Electrodynamics: Conventions

I define and normalise special functions (like Legendre Polynomials $P_{l}(z)$, spherical harmonics $Y_{l m}(\vartheta, \varphi)$ etc.) as in $[\mathrm{Brau}]=[\mathrm{Jack}]=[\mathrm{M}]=$ Gradshteyn/Ryzhik: Table of Integrals, Series and Products.
Einstein's summation convention: sum over all indices which appear exactly once as subscript and exactly once as superscript, except if stated otherwise.

"east-coast" metric	$g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$	contra-variant 4-vectors	$V^{\mu}=\left(V^{0}, \vec{V}\right)$
space-time indices	$\mu, \nu, \rho, \cdots=0, \ldots, 3$	spatial indices	$i, j, k, \cdots=1,2,3$
function of 3-dim. vector	$f(\vec{r})$	function of 4-dim. vector	$f\left(x^{\mu}\right) \equiv f(x)$
3-dim. scalar product	$a_{i} b^{i} \equiv a^{i} b_{i} \equiv \vec{a} \circ \vec{b} \equiv \vec{a}^{T} \vec{b}$	4-dim. scalar product	$a \cdot b \equiv a_{\mu} b^{\mu} \equiv a^{\mu} b_{\mu}$
Green's function of linear, d-dimensional differential operator D	$D G\left(\vec{r}, \vec{r}^{\prime}\right)=\delta^{(d)}\left(\vec{r}-\vec{r}^{\prime}\right)$		

Systems of Electromagnetic Units are not a glorious chapter of metrology: There exist five "major" systems, and several variants which are used next to each other or even simultaneously within the same branch of Physics. I use the Gaussian (cgs) System, which knows only three fundamental units (centimetres, grams and seconds) and shortens formulae (no ϵ_{0} or μ_{0}, hardly any 4π etc.). The standard system of everyday life is SI, with the familiar basic units m, kg, $\mathrm{s}, \mathrm{A}, \mathrm{K}$, rad and cd. While the Physics contents of an equation is of course independent of the system used, one is in applications obviously interested in questions like "at which current is this resistor blasted". [Lan2/8, Low, Schw] and [Jack, Chap. 1-9] use cgs; [Brau, Grif, Schwa] and [Jack, Chap. 10-16] use SI.
You can choose whichever system you want, but I expect your solutions to be consistent!
Fortunately, the system used is uniquely determined by any two of the fundamental equations which contain \vec{E} and a combination of \vec{E} and \vec{B}. You find below a table with two equations and conversion factors from Gaussian to SI units. More on systems, units and dimensions e.g. in the appendices of [Jack] and [Brau].

Unit	Gaussian cgs System	Syst. Internat. d'Unitès SI
el. field strength of point charge Q Lorentz force \vec{F}	$\begin{aligned} & \frac{Q}{r^{2}} \\ & Q\left(\vec{E}+\frac{1}{c} \vec{v} \times \vec{B}\right) \end{aligned}$	$\begin{aligned} & \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}} \\ & Q(\vec{E}+\vec{v} \times \vec{B}) \end{aligned}$
Gauss' law (Maxwell I) Faraday's law of induction (Maxwell II)	$\begin{aligned} & \vec{\nabla} \cdot \vec{E}=4 \pi \rho \\ & \vec{\nabla} \times \vec{E}+\frac{1}{c} \dot{\vec{B}}=0 \end{aligned}$	$\begin{aligned} & \vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}} \rho \\ & \vec{\nabla} \times \vec{E}+\dot{\vec{B}}=0 \end{aligned}$
elementary charge q dielectric constant of the vacuum ϵ_{0} permeability of the vacuum μ_{0}	$\begin{aligned} & 1.6022 \times 10^{-20} \tilde{c} \underbrace{\mathrm{~g}^{\frac{1}{2}} \mathrm{~cm}^{\frac{3}{2}} \mathrm{~s}^{-1}}_{\text {electrostatic units (esu) }} \\ & 1 \text { (no dimensions) } \\ & 1 \text { (no dimensions) } \end{aligned}$	$\begin{aligned} & 1.6022 \times 10^{-19} \text { Coulomb (C) } \\ & \frac{10^{7}}{4 \pi c^{2}} \frac{\mathrm{~A}^{2} \mathrm{~s}^{2}}{\mathrm{~kg} \mathrm{~m}}=\frac{1}{\mu_{0} c^{2}} \\ & 4 \pi \times 10^{-7} \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~A}^{2} \mathrm{~s}^{2}} \end{aligned}$
unit potential (Φ, \vec{A}) unit el. field strength \vec{E} unit mag. induction \vec{B}	$\begin{aligned} & \frac{10^{8}}{\tilde{c}} \underbrace{\mathrm{~g}^{\frac{1}{2}} \mathrm{~cm}^{\frac{1}{2}} \mathrm{~s}^{-1}}_{\text {statvolt }=\text { erg esu }} \\ & \frac{10^{6}}{\tilde{c}} \underbrace{\mathrm{~g}^{\frac{1}{2}} \mathrm{~cm}^{-\frac{1}{2}} \mathrm{~s}^{-1}}_{\text {statvolt cm }} \\ & 10^{4} \underbrace{\mathrm{~g}^{\frac{1}{2}} \mathrm{~cm}^{-\frac{1}{2}} \mathrm{~s}^{-1}}_{\text {Gaun } \text { esu }} \end{aligned}$	$\begin{aligned} & =1 \text { Volt }(\mathrm{V}) \\ & =1 \frac{\mathrm{~V}}{\mathrm{~m}} \\ & =1 \text { Tesla }(\mathrm{T}) \end{aligned}$

$c:=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$: velocity of light in vacuum;
$\tilde{c}=2.99792458 \times 10^{10}:$ num. conversion factor: velocity of light in vacuum in Gaussian units $\left[\mathrm{cm} \mathrm{s}^{-1}\right]$.

