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The electric field of a point charge moving ot relativistic
velocities along a single plane of motion may be visualized
in o physically tntuitive way with the aid of pictures of
the electric lines of force. A general derivation of exact
parametric equations for these lines of force 1s described
and applied fo create the pictures presented here of
synchrotron radiation, low-angle. high-energy Coulomb
scattering, abrupt linear acceleration of a charge, and a
charge undergoing simple harmonic motion.

The electromagnetic fields of accelerated charges
are generally discussed in terms of the angular and
frequency distributions of the radiation, the total
power radiated, and other parameters of direct
interest to the experimentalist.! Approximations
are usually made, for example, that only the far-
field radiation proportional to r~! is considered,
not the 2 Coulomb field; or that the excursion
of the charge is small compared to the wavelength
of radiation (i.e., that the charge moves at non-
relativistic velocities). The results thus obtained
are easily confirmed experimentally but do not
readily yield any intuitive feeling for how the
fields themselves are interacting and developing
in time. In this article, electric field maps are
presented which may help in the visualization of
the field patterns. The particular form of graphical
representation chosen is lines of force. This
representation yields clear, uncluttered visual
patterns at the cost of throwing away quantitative
information about the magnitude of the field, but
that magnitude in these problems has such a wide
range that no other simple means of depiction
could do much better.
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The electric and magnetic fields E and B of an
arbitrarily moving charge are?

(1B (2—B)
E_q( R (1—7-B)°
B=7ixE,

)

i x [ (i—B) x §]
+ R(1—#-B)? )

(1)

where the units are cgs Gaussian with ¢=1; ¢ is
the charge in esu, B and § the velocity and
acceleration of the charge at the retarded time, R
and 7 the scalar distance and unit veetor from the
retarded position to the field point.

The retarded time ¢’ is defined by ¢ ={—R,
to being the time of observation. Once the tra-
jectory of the charge and f#, have been specified,
E is a function only of r, the position vector of the
field point. The line of force is then determined by
the differential equation

dr=E(r)ds/| E(r) |, (2)
where ds is the (scalar) differential element of are
length. Two methods for solving this differential
equation were used. One approach is to do a
direct numerical integration of the differential
equation in the form Ar=E(r)As/| E(r) | with a
small but finite As, then plot the suceessive points
so obtained. An IBM 360/65 computer pro-
grammed in FORTRAN 1v and a California
Computer Produets model 665 11-in. drum
plotter were the machines used in all this work. A
second method, which works for quite a number of
interesting types of particle motion as long as
that motion is restricted to a single plane, is the
explicit integration of the differential equation to
yield a parametric equation for r as a function of
R, the retarded distance. Once the parametric
equation is obtained, it is still convenient to use a
computer program to plug in successive increasing
values for B and grind out z and y coordinates,
which are fed to the plotter as before.

Both methods require initial conditions on the
differential equation to be supplied, of course.
On a two-dimensional sheet of paper the spacing



of field lines has no striet quantitative physical
meaning; therefore one may impose the arbitrary
but reasonable initial econdition that in the
immediate vicinity of the charge, the field lines
are distributed like the familiar Lorentz-con-
tracted ‘“pincushion’ pattern of a charge moving
in a straight line with the same instantaneous
velocity. Thus if a total of n lines of force are to
spread out from the charge, the mth line starts
out at an angle ¢, counterclockwise from the
direction of the particle’s motion such that
tang, =+ tan(2zm/n), where y denotes (1—g2)~1/2
ag usual.?

To -obtain the parametric equation for the
line of force, let the trajectory of the charge be
specified in Cartesian coordinates z(¢') and y(¢').
Then define the following functions of #':

B:(1') =& (1),

By () =y(t),
[8(t) |=(B2+82),
6(t') =tan™"(8,/Bz),

R=t—t';

to, the time at which the “snapshot’” of E is to be
taken, is a constant for the problem. Let u and »
be the Cartesian coordinates of any field point.
u and » are just the x and y components of r,
the observer’s position vector. Let o be the angle
from B(¢') to 7, where # once again is the unit
vector pointing from the retarded position (x, y)
towards (u, v). Then, from Fig. 1,

u=z(t'Y+R cos[8(t') +a],

v=y (") +Rsin[0(t) +o]. 3

Finally, define @ to be 2 x#= the unit vector
pointing in the direction of increasing «. (a is
measured counterclockwise.) In all the above it
has been assumed of course that the particle’s
motion is confined to a single plane and that the
observer is in that same plane. While this may
seem to be a very restrictive assumption, quite a
few of the interesting radiative systems do
satisfy it, and for such motions the radiation is
mostly in that same plane.t From Eq. (3) and the
relation ¢’ =¢{,— R, it is clear that R and « uniquely
determine u and v. Conversely, for any field
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Fi1c. 1. Geometry of the special two-dimensional curvilinear
coordinate system within which exact parametric formula
for electric field lines may be derived. Every field point
of Cartesian coordinates (u, v) corresponds to a unique
retarded distance R and angle .

point (u, v}, there is only one retarded position
F2(t'), y(t')] so long as the source charge moves
more slowly than the waves it produces since, by
the triangle inequality, two photons that emanate
from different retarded positions cannot strike the
observer simultaneously. The upshot is that u
and v uniquely determine R and the principal
value of a. Since there is a one-to-one differen-
tiable map connecting (u, v) and (R, ), the latter
coordinates form a perfectly legitimate curvilinear
coordinate system that turns out, not surprisingly,
to be the natural coordinate system for the
problem.

Use of the above definitions to resolve Eq. (1)
for E into radial and transverse components gives

Ei=q(1-8)RE2(1—8 cosa)?,
E.-a=¢(1—p8?%) (8 sina) R~2(1—8 cosa) 3
+¢[ (8 sin) (7i-8) — (8+&) (1—B cosa) JR

X (1—Bcosa)™3. (4)

An increment along the line of force has com-
ponents

dr-i=(E/| E|) -fids,
dr-a=(E/| E |)-ads.
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When r changes in this manner, how do the
scalar coordinates R and o« change? By a brute
force calculation using the Cartesian coordinates
u and v as intermediaries, one finds

du= (dr-f) cos(§-+a) — (dr-&) sin(6+a),
dv=(dr-7) sin(8+a) 4 (dr-a) cos(6+a),

and
_ (8v/8a)du— (du/da)dv
= w0 /(R )
dom (u/oR)dv— (dv/dR)du
T /e e
so that

dR = (1—8 cosa)tdr-n,
da=R'[dr-a+ (1—8 cosa)™!

X (R§—B sina)drn]. (5)

After substituting the above equations one by
one into the expressions for dR and de, the result is

dR=(1—-g)R*(1—B cosa)*(g/| E |)ds, (6)
do=[(1—8)6+4 (8 sina) (7-B)
—(8-a) (1—B cosa) JR~®
X (1—8 cosa)~3(q/| E |)ds. (7)

Now divide Eq. (7) by Eq. (6):

(da/dR) =0+ (1—p%)~*
X [(8 sina) (7i-B) + (8- a) (8 cosa) ]
—(1-p7(8-a).
To simplify the middle term, note that

(B sina) (7i+ §) + ($-@) (8 cosa)
=—(B-a) (i-3)+(8-a) (2-B)
=(Bxf)-(ixa)
= BBy~ B8
=p(d/dt’) tan=(8,/B.)
=5%.
Hence

da/dR=6+p%/(1—p*) — (3-a)/(1—p?),
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or
da/dR=[6—(B-8)J(1—p>)""

=v6—(8-a)]. (8)
This is the boiled-down differential equation for
the line of force. 4, §, and @2 are all functions of
t'=t,— R for which specific expressions may now
be substituted. Assuming this differential equation
can be solved (as it typically can for various
simple trajectories discussed below) to give o as a
function of B, then Eqs. (3) may be used to
regenerate % and v for successive increasing
values of R; u and v are then fed to the digital
plotter. As stated above, the initial condition for
the mth line of force out of a total of x lines is that

v tan (2rm/n) = tané, =tan[ (¢,,+0) —07;
but
tan (¢,+6) = (dv/du) r—o

_ —Bsinf+sin(§+a,)
T —B-cosf+cos (B4 am)

and o, =the value of @ when R=0 for the mth
line [the constant of integration for Eq. (8)].
Application of the formula for the tangent of the
difference of two angles yields v tan(2zxm/n) =
tang,, = (sinay,) / ( —B+cosay,) . Solving this equa-
tion in any direct way for «, is an algebraic
morass that finally reduces to the simple and
elegant formula

tanja, = (1—8)2(1+8) 72 tan(am/n), (9)
which is much easier to verify than to derive from
scrateh.

Specific applications will now be discussed.

(R,a} or (u,v}

A
a

Fic. 2. Relationship between B, 6, #, and & for a charge
whose acceleration is purely transverse.



CHARGE UNDERGOING TRANSVERSE
ACCELERATION ONLY

Here B and (§ are perpendicular. § has magnitude
| 86| and by considering a diagram such as
Fig. 2 one sees that -4 =46 cosa, so that Eq. (8)
becomes

(1—Bcosa)da=(1—B2)"9(dR/dl')dt’ = —*de.

Integration and substitution of Eq. (9) for a,
yields

tania= (1—8)12(1+48)"12

Xtan[ (wm/n) —3v8(b—R) +3v0(%) 1. (10)

Equation (3) requires cose and sine, which are
then obtained from tanie by standard trigono-
metric identities.

Two examples will now be demonstrated. First,
take the standard problem of synchrotron radia-
tion. Suppose the charge is in an exact circular
orbit of radius e; z(t') =a sinwt’, y(t’) =a coswt’
(clockwise motion), where o= tangential ve-
locity/radius=8/a. Thus 6(#')=—wt’. Substi-
tuting into Eq. (10) above, the equation in the
(R, a) coordinates for the mth of n lines of force is

tania= (1—B)V2(14+8) 12
Xtan(rm/n—vyBR/2a).

S

(11)

—

Fie. 3. Electric field lines for a charge moving at tangential
speed 8=0.20 on a circular path centered on the X.
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Fi6. 4. Electric field lines for a charge moving at tangential
speed 8=0.50 on a circular path centered on the X.

By a historical accident, the FORTRAN program
to plot Eq. (11) used (m—3%) in place of m itself.
Clearly this substitution really makes no differ-
ence. The resulting electric field maps for various
values of 8 are presented in Figs. 3-6. £ is 0 in
each case. The center of the circular orbit is
always marked by the small x ; notice that the
scale of representation differs in each diagram.

Before the above exact solution was devised,
this problem was solved by numerical integration.
For any (u, v), the retarded time t’ is obtained
by using Newton’s iterative method to solve the
transcendental equation

[ (u—sinat))*-+ (v—cost’) ]2 = —.

Once an approximate ¢’ is found, then E(u, v)
comes out of Eq. (1) ; w and » are then incremented
by Au=(E./| E|)As and Av=(E,/| E |)As and
the process repeated. The diagrams thus produced
are almost exactly superimposable on those of the
(R, ) explicit solution and thereby provide
independent confirmation of the latter derivation.
However, numerical integration requires a much
longer program and up to fifteen times as much
execution time, partly because the field lines have
sharp kinks that force one to set As very small.
It should be physically obvious that an increase
in f, the moment of observation, corresponds
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Fia. 5, Electric field lines for a charge moving at tangential speed 8=0.90 on a circular path centered on the X,

merely to a rigid clockwise rotation of the entire
diagram since the only preferred axis in the
physical situation is the vector from the center of
the orbit to the instantaneous position of the
charge. Alternatively, simply note that Eq. (11)
ig independent of . Thus, to show how the field
evolves in time, simply rotate the entire diagram
clockwise. A convenient way to do this is to
photocopy the picture, punch a hole through
the x, and place it on a spinning phonograph
turntable. (Incidentally, that is why 6 was
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chosen negative rather than positive: Phono-
graphs run clockwise.) The objection might be
raised that beyond a radius of a/B8, the field
lines are moving faster than the speed of light,
which is impossible. The answer is that an indi-
vidual field line has no physical significance by
itself; what really matters is the density of lines,
changes in which must propagate at speed c¢. As
may be verified by inspection, the actual radiation
wavefronts (the kinks in the lines) really do
travel radially outwards at that speed.



For low values of 8, the radiation is basically
isotropic and sinusoidal with angular frequency
B8/a, the same as the mechanical rotation fre-
quency. (In conventional units Bc/a). Near the
charge, the field is clearly dominated by the
quasistatic B2 Coulomb field; further out, the
transverse R~! radiation takes over, causing
greater curvature in the lines of force. As 8 is
increased, the radiation tends to bunch into a
spiral pattern with sharp kinks. These kinks are

Fi1a, 6. Electric field lines for a charge moving at tangential
speed 8=0.95 on a circular path centered on the X.

responsible for the rich harmonic content of
relativistic synchrotron radiation. The spiral
pattern centers around a curve whose equation is
a=0 or equivalently

= —asin(8R/a) +R cos(BR/a),
v=a cos{BR/a)+R sin(8R/a);

in the limit 8—1, this becomes the evolute of the
circle. When « is small and g close to 1, 1 —#A-B=
1—pB cosa becomes small and makes | E | large
and E-& dominant over E-#. The width of the
radiation pulse may be estimated with the help of
Fig. 7. The points 1 and 2 in Fig. 7 that mark the
edges of the pulse are characterized by E-a=0
there. Aslong as B> (1—4?)a, which it certainly is
in the region of interest, E-a in Eq. (4) may be
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Fia. 7. A selective enlargement of Fig, 5 to show how to
calculate the width of the synchrotron radiation pulse.
The lines labeled R; and R, actually coincide but have been
separated in this drawing for clarity,

approximated by just the second term on the
right, the acceleration field. The condition that
the latter is zero implies that at points 1 and 2,
cosa =@, so that the pulse zone is bounded by the
two curves a= 2-cos™'8 that are drawn as dotted
spirals in Fig. 7. A simple geometrical argument
shows that the distance between these two curves
(the pulse width) is

(2a/8) [sin~! (1 — %) 2 —p (1) "]
~(2a/Bv*) 5+ (148) 7],

which is basically the same as the standard
result® though marginally more precise.

A second example of purely transversely
accelerated motion, to a good approximation, is
the small-angle scattering of a fast-moving charge
off a stationary Coulomb potential. An energetic

~
~ Q'RAJECTORY 2
-
PragR U B

~
\\
~
(x(i),y(!l]\\ -~

3
\ b ;Aem
SCATTERING S\

CENTER

Fia. 8. Kinematics of small-angle high-energy repulsive
Coulomb scattering,
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particle of mass m, charge e;, and speed B en-
counters a fixed electrostatic potential, which
might arise from an infinitely massive charge e»
or just be the effective potential in the center-of-
mass system. The incoming particle is assumed to
have a sufficiently high energy ym and to strike at
a sufficiently large impact parameter b so that at
all times kinetic energy far exceeds potential
energy in magnitude and so that the angular
deflection is small. The kinematics of the collision
are shown in Fig. 8; the total angular deflection
Abo, has been much exaggerated for clarity.
Under the assumptions made above, the com-
ponents of the central force parallel and perpen-
dicular to the velocity are

FI 1= dp; I/dtNeleg (7‘2—1)2> 1/21"_3,
Fi=dp./dirseesbr.

One now makes the customary approximation
that the total effect of F|| on the electric field is
negligible compared to the influence of F .. This
approximation is valid if v is very large$ or if
kinetic energy always far exceeds potential
energy, or if the observer is far enough away so
that practically all he can see is a sudden impulsive
angular deflection of the charge. Once F|; is
neglected, the rest is straightforward. 8 and «
are now constants:

dé=dp+/p
=e1eb (ymB) ~r3dit
— 6162b (’Ymﬁ) —1 (62,:/2_1_1)2) —3/2’

where t’ is defined to be 0 at the point of closest
approach. The result after integrating is

6= e (ymfh) 1 (BH24-02) %' 4 C;

it is convenient then to take C=0 so that 6=0
(so that the charge is moving exactly horizon-
tally) at closest approach. Then dz= 8 cosfdt’'~
Bdt’' since # is always small; dy =g singdt’~~p0dt’
similarly. Setting the origin of coordinates at the
point of closest approach as well, one obtains the
trajectory

z=pt',  y=ees(ymb) B[ (B 2412V~ b |].
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Since the charge is at every moment undergoing
instantaneously circular motion with 8 and v as
constants, q. (10) may be applied directly to
obtain

tangoc= (1—8) 2 (1-+6) " tan (hes (mBb)
X[ (R—10) (8 (R—to)b]
+to (B2t02+b2)—1/2} +7T’I’)’L/’I’L)

Two examples, corresponding to medium and
high velocities, are shown in Figs. 9 and 10.
The dashed line indicates the trajectory of the
particle up to the moment of observation f,
except that to the right of the scattering center
(which is marked by the small x) the trajectory
is unfortunately covered up by one of the lines of
force. The x really represents only a repulsive
potential; for an attractive potential, the x should
have been placed on the other side of the dashed
line at the same impact parameter. Figure 9 may
be taken to represent a 100-keV electron grazing
an aluminum nucleus (Z=13) at an impact
parameter of 2.0>107*® cm; Fig. 10 was set
arbitrarily.

Just as one would expect, the sudden deflection
of the charge creates an expanding “spherical
shell containing a pulse of transverse radiation.
As the kinks propagate outward, they become
bigger and sharper as the acceleration field begins
to dominate the velocity field. The peak intensity

/

7

TFic. 9. Electric field lines for a charge of speed 8=0.547
(y=1.195) scattered through a total angular deflection
Aoy =3.0°.



of the radiation, which is crudely reflected in the
density of the lines in the picture, goes up sharply
as 8 approaches unity. To understand the angular
distribution of the radiation, remember that at
any moment ¢’ on its trajectory, the charge is
radiating most strongly dead ahead, just as if a
headlamp were mounted on it; furthermore, the
charge underwent its maximum acceleration at the
point of closest approach to the scattering center,
at which moment it was moving exactly hori-
zontally. Thus the radiated power ought to be
maximum directly horizontal from the point of
closest approach (which happens to be the
origin of coordinates). This-direction is halfway
between the line the charge would have followed

F1c. 10. Eleetric field lines for a charge of speed §=0.943
(v =3.00) scattered through A8, =5.0°.

in the absence of the scatterer and the line it
actually did take. As for the minimum, examine
Eq. (4). The radiation due to acceleration
corresponds to the second term in the expression
for E-&; if that term is to be zero, then

(8 sina) (7i+B) = (§-a) (1B cosa),

which leads (just as for Fig. 7) to the condition
that cosa= 3. Indeed, if one tries drawing a pair of
lines which stick out from the origin to the right at
angles —cos™!8, it is evident that along these
lines there are no radiation kinks. This observa-
tion is eonfirmed by the conventional formula for
the power radiated per unit solid angle, along the
plane of motion, at angle « away from the velocity,
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F1e. 11. Electric field lines of a. charge accelerated from
rest by a uniform force to a final velocity 8=0.20, to=32At.

—

—
——

for a charge e in instantaneously cireular motion’:
dP/dQ= (e282/4nc?) (8—cosa)?(1—B cosa) >,
which clearly has a null at cosa=3.

CHARGE MOVING IN ONE DIMENSION
Now B and § are parallel. Since the charge

moves along a straight line, 6=0. Therefore
Eq. (8) becomes
da/dR=—~*(§- @) =+ sina
since the angle between § and & is a+3r; thus
escada=v?8dR = —v2Bdt’ = — (1—62)~1dB,

where 8 is a function of ' ={—R. Integrating,

In [ tanjo |=—%In| (1+8)/(1-8) |+C;

Fic. 12. Electric field lines of a charge decelerated from an
initial velocity 8=0.95 to rest by a uniform force, £, =16At,
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Fia. 13. Electric field lines of a charge undergoing one-
dimensional simple harmonic motion with Bmax=0.10,
to=0.

C is then adjusted to fit the initial condition,
Eq. (9), that when R=0,

tanja= (1—8)12(14+8)~12 tan(wm/n);
the net result is the equation for the line of force:

tanja=[1~8(t—R) ]

X[148(t:—R) T2 tan(wm/n). (12)

As a first application, consider a charge of
mass m, moving along the z axis, accelerated
from or decelerated to rest by a constant force F
applied for a limited period At. The equation of
motion is F=(d/dt’) (myB). Choosing the con-
stants of integration to make the results as simple

F1a. 14. Electric field lines of a charge undergoing one-
dimensional simple harmonic motion with Bmes=0.50,
to=0.
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as possible, one finds

x(t') = =L (m/F)2+1*]2F | m/F |

B(') = t'[(m/F)2 2] for 0< £t/ < At,
B() =AML (m/F)2+ (A2 for 1> AL,

where the upper and lower signs refer to accelera-
tion (4F) and deceleration (—F), respectively.
To convert these expressions to ordinary cgs
units, replace m by mc?, t by ct’, and At by cAt.
Now that 8(t') and z(¢') are known, Egs. (12)
and (3) generate Cartesian coordinates for the
line of force as usual (Figs. 11-12). The field
below the x axis has been omitted since ob-
viously the field is eylindrically symmetrical
about that axis.

F1c. 15. Electric field lines of a charge undergoing one-
dimensional simple harmonic motion with Bma:=0.90,
to=1%m/w so that y(ty) =a.

The basic qualitative features of these diagrams
confirm the discussion in elementary texts such
as the Berkeley Physies Course.® One can in
addition get a crude idea of the angular distribu-
tion of the radiation by looking for where the field
lines are bunched most tightly. For very low §'s
the angle of maximum bunching is around i,
but it decreases as the accelerations and velocities
increase in magnitude, so that when those get
to be large, the radiation is beamed into a narrow
cone surrounding the forward direction.

As a second example, let a charge be constrained
to follow the path z(¥)=0, y({')=a sinet,
where w=pPmx/a (simple harmonic motion).
Notice that BEqs. (4)—(9) allow 8 to be negative
so long as the basic relations 8,=pgcosf and



B, =B sind are still satisfied, so that one may set
B=Bmax coswt’ and 8=1ir. Correspondingly, « is
an angle measured counterclockwise from the
positive y axis even if the charge is momentarily
moving in the negative y direction. From Eq. (11),

tanda=[1—Bn.x cos(wly—wk) /2

X[14-Bmax cos(wto—wR) 17/ tan(mxm/n).

Like the circular orbit problem discussed above,
this problem of one-dimensional simple harmonic
motion was solved both by exact integration and
numerical integration; as before, the two methods
produced identical pictures but the analytical
solution took much less computer time. The
graphs presented here (Figs. 13-15) assume
to=0 or (37/w), various Bm.x values, and a scale
of presentation adjusted for each picture so that
two or so wavelengths would fit inside the frame.
The two tic marks on the y axis (which un-
fortunately are sometimes hidden by the dense
cluster of field lines) mark the limits of the
sinusoidal excursion, y=sa. The physical in-
terpretation of these pictures is a straightforward
matter that is left to the interested reader as an
exercise. A hint concerning the ultrarelativistic
case (Fig. 15) is to look for areas of similarity
to Figs. 5 and 12.

CHARGE UNDERGOING ARBITRARY
MOTION IN THE PLANE

What can one say about the field lines if p and §
are neither exactly parallel nor exactly perpen-
dicular? Any arbitrary motion in the plane is in
some sense a superposition of instantaneously
circular and linear motions; the similarity of
Eqgs. (10) and (12) leads one to hope that an
equation of the same general form might solve
Eq. (8) in general. In fact, a little experimentation
vields the desired general solution

tanfa=[1—B(to—R) J2[1+8({,—R) TV tany,

where

1 LO—R AV ’ ! Trm
l//=‘—‘2‘f Y(T)O(T)d'r-i-?. (13)

to
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To wverify this, differentiate with respect to
t,=t0-—'RZ
(sec?ia) tda/dt’
= (1—B) 2 (1+B) 2 (secy)dy/dt’
+tany (d/dt') [(1—B)12(14-8) 2],

Carrying out the differentiations indicated and
solving for da/dt’ one finds

da/dt’ — 2(1—|—tan2%a) -1 ( 1 "B) 1/2(1+6) —1/2
X[ — 376 (1+tan%p) — 2 tany (d8/dt') ],

da (Ei_cit) _ 8(1—B cosa) + (dB/dt’) sina
RYZ (1-p%) '

R

In the above,

dg/dt’= (d/dt’) (B-B)2=6- (B/).

Also using the relations

cosa=n-B/B=(aX2)-(B/B), sina=—a-(B/B),

and
6=(Bx8/8 -2,

one obtains

foe [ 2]
-[+G-]

Since (4xB/B) and (B/B) form a complete
orthonormal basis for all vectors in the plane,
then do/dR=~%(6—(-a) as desired. Now that
Eq. (13) has been proven, all that remains in
principle is to evaluate ¢. For the four specific
cases treated in this article, that evaluation was
trivial. In the general case it will not be so;
one might be foreed to do the integral numerically.
Then why not abandon the (R, «) method
altogether and switeh back to direct numerieal
integration of Eq. (1)? After all, the latter has
the additional advantage that quantitative values
for E, which are often nice to have, may easily be
printed out as the plot is being generated, whereas
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a special calculation has to be done in the (&, «)
method to get E itself. On the other hand, the
numerical integral for ¢ is likely to be easier to
do than the direct integration of E, and E,.
More importantly, the (R, «) method completely
bypasses the need to solve the retarded time
equation

{lu—a(@) P+Lv—y () P} —R=0.

This equation, usually transcendental, is a
nuisance to solve, especially if z and y are avail-
able only as numerical tabulations since any small
errors in B tend to accumulate rapidly into large
errors in « and v.

Recently Eq. (13) has been applied successfully
to depict the field from a free electron oscillating
in response to an incident plane-polarized mono-
chromatic eleetromagnetic wave of arbitrary
intensity. In this system, B and § are neither

exactly parallel nor perpendicular, yet the
integration for ¢ may be performed explicitly.
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Misinterpretation of the Aharonov-Bohm Effect
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It s pointed out that accounts tn the literature sometimes
misinterpret the Aharonov-Bohm effect, involving the
shift in interference patlern for electrons passing a long
solenotd. The quantum description and experimental
vertfication of the effect are reviewed, and it is emphasized
that both theory and experiment indicate that there s no
deflection of the average momentum of the electrons passing
the solenoid. There is no average force on the electrons
due to the solenoid. It is remarked that the Aharonov—
Bohm effect involves the shift of double-slit interference
fringes which is independent of the quantum unit of
action fi and yet allows a natural classical limit.
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INTRODUCTION

When a long solenoid is placed between the
slits of a double-slit electron interference pattern,
the pattern is shifted even though the external
magnetic field of the solenoid is arbitrarily small. .
This effect, predicted by Aharonov and Bohm!
in 1959, has been confirmed experimentally.?—3
The quantum analysis for the effect has fueled a
lively controversy as to the concept of force in
physics, and as to whether or not one should
regard the electromagnetic potentials ¥V and A as
holding a new and dominant role in quantum
theory in contrast to their place subordinate to
the fields E and B in classical electromagnetic
theory.

The Aharonov-Bohm effect and also these
authors’ interpretation of a new role for the
potentials seems to be accepted in the literature,
appearing even in that primer for graduate
students and professors, The Feynman Lectures on
Physics.5" Both among physicists and in the
accounts in the literature, however, there are



