Supplement: Comparison between Dirac’s $\langle \text{Bra} | \text{Ket} \rangle$ Notation and Einstein’s \sum Summation Convention

Quantity	Dirac’s $\langle \text{Bra}	\text{Ket} \rangle$ Notation	Einstein \sum Summation Convention										
abstract vector in vector space \mathcal{M}	$	x\rangle$ ket \ddagger clear difference	$x^* = \bar{x}$ column vector \ddagger no clear distinction										
abstract vector in dual space \mathcal{M}^*	$\langle x\rangle$ bra	$x^* = \bar{x}^T$ row vector (when x real; otherwise $^* = \bar{x}^T$)											
basis of \mathcal{M}	$	i\rangle$, $i = 1, \ldots, \dim \mathcal{M}$ no distinction between basis & vectors kets can be basis vectors	e_i, $i = 1, \ldots, \dim \mathcal{M}$ clear separation of vector components and basis										
basis of \mathcal{M}^*	$\langle i\rangle$, $i = 1, \ldots, \dim \mathcal{M}^*$	e^i, $i = 1, \ldots, \dim \mathcal{M}^*$											
ortho-normality	$\langle i	j \rangle = \delta_{ij} \forall i, j = 1, \ldots, \dim \mathcal{M}$ if $\mathcal{M} \simeq \mathcal{M}^*$	$\langle e^1	e^j \rangle = \delta^j_j$									
closure/completeness	$\sum	i\rangle \langle i	= \text{id}$ ”inserting unity”, used often	$e^i \otimes e_i = 1$ tensor product, used infrequently									
scalar product $\langle y, x \rangle$ of $x \in \mathcal{M}$ and $y \in \mathcal{M}^*$	$\langle y	x \rangle = (\langle x	y \rangle)^*$ usually complex	$y_i x^i = y^j x_j$ usually real									
metric $g_{ij} =$???	$\langle e_i, e_j \rangle$											
contravariant components	$\langle i	x \rangle$	x^i										
covariant/dual components	$\langle x	i \rangle$	x_i										
relation between the two	$\langle x	i \rangle = (\langle i	x \rangle)^*$	$x_i = g_{ij} x^j$									
basis change	$\langle n	x \rangle = \sum_j \langle n	j \rangle \langle j	x \rangle$	$x^i = d^i_j x^j$								
components of matrix M	$\langle i	M	j \rangle$	M^i_j (index ordering important)									
abstract matrix $M =$ from components	$\sum_i	i\rangle \langle i	M	j \rangle \langle j	$	$e_i M^i_j e^j$							
Further typical features	prefers abstract vectors e.g. “states” in QM can deal with infinite-dim. space and continuous basis can deal with complex components non-orthogonal bases hard to describe order matters: $	i\rangle \langle j	\neq \langle j	i\rangle$ no summation, e.g. projector on eigenstate: $	i\rangle \langle i	\neq \sum_i	i\rangle \langle i	= \text{id}$ ambiguous operator action $\langle y	Mx \rangle \neq \langle My	x \rangle \neq \langle y	M	x \rangle$ e.g. selfadjoint vs. Hermitian	prefers concrete representations e.g. locally orthog. coord., GRT prefers finite-dim. space prefers real components made for non-orthogonal bases & metrics components commute: $x_i y^j = y^j x_i$ summation “mandatory” operator action cannot be addressed