduction down-
stream.

Continuing now with the model formulation, we intro-
duce the following notation: let #{ be the initial value of
fr. and let oy and S be the lower and upper threshold
values of w; that relate to the reduction in ry, where node
k is an immediate successor of node j. Then Ar,, the reduc-
tion in r; due to an increase in w; is as follows for every
kelS(j), where IS() the set of nodes that immediately
succeed node /:

i Are remains zero until C; is reduced to Ci, at which
point w;= oy = 1-Ci/C;

ii Arp then increases at a constant rate until C; is reduced
further to c}’k, at which point wy=fx= lﬁCJ,‘-}JC}; and
Arkzrﬁ—r}k

iii Ar; then remains constant as' C; is reduced further to
zero, at which point w,=1. ' -
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Figare 3 Dependence of r; and 7, on w; when keIS().

If we let uy be the fractional reduction in r; attributable to
w;, then this reduction pattern translates to the following
values for wy:

i Uje= 0if wy<oy
i aajg = 8 wio) if oz << w;<< Bz, where 8 is rate of change
in uy from oy to fi

- R m _ )
Ml wgp =y if Wiz Ba, where yu = 0u(Buta) = /.

Figure 3 shows graphically the nature of the assumed
relationships between (a) r; and w; and (b) r; and w;, and
Figure 4 shows the relationship between uy and w;. To
incorporate the function shown in Figure 4 in the optimiza-
tion model, we replace the formulas for 1y by the constraints
below, which require a new set of 0-1 variables z; '

Z S Wifo

Zye 2 Wil (M), where M is a suitably large number -
U = ZjkV ik

LSS 5jk(wj_&jk)

When w;< oy, 2 =0 and . is 0, and when w;> S, zjkw 1
and . =y Otherwise, uy = dpwi—a).

lljk

¥ix

A 4

Wi
Ol Bi 1

Figare 4 1y as a function of w, when kelS().

If we let IP(k) be the set of nodes ; that immediately
precede node k, the risk r, will be reduced by a factor equal
to the product of all the terms 1-uy, or Teipga(l-t). This
risk will also be reduced by two other factors 1-v; and 1-wy,
reflecting the reductions in P, and Cp, respectively. The .
value of v, as with wy, can range from 0 to 1 and is assumed
to have a linear effect on ry.

Based on this discussion, the model for minimizing the
total risk in the network is as follows, where &; and ¢; are the
costs of a one-percent reduction in P, and C;, respectively,
and b is the budget for total prevention and protection
expenditure

Min z= Z[rk (1= we)(1 — wi ) epg (1~ ujk)]
ken

st.  zp<sw;fog forall jeN, kelS(f)
zpzwi/(MBy) forall jeN, kelS(j)
wik = zjxyy forall JEN,ECIS(f)
up<ou{w; —ag) forall jeN, kelS(j)
> (dv; + ewy)<b/100
jel
O<ug <1 forall jeN, kelS(y)
0<y<l forall jeN
0wyl forall jeN
zx =10,1 forall jeN,ke€lS(f)

Example

Again, we use the network depicted in Figure 2 to illustrate
the application of the optimization model, except that we
revert to the single-trigger interpretation from Case 1 and we
alter the initial risk values as shown in Table 3. Table 3 also
shows the other data used for this example. The budget limit
is set at a value of 15. Whereas the optimization models for
the first two cases were linear integer zero-one programming
problems, the model in this case has the more complicated
form of a mixed-integer zero-one polynomial programming
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Table 3 Model data for the Case 3 example

Probability Consequence Risk Costs Node sets
J Pi G r b o iP(j) 18())
i 0.1. _ 50 3 2 6 — 3
2 0.4 40 16 6 5 3
3 0.3 60 . I8 4 8 1,2 5,0
4 0.05 100 5 2 2 — 5
5 0.6 20 12 3 3 34 8
6 0.5 30 15 4 7 3 8
7 0.05 40 2 3 3 — 8
8 0.2 30 6 4 4 56,7 —
Risk reduction shape parameters
G, &) C e & B ik ik o
1,3 30 14 0.40 0.72 12 0.33 1.04
2,3 20 10 0.50 0.75 1o 0.44 1.78
3,5 40 10 0.33 0.83 12 0.00 0.00
3,6 40 10 0.33 0.83 11 0.27 0.53
4,5 40 ' 25 0.60 0.75 12 0.00 0.00
5,8 15 3 0.25 0.75 5 0.17 0.33
6,8 25 3 0.17 0.83 5 0.17 0.25
7.8 25 15 0.38 0.63 5 0.17 0.67

problem. Solution algorithms have been developed specifi-
cally for the purpose of solving such problems, as discussed
in the literature (Sherali and Tuncbilek®. For the sake of
convenience we used the nonlinear GRG option provided in
the Premium Solver add-in software package.

The optimal solution reduced the total risk from an initial
value of 79 to a final value of 20.52. The only non-zero
values in the optimal solition were wn=vs=yvs=1.00,
33 =044, v;=0.75 and z,3=1. The interpretation of
wp=1.00 is that the consequence associated with the risk
at node 2 is reduced to 0. This reduction triggers a 44%
reduction in the risk at node 3, which is compounded by a
75% reduction in the probability associated with the risk at
node 3. In addition, the probabilities associated with the
risks at nodes 5 and 6 are reduced to zero. The total cost of
these reductions is 5(1) +4(.75) + 3(1) -+ 4(1)=15.

Conclusions

The research discussed here employs the concept of a hazard
network to represent the relationships among the hazards
and risks in a system and introduces a set of optimization
models to determine the best intervention strategy. The
concept is mtentionally general in nature and should have a
wide range of applicability to different kinds of system safety
investigations. Two of the three optimization models are
conventional integer zero-one programming problems for
which solution algorithms are readily available, while the
third one has a polynomial structure in the objective
function, which puts it in a less common class of probiems
which has received less attention but has been an active area

of research in recent years. For the small size of the network
we considered, the Premium Solver software package proved
to be more than adequate, but to solve more realistic
problems, more specific tools may be required. Any problem
of realistic size that contains multiple triggers will also
require a tool for solving the K-shortest path algorithm,
which would not be difficult to find. Despite the small size of
the example, the models we presented are readily scalable to
much larger problems.

As formulated, the proposed model includes a budget
constraint, which makes it is useful for exploring the tradeoff
between the minimum achievable risk and the funds
available for risk reduction, assuming that the risk value
cannct be monetized. Starting with a low value for & and
solving the optimization problem for each successively
higher range of b the entire tradeoff curve can be generated.
Alternatively, when the risk can be expressed in monetary
terms, we can add the left hand side of the budget constraint
(ie, the cost of risk reduction) to the objective and eliminate
the constraint. To do so is to use net risk reduction benefit
for the objective function, because minimizing the sum of
restdual risk plus risk reduction cost is equivalent to
maximizing the difference between risk reduction (initial
risk less residual risk) and risk reduction cost. Assuming
that the 7 values in the example are in fact monetary, and
that the cost > . s(dv;+ew) is included in the objective
function, the optimal solution shows that the residual
risk declines from 20.52 to 9.59, at a risk reduction cost of
24.59, which is of course higher than the original budget
limit of 15.
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