Supplement on Dirac's δ-Distribution

Def. Function f: a mapping $f: x \mapsto f(x)$ between sub-sets of two vector spaces.
Def. Distribution/Generalised Function ϕ : any object $|\phi\rangle$ for which $T[f]=\langle\phi \mid f\rangle$ is a continuous, linear functional for any "test function" $|f\rangle$ in a Hilbert space \mathcal{T}.
\mathcal{T} is usually the set of infinitely often differentiable functions which are zero outside a finite region. (FAPP)
Def. Dirac's δ-Distribution: The distribution/generalised function which obeys

$$
\int_{-\infty}^{\infty} \mathrm{d} x f(x) \delta\left(x-x_{0}\right)=f\left(x_{0}\right) \quad \text { or equivalently } \quad\left\langle\delta\left(x-x_{0}\right) \mid f\right\rangle=f\left(x_{0}\right)
$$

Representation by limit of sequence of functions $\delta_{\epsilon}(x)$ in Hilbert space \mathcal{H}.
Any sequence $\delta_{\epsilon}(x)=\frac{1}{\epsilon} h\left(\frac{x}{\epsilon}\right)$ with $\lim _{\epsilon \rightarrow 0} \int \mathrm{~d} x \delta_{\epsilon}(x)=1$, such that the limit $\epsilon \rightarrow 0$ is unique and independent of the particular sequence chosen. Examples in Hilbert-space \mathcal{L}^{2} over the real line:
(1) $\frac{1}{\sqrt{\pi}} \frac{1}{\epsilon} \mathrm{e}^{-x^{2} / \epsilon^{2}}=\int_{-\infty}^{\infty} \mathrm{d} k \mathrm{e}^{\mathrm{i} k x-\epsilon^{2} k^{2} / 4} \quad$ (Gauß'ian with its Fourier representation)
(2) $\frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}}=\int_{-\infty}^{\infty} \frac{d k}{(2 \pi)} \mathrm{e}^{\mathrm{i} k x-\epsilon|k|}$
(Lorentz'ian with its Fourier representation)
(3) $\begin{cases}\frac{1}{\epsilon} & \text { for }|x|<\frac{\epsilon}{2} \\ 0 & \text { otherwise }\end{cases}$
(rectangle with height $1 / \epsilon$, width ϵ, centered at 0)
(4) $\frac{1}{\pi} \frac{\sin \frac{x}{\epsilon}}{x}=\int_{-1 / \epsilon}^{1 / \epsilon} \frac{\mathrm{d} k}{(2 \pi)} \mathrm{e}^{\mathrm{i} k x}$
(5) $\frac{1}{2} \frac{1}{\epsilon} \mathrm{e}^{-|x| / \epsilon}$
$\underline{\text { Properties }} \forall f \in \mathcal{H}, a \in \mathbb{C}$:
$(1) \Longrightarrow \int_{a}^{b} \mathrm{~d} x \delta\left(x-x_{0}\right)= \begin{cases}1 & \left.\text { for } x_{0} \in\right] a ; b[\\ 0 & \text { otherwise }\end{cases}$
$(2) \Longrightarrow \theta(x):=\int_{-\infty}^{x_{0}} \delta(x)=\left\{\begin{array}{ll}1 & \text { for } x_{0}>0 \\ \text { undefined } & \text { for } x=0 \\ 0 & \text { for } x_{0}<0\end{array} \quad\right.$ "integral of $\delta(x) ": \underline{\text { Heaviside's step distribution }}$
(3) $\delta(a x)^{\prime \prime}=" \frac{1}{|a|} \delta(x) \quad$, and in particular $\delta(x) "=" \delta(-x)$ even distribution
(4) $\int_{-\infty}^{\infty} \mathrm{d} x f(x) \delta\left(x-x_{0}\right)=f\left(x_{0}\right) \quad$ i.e. $f(x) \delta\left(x-x_{0}\right) "=" f\left(x_{0}\right) \delta\left(x-x_{0}\right)$.
(5) $\delta[f(x)]^{"}=" \sum_{x_{i}} \frac{1}{\left|f^{\prime}\left(x_{i}\right)\right|} \delta\left(x-x_{i}\right)$, where x_{i} are all simple zeroes $f\left(x_{i}\right)=0$ with $f^{\prime}\left(x_{i}\right) \neq 0$.
(6) $\int_{-\infty}^{\infty} \mathrm{d} x\left[\frac{\mathrm{~d}}{\mathrm{~d} x} \delta\left(x-x_{0}\right)\right] f(x)=-\left.\frac{\mathrm{d}}{\mathrm{d} x} f(x)\right|_{x=x_{0}}$ i.e. $\left[\frac{\mathrm{d}}{\mathrm{d} x} \delta\left(x-x_{0}\right)\right] f(x)^{"}="-\left[\frac{\mathrm{d}}{\mathrm{d} x} f(x)\right] \delta\left(x-x_{0}\right)$ distribution with $\left\langle\delta^{\prime}\left(x-x_{0}\right) \mid f\right\rangle=-f^{\prime}\left(x_{0}\right)$ "derivative of $\delta(x) "$
(7) $[\delta(x)]^{2}, \delta\left(x^{2}\right), \delta(0)$, etc. are not defined.

Notes

- " = ": statement only holds when both sides are integrated over by arbitrary "test-functions" in \mathcal{T}.
- Generalisation of the Kronecker- δ to a continuous, ortho-normal basis: $\langle m \mid n\rangle=\delta_{m n} \rightarrow\langle x \mid y\rangle=\delta(x-y)$
- FAPP: $\delta(x)=0 \forall x \neq 0$, but not quite true, see representation (4).

