Supplement on Dirac's δ -Distribution

Def. <u>Function</u> $f: a \text{ mapping } f: x \mapsto f(x) \text{ between sub-sets of two vector spaces.}$

Def. Distribution/Generalised Function ϕ : any object $|\phi\rangle$ for which $T[f] = \langle \phi | f \rangle$ is a continuous, linear functional for any "test function" $|f\rangle$ in a Hilbert space \mathcal{T} .

 \mathcal{T} is usually the set of infinitely often differentiable functions which are zero outside a finite region. (FAPP) **Def. Dirac's** δ -**Distribution**: The distribution/generalised function which obeys

$$\int_{-\infty}^{\infty} dx \ f(x) \ \delta(x - x_0) = f(x_0) \quad \text{or equivalently} \quad \langle \delta(x - x_0) | f \rangle = f(x_0)$$

Representation by limit of sequence of functions $\delta_{\epsilon}(x)$ in Hilbert space \mathcal{H} .

Any sequence $\delta_{\epsilon}(x) = \frac{1}{\epsilon} h\left(\frac{x}{\epsilon}\right)$ with $\lim_{\epsilon \to 0} \int dx \ \delta_{\epsilon}(x) = 1$, such that the limit $\epsilon \to 0$ is unique and independent of the particular sequence chosen. Examples in Hilbert-space \mathcal{L}^2 over the real line:

(1)
$$\frac{1}{\sqrt{\pi}} \frac{1}{\epsilon} e^{-x^2/\epsilon^2} = \int_{-\infty}^{\infty} dk e^{ikx-\epsilon^2k^2/4}$$
 (Gauß'ian with its Fourier representation)
(2) $\frac{1}{\pi} \frac{\epsilon}{x^2+\epsilon^2} = \int_{-\infty}^{\infty} \frac{dk}{(2\pi)} e^{ikx-\epsilon|k|}$ (Lorentz'ian with its Fourier representation)

(rectangle with height $1/\epsilon$, width ϵ , centered at 0)

(4)
$$\frac{1}{\pi} \frac{\sin \frac{x}{\epsilon}}{x} = \int_{-1/\epsilon}^{1/\epsilon} \frac{\mathrm{d}k}{(2\pi)} e^{\mathrm{i}kx}$$
(5)
$$\frac{1}{2} \frac{1}{\epsilon} e^{-|x|/\epsilon}$$

Properties $\forall f \in \mathcal{H}, a \in \mathbb{C}$:

(3) $\begin{cases} \frac{1}{\epsilon} & \text{for } |x| < \frac{\epsilon}{2} \\ 0 & \text{otherwise} \end{cases}$

$$(1) \implies \int_{a}^{b} dx \ \delta(x - x_{0}) = \begin{cases} 1 & \text{for } x_{0} \in]a; b[\\ 0 & \text{otherwise} \end{cases}$$

$$(2) \implies \theta(x) := \int_{-\infty}^{x_{0}} \delta(x) = \begin{cases} 1 & \text{for } x_{0} > 0\\ \text{undefined} & \text{for } x = 0\\ 0 & \text{for } x_{0} < 0 \end{cases}$$

$$(3) \ \delta(ax)^{``} = "\frac{1}{|a|} \delta(x) \quad , \text{ and in particular } \delta(x)^{``} = "\delta(-x) \qquad \text{even distribution} \end{cases}$$

$$(4) \ \int_{-\infty}^{\infty} dx \ f(x)\delta(x - x_{0}) = f(x_{0}) \qquad \text{i.e. } f(x) \ \delta(x - x_{0})^{``} = "f(x_{0}) \ \delta(x - x_{0}).$$

$$(5) \ \delta[f(x)]^{``} = "\sum_{x_{i}} \frac{1}{|f'(x_{i})|} \ \delta(x - x_{i}), \text{ where } x_{i} \text{ are all simple zeroes } f(x_{i}) = 0 \text{ with } f'(x_{i}) \neq 0.$$

$$(6) \ \int_{-\infty}^{\infty} dx \ \left[\frac{d}{dx}\delta(x - x_{0})\right] f(x) = -\frac{d}{dx}f(x)\Big|_{x = x_{0}} \qquad \text{i.e. } \left[\frac{d}{dx}\delta(x - x_{0})\right] f(x)^{``} = "-\left[\frac{d}{dx}f(x)\right] \ \delta(x - x_{0}) \text{ distribution with } \langle \delta'(x - x_{0})|f \rangle = -f'(x_{0}) \qquad \text{``derivative of } \delta(x)^{``}$$

- "=": statement only holds when both sides are integrated over by arbitrary "test-functions" in \mathcal{T} .
- Generalisation of the Kronecker- δ to a continuous, ortho-normal basis: $\langle m|n\rangle = \delta_{mn} \rightarrow \langle x|y\rangle = \delta(x-y)$
- FAPP: $\delta(x) = 0 \quad \forall x \neq 0$, but not quite true, see representation (4).

H.W. GRIESSHAMMER