Supplement on the Fourier Transform

cf. [SG, App. B.2]

Def. Fourier (Integral) Transform $\mathcal{F}[f(x)]$ of f(x), Inverse Fourier (Integral) Transform $\mathcal{F}^{-1}[f(k)]$:

$$\mathcal{F}[f(x)] \equiv \tilde{f}(k) \equiv f(k) := \mathcal{N} \int_{-\infty}^{\infty} \mathrm{d}x \; \mathrm{e}^{-\mathrm{i}kx} \; f(x) \quad , \quad \mathcal{F}^{-1}[f(k)] \equiv \tilde{f}(k) \equiv f(x) := \frac{1}{2\pi\mathcal{N}} \int_{-\infty}^{\infty} \mathrm{d}k \; \mathrm{e}^{+\mathrm{i}kx} \; \tilde{f}(k)$$

(x, k) are conjugate variables, $(f(x), \tilde{f}(k))$ are a Fourier transform pair.

The sign e^{-ikx} for $\mathcal{F}[f]$ is convention, but see property (4) below.

Convention for normalisation \mathcal{N} in Quantum Mechanics: $\mathcal{N}_{QM} = \frac{1}{\sqrt{2\pi}}$, i.e. $\langle k|x\rangle = \frac{1}{\sqrt{2\pi}} e^{-ikx}$;

i.e.
$$\mathcal{F}_{QM}[f] = \int_{-\infty}^{\infty} \frac{dx}{(2\pi)^{\frac{1}{2}}} e^{-ikx} f(x)$$
, $\mathcal{F}_{QM}^{-1}[f] = \int_{-\infty}^{\infty} \frac{dk}{(2\pi)^{\frac{1}{2}}} e^{+ikx} \tilde{f}(k)$

Convention for normalisation \mathcal{N} in Electrodynamics/QFT: $\mathcal{N}_{\mathrm{EDyn}} = 1$,

i.e.
$$\mathcal{F}_{\mathrm{EDyn}}[f] = \int_{-\infty}^{\infty} \mathrm{d}x \; e^{-\mathrm{i}kx} \; f(x)$$
, $\mathcal{F}_{\mathrm{EDyn}}^{-1}[f] = \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{(2\pi)} \; e^{+\mathrm{i}kx} \; \tilde{f}(k)$

Generalisation to d dimensions:

$$\mathcal{F}[f] = \mathcal{N}^d \int_{-\infty}^{\infty} d^d r \, e^{-i\vec{k}\cdot\vec{r}} \, f(\vec{r}) \quad , \quad \mathcal{F}^{-1}[f] = \frac{1}{(2\pi\mathcal{N})^d} \int_{-\infty}^{\infty} d^d k \, e^{+i\vec{k}\cdot\vec{r}} \, \tilde{f}(\vec{k})$$

Properties $\forall f, g \in \mathcal{H}, a \in \mathbb{C}$:

(1)
$$\mathcal{F}[f]$$
 exists if $\int_{-\infty}^{\infty} dx |f(x)| < \infty$

 $({\it weaker\ than\ square-integrability})$

(2)
$$\mathcal{F}[af+g] = a \mathcal{F}[f] + \mathcal{F}[g]$$

linearity

(3)
$$\mathcal{F}[f(ax)] = \frac{1}{a}\tilde{f}\left(\frac{k}{a}\right)$$

scaling

(4)
$$\mathcal{F}[f]^* = \mathcal{F}^{-1}[f^*]$$

relation between \mathcal{F} and \mathcal{F}^{-1}

- (5) When f(x) = f(-x) even in x, then $\tilde{f}(k) = \tilde{f}(-k)$ even. When in addition $f(x) \in \mathbb{R} \Longrightarrow \tilde{f}(k) \in \mathbb{R}$ When f(x) = -f(-x) odd in x, then $\tilde{f}(k) = -\tilde{f}(-k)$ odd. When in addition $f(x) \in \mathbb{R} \Longrightarrow \tilde{f}(k) \in \mathbb{I}$
- (6) $\mathcal{F}[f(x+a)] = e^{ika} \tilde{f}(k)$

translation

(7) $\mathcal{F}[e^{ax} f(x)] = \tilde{f}(k + ia)$

exponential multiplication

(8) $\langle f|f\rangle = \int dx |f(x)|^2 = \int dk |\tilde{f}(k)|^2$

Parseval's relation (norm-conserving)

(9) $[f * g](x) := \mathcal{N} \int dy \ f(x - y) \ g(y) = \mathcal{F}^{-1}[\tilde{f}(k) \ \tilde{g}(k)]$

Faltung/Convolution theorem

(10) $\mathcal{F}[-i\frac{\mathrm{d}f}{\mathrm{d}x}] = k\,\tilde{f}(k)$

derivatives become polynomials