DEPENDENCE RELATIONS IN COMPUTABLY RIGID COMPUTABLE VECTOR SPACES

RUMEN D. DIMITROV, VALENTINA S. HARIZANOV, AND ANDREI S. MOROZOV

Abstract

We construct a computable vector space with the trivial computable automorphism group, but with the dependence relations as complicated as possible, measured by their Turing degrees. As a corollary, we answer a question asked by A. Morozov in [7].

The authors are very thankful to the referee for important suggestions. The last two authors also acknowledge support of the NSF binational grant DMS-0075899.

1. Introduction

Metakides and Nerode [5] showed that the study of effective vector spaces can be reduced to the study of \mathcal{V}_{∞}, an \aleph_{0}-dimensional vector space over a computable field F, consisting of all finitely nonzero ω sequences of elements of F, under pointwise operations. Clearly, these operations can be performed algorithmically. Every element α in F can be identified with its Gödel code $\# \alpha$, which is a natural number. A standard basis E for \mathcal{V}_{∞} consists of vectors $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots$, where ε_{i}, $i \geq 0$, is the ω-sequence with the i th term 1 and all other terms 0 . The support of v with respect to E, denoted by $\operatorname{supp}(v)$, is the set $\left\{\varepsilon_{i_{j}}: j \in\{0, \ldots, t\}\right\}$, where

$$
v=\sum_{j=0}^{t} \lambda_{j} \varepsilon_{i_{j}}
$$

and $(\forall j \leq t)\left[\lambda_{j} \in F-\{0\}\right]$. Every vector v in V_{∞} can be identified with its Gödel code $\# v$. We will assume that the coding of vectors is such that if $\varepsilon_{i} \in \operatorname{supp}(v)$, then $\# v>i$.

A subspace \mathcal{V} of \mathcal{V}_{∞} is computable if its domain V is a computable subset of V_{∞}. A subspace \mathcal{V} of \mathcal{V}_{∞} is computably enumerable (c.e.) if its domain V is a c.e. subset of V_{∞}. We also say that a quotient space $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is computable (c.e., respectively) if \mathcal{V} is a computable (c.e., respectively) space. Metakides and Nerode [5] showed that every c.e. vector space is computably isomorphic to $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$, where \mathcal{V} is a c.e. subspace of \mathcal{V}_{∞}.

For a vector space \mathcal{V}, its automorphism group, $\operatorname{Aut}(\mathcal{V})$, consists of all automorphisms of \mathcal{V}. For a computable vector space \mathcal{V}, its computable automorphism group, $\operatorname{Aut}_{c}(\mathcal{V})$, consists of all computable automorphisms of \mathcal{V}. An automorphism f of a vector space \mathcal{V} is trivial if it maps every 1 -dimensional subspace of \mathcal{V} into itself. Such f also maps every subspace of \mathcal{V} into itself. We will show that if f is a trivial automorphism of \mathcal{V}, then $f=f_{\alpha}$ for some $\alpha \in F-\{0\}$, where

$$
(\forall v \in V)\left[f_{\alpha}(v)=\alpha v\right] .
$$

A computable vector space is called computably rigid if its computable automorphism group is trivial, that is, consists of only trivial automorphisms. Morozov [7] constructed a computable vector space \mathcal{V} such that $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is computably rigid.

Let $S \subseteq V_{\infty}$. By S^{*} we denote the linear span of S, the set of all linear combinations of vectors in S. The structure \mathcal{S}^{*} is the smallest (with respect to \subseteq) vector subspace of \mathcal{V}_{∞} whose universe contains the set S. For vector spaces \mathcal{V} and \mathcal{W}, we define the domain of $\mathcal{V} \oplus \mathcal{W}$ to be $V \oplus W={ }_{\text {def }}(V \cup W)^{*}$. The structure of all c.e. subspaces of \mathcal{V}_{∞} is denoted by $\mathcal{L}\left(\mathcal{V}_{\infty}\right)$. It is a modular lattice under \cap and \oplus. A space $\mathcal{V} \in \mathcal{L}\left(\mathcal{V}_{\infty}\right)$ is complemented if there exists $\mathcal{W} \in \mathcal{L}\left(\mathcal{V}_{\infty}\right)$ such that $V \cap W=\{0\}$ and $V \oplus W=V_{\infty}$.

A dependence algorithm for a vector space decides whether any finite set of its vectors is linearly dependent. For example, the space \mathcal{V}_{∞} has a dependence algorithm. Moreover, a c.e. vector space has a dependence algorithm iff it has a c.e. basis. Mal'tsev [4] established that there is a computable isomorphic copy of \mathcal{V}_{∞}, which does not have a dependence algorithm. For $k \geq 1$, a k-dependence algorithm for a space decides whether any k-element set of its vectors is linearly dependent. Lytkina [3] constructed infinitely many nonisomorphic computable copies of \mathcal{V}_{∞}, which have k-dependence algorithms, but do not have $(k+1)$ dependence algorithms.

For every $n \geq 2$, we let $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ be a computable bijection from ω^{n} onto ω, which is strictly increasing with respect to each coordinate, and such that for every $j<n, x_{j} \leq\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$. Let $\mathcal{V} \in \mathcal{L}\left(\mathcal{V}_{\infty}\right)$. For $k \geq 1$, the k-dependence relation modulo $V(\bmod V)$, in symbols $D_{k}(V)$, is defined to be

$$
D_{k}(V)=\left\{\left\langle v_{0}, \ldots, v_{k-1}\right\rangle: v_{0}, \ldots, v_{k-1} \text { are dependent over } V\right\} .
$$

Clearly, if $\mathcal{V} \in \mathcal{L}\left(\mathcal{V}_{\infty}\right)$, then the set $D_{k}(V)$ is c.e. A k-dependence algorithm $\bmod V$ decides whether any k-element set of vectors in V_{∞}
is linearly dependent over V. Obviously, there is a k-dependence algorithm $\bmod V$ iff $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ has a k-dependence algorithm. Let

$$
D(V)=\operatorname{def}^{\bigcup_{k \geq 1}} D_{k}(V)
$$

A space $\mathcal{V} \in \mathcal{L}\left(\mathcal{V}_{\infty}\right)$ is complemented iff $D(V)$ is computable.
By \leq_{T} we denote Turing reducibility of sets, and by \equiv_{T} Turing equivalence of sets. The Turing degree of a set X is denoted by $\operatorname{deg}(X)$. The dependence degree $\bmod V$ is $\operatorname{deg}(D(V))$. The k-dependence degree $\bmod V$ is the Turing degree of $D_{k}(V)$. Clearly, $D_{1}(V)=V \leq_{T} D(V)$. If \mathcal{V} is a vector space over a finite field, then we have $V \equiv_{T} D(V)$. Clearly,

$$
\left(D_{k}(V) \leq_{T} D(V)\right) \wedge\left(D_{k}(V) \leq_{T} D_{k+1}(V)\right),
$$

uniformly in k. Shore established that, except for this necessary condition on a sequence of c.e. degrees, the dependence degrees modulo a c.e. subspace can be made arbitrary.

Theorem 1.1. ([9]) Let the space \mathcal{V}_{∞} be over an infinite computable field. Assume that $A_{1}, A_{2}, A_{3}, \ldots, A_{0}$ is a (simultaneously) c.e. sequence of c.e. sets such that for $k \geq 1, A_{k} \leq_{T} A_{0}$ and $A_{k} \leq_{T} A_{k+1}$, uniformly in k. Then there is a c.e. subspace \mathcal{V} of \mathcal{V}_{∞} such that for $k \geq 1$,

$$
\left(D_{k}(V) \equiv_{T} A_{k}\right) \wedge\left(D(V) \equiv_{T} A_{0}\right)
$$

The proof of Theorem 1.1 is based on the following key combinatorial lemma.

Lemma 1.2. ([9]) Let $k \in \omega$ and $v_{0}, \ldots, v_{k} \in V_{\infty}$. Assume that \mathcal{V} is a finite dimensional vector subspace of \mathcal{V}_{∞}, and that v_{0}, \ldots, v_{k} are linearly independent over V. Let X be a finite set (of codes) of sequences of vectors in V_{∞} of length $\leq k$ such that

$$
X \cap D(V)=\emptyset
$$

Then there are $\lambda_{0}, \ldots, \lambda_{k} \in F$ such that

$$
X \cap D\left(\left(V \cup\left\{\lambda_{0} v_{0}+\ldots+\lambda_{k} v_{k}\right\}\right)^{*}\right)=\emptyset
$$

In [6], Metakides and Nerode generalized Theorem 1.1 to any regular computable infinite dimensional Steinitz closure system. A Steinitz closure system is regular if it does not have a finite dimensional closed subset that is the union of a finite number of its proper closed subsets. Nerode and Remmel also established the following strengthening of Theorem 1.1. A c.e. subspace \mathcal{V} of \mathcal{V}_{∞} is called supermaximal if $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is infinite dimensional, and for every c.e. space \mathcal{W} with $\mathcal{V} \subseteq \mathcal{W} \subseteq \mathcal{V}_{\infty}$, we have that $\mathcal{V}_{\infty}=\mathcal{W}$ or $\frac{\mathcal{V}}{\mathcal{V}}$ is finite dimensional.

Theorem 1.3. ([8]) Let the space \mathcal{V}_{∞} be over an infinite computable field. Assume that $A_{1}, A_{2}, A_{3}, \ldots, A_{0}$ is a c.e. sequence of c.e. sets such that A_{0} is not computable and for $k \geq 1, A_{k} \leq_{T} A_{k+1}$ and $A_{k} \leq_{T} A_{0}$, uniformly in k. Then there are supermaximal subspaces \mathcal{V}_{1} and \mathcal{V}_{2} of \mathcal{V}_{∞} such that for $k \geq 1$,

$$
\begin{aligned}
D_{k}\left(V_{1}\right) & \equiv_{T} D_{k}\left(V_{2}\right) \equiv_{T} A_{k}, \\
D\left(V_{1}\right) & \equiv_{T} D\left(V_{2}\right) \equiv_{T} A_{0},
\end{aligned}
$$

and there is no automorphism Φ of the lattice $\mathcal{L}\left(\mathcal{V}_{\infty}\right)$ such that $\Phi\left(V_{1}\right)=$ V_{2}.

For $u, v \in V_{\infty}$, we write $u={ }_{\bmod V} v$ if $\frac{u}{V}=\frac{v}{V}$. To simplify the notation, for $s \in \omega, v \in V_{\infty}$, and $\alpha \in F$, we will also write $v \leq s$ and $\alpha \leq s$ instead of $\# v \leq s$ and $\# \alpha \leq s$. In the text that follows, computability theoretic concepts and notation are as in [10]. Let $\varphi_{0}, \varphi_{1}, \ldots$ be a standard computable enumeration of all partial computable functions. For $u, v \in V_{\infty}$, we write $\varphi_{e, s}(u)=v$ if $u, v<s$, and $\varphi_{e}(u)=v$ in fewer than s steps. For a partial function φ we write $\varphi(x) \downarrow$ to denote that $x \in \operatorname{dom}(\varphi)$. For a set $Y \subseteq \omega$ and $c \in \omega$, let $Y \upharpoonright c={ }_{\text {def }} Y \cap\{0, \ldots, c-1\}$. The cardinality of Y is denoted by $|Y|$.

2. Computable Automorphisms and Dependence Degrees

We will assume that the computable field F is infinite. In [7], Morozov asked whether it is possible to obtain for every $k \geq 2$ a computable vector space \mathcal{V} such that $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is computably rigid, has the k dependence algorithm $\bmod V$, does not have the $(k+1)$-dependence algorithm $\bmod V$, and its dependence algorithm $\bmod V$ has an arbitrary nonzero c.e. Turing degree. We answer this question positively by establishing a general result. Clearly, if $\operatorname{deg}(D(V))=\mathbf{0}$, then $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ has a computable basis and, hence, the computable automorphism group of $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is nontrivial. First, we establish the following lemma for the nontrivial automorphisms of vector spaces.

Lemma 2.1. Let φ be a total function such that $\varphi: V_{\infty} \rightarrow V_{\infty}$. If φ does not induce a trivial automorphism of $\frac{V_{\infty}}{V}$, then one of the following conditions hold:
(1) There exist $u, v \in V_{\infty}$ and $\alpha, \beta \in F$ such that

$$
\varphi(\alpha u+\beta v) \not \neq \bmod V \alpha \varphi(u)+\beta \varphi(v)
$$

(2) There exists $w \in V_{\infty}-V$ such that $\varphi(w) \in V$,
(3) There exists $w \in V_{\infty}-V$ such that the set $\{w, \varphi(w)\}$ is independent $\bmod V$.

Proof. If (1) holds, then φ does not induce a linear transformation of $\frac{V_{\infty}}{V}$. If (2) holds, then φ does not induce a 1-1 linear transformation of $\frac{V_{\infty}}{V}$. We will prove that if φ induces an automorphism of $\frac{V_{\infty}}{V}$ that does not satisfy (3), then

$$
(\exists \lambda \in F-\{0\})\left(\forall w \in V_{\infty}\right)[w=\bmod V \quad \lambda \varphi(w)] .
$$

Obviously, the negation of (3) implies that for every $w \in V_{\infty}-V$, we have $w=_{\bmod V} \lambda_{w} \varphi(w)$ for some $\lambda_{w} \in F-\{0\}$. We will prove that for every $w_{1}, w_{2} \notin V$, we have $\lambda_{w_{2}}=\lambda_{w_{1}}$. Consider the following two cases.

Case 1. Assume that w_{1} and w_{2} are independent $\bmod V$. Then

$$
\begin{aligned}
w_{1}+w_{2} & =\bmod V \lambda_{w_{1}+w_{2}} \varphi\left(w_{1}+w_{2}\right)= \\
& =\bmod V \lambda_{w_{1}+w_{2}}\left[\varphi\left(w_{1}\right)+\varphi\left(w_{2}\right)\right] \\
& =\bmod V \frac{\lambda_{w_{1}+w_{2}}}{\lambda_{w_{1}}} w_{1}+\frac{\lambda_{w_{1}+w_{2}}}{\lambda_{w_{2}}} w_{2} .
\end{aligned}
$$

Therefore, $\lambda_{w_{1}+w_{2}}=\lambda_{w_{1}}=\lambda_{w_{2}}$.
Case 2. Assume that $w_{1}=\bmod V \mu w_{2}$ for some $\mu \in F-\{0\}$. Then

$$
\begin{aligned}
w_{1} & =\bmod V \lambda_{w_{1}} \varphi\left(w_{1}\right) \\
& =\bmod V \frac{\lambda_{w_{1}}\left[\varphi\left(\mu w_{2}\right)\right]={ }_{\bmod V} \lambda_{w_{1}} \mu \varphi\left(w_{2}\right)}{} \\
& =\bmod V \frac{\lambda_{w_{1}} \mu}{\lambda_{w_{2}}} w_{2}={ }_{\bmod V} \frac{\lambda_{w_{1}}}{\lambda_{w_{2}}} w_{1} .
\end{aligned}
$$

Therefore, $\lambda_{w_{1}}=\lambda_{w_{2}}$.
We now state and prove our main result. Recall that $\left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots\right\}$ is a standard basis for \mathcal{V}_{∞}.

Theorem 2.2. Let A_{0} be a noncomputable c.e. set, and let $A_{1}, A_{2}, A_{3}, \ldots$ be a c.e. sequence of c.e. sets such that A_{1} is computable, and

$$
A_{1} \leq_{T} A_{2} \leq_{T} \ldots \leq_{T} A_{k} \leq_{T} A_{k+1} \leq_{T} \ldots \leq_{T} A_{0}
$$

uniformly in k. Then there is a computable subspace \mathcal{V} of \mathcal{V}_{∞} such that $\frac{\mathcal{V}_{\infty}}{\mathcal{V}}$ is computably rigid, $D_{k}(V) \equiv_{T} A_{k}$ for $k \geq 1$, and $D(V) \equiv_{T} A_{0}$.

Proof. Let $k \geq 2$. Fix a computable enumeration $\left(A_{k, t}\right)_{t \in \omega}$ of A_{k} such that $A_{k, 0}=\emptyset$ and for every $t \in \omega,\left|A_{k, t+1}-A_{k, t}\right|=1$. At every stage s of the construction, we will have a finite independent set B^{s} and an (infinite) independent set $E^{s}=\left\{\varepsilon_{0}^{s}, \varepsilon_{1}^{s}, \ldots\right\}$ such that:
(a) $B^{s} \cup E^{s}$ is a basis for \mathcal{V}_{∞},
(b) for all $i, \varepsilon_{i}^{s}=\varepsilon_{l(i, s)}$, where $l(0, s)<l(1, s)<\ldots$.

Let $V^{s}={ }_{\text {def }}\left(B^{s}\right)^{*}$. The domain of the desired space \mathcal{V} will be $V={ }_{\text {def }}$ $\bigcup_{s \in \omega} V^{s}$.
Let s be any stage of the construction. For every $x \in V_{\infty}-V^{s}$, we define $\operatorname{supp}(x, s)$ to be the index set J in the unique representation of x as

$$
x=v+\sum_{j \in J} \lambda_{j} \varepsilon_{j}^{s},
$$

where $v \in V^{s}$, and $\lambda_{j} \in F-\{0\}$ for $j \in J$. We then let

$$
\max (x, s)=_{\text {def }} \max \left\{j: \varepsilon_{j}^{s} \in \operatorname{supp}(x, s)\right\} .
$$

(If $x \in V^{s}$, then we set $\operatorname{supp}(x, s)=\emptyset$ and $\max (x, s)=-1$.)
In the construction, we will either have $B^{s+1}=B^{s}$, or $B^{s+1}=B^{s} \cup$ $\{x\}$ for some $x \notin V^{s}$. In the latter case, we set $\varepsilon_{i}^{s+1}=\varepsilon_{i}^{s}$ for $i<$ $\max (x, s)$, and $\varepsilon_{i}^{s+1}=\varepsilon_{i+1}^{s}$ for $i \geq \max (x, s)$. That is, when at stage $s+1$ we enumerate x into B, we drop $\varepsilon_{\max (x, s)}^{s}$ from the complementary basis. This will ensure that $\max (x, s) \geq \max (x, s+1)$.

If \mathcal{V} is computable, then it will follow that $D_{1}(\mathcal{V}) \equiv_{T} A_{1}$. We will also satisfy the following coding requirements:
Q_{k} : Encode A_{k} into $D_{k}(V)$ for $k \geq 2$, and
Q_{0} : Encode A_{0} into $D(V)$.
The coding requirements will be allowed to act at stages $s+1$ of the form $s+1=\langle 2 k-1, t\rangle$. We next specify finite sets of vectors that we will use to satisfy Q_{k} for $k \geq 2$. For $i \in \omega$ and $k \geq 2$, we define a finite set $C_{k, i}$ of (standard) basis elements by

$$
C_{k, i}=\left\{\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\} .
$$

We will use the elements from $C_{k, i}$ to encode into $D_{k}(V)$ whether $i \in A_{k}$ for $k \geq 2$. Note that for every $i,\left|C_{k, i}\right|=k$. For a stage s and $k \geq 2$, we let $X(k, s)$ denote the set of all $z=\left\langle x_{1}, \ldots, x_{j}\right\rangle$ such that $z \leq s$, $1 \leq j<k$ and $z \notin D\left(V^{s}\right)$. Note that $X(k, s) \supseteq\left\{z \leq s: z \notin V^{s}\right\}$. By Lemma 1.2, there is a vector x, which is a linear combination of the vectors from $C_{k, i}$, such that

$$
D\left(\left(V^{s} \cup\{x\}\right)^{*}\right) \cap X(k, s)=\emptyset
$$

We will enumerate the least such x into B_{s+1}.
Only at stages of the form $s+1=\langle 2 k-1, \cdot\rangle$, there might be some $x \in B_{s+1}-B_{s}$ with $\operatorname{supp}(x, s) \subset\left\{\varepsilon_{\langle 2 k-1, z\rangle}: z \in \omega\right\}$. Thus, we will have for every $i \in \omega$,

$$
i \in A_{k} \Leftrightarrow\left\langle\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\rangle \in D_{k}(V)
$$

Hence, $A_{k} \leq_{T} D_{k}(V)$. Moreover, there will be only finitely many stages $s+1$, other than stages of the form $s+1=\langle 2 j-1, \cdot\rangle$ for $j<k$, such that $D\left(V^{s+1}\right) \cap X(k, s) \neq \emptyset$. Since for $j<k, A_{j} \leq_{T} A_{k}$, we will be able to establish that $D_{k}(V) \leq_{T} A_{k}$.

We will encode A_{0} into $D_{0}(V)$ at stages of the form $\langle 1, t\rangle, t \in \omega$, using the (standard) basis elements of the form $\varepsilon_{\langle 1, z\rangle}$. We assume that $0 \notin A_{0}$. For $i \geq 1$, we define

$$
C_{0, i}=\left\{\varepsilon_{\left\langle 1,\binom{i+1}{2}\right\rangle}, \ldots, \varepsilon_{\left\langle 1,\binom{i+2}{2}-1\right\rangle}\right\} .
$$

Note that $\left|C_{0, i}\right|=i+1$. The construction will guarantee that

$$
i \in A_{0} \Leftrightarrow\left\langle\varepsilon_{\left\langle 1,\binom{i+1}{2}\right\rangle}, \ldots, \varepsilon_{\left\langle 1,\binom{i+2}{2}-1\right\rangle}\right\rangle \in D(V) .
$$

Hence, $A_{0} \leq D(V)$. To obtain that $D(V) \leq_{T} A_{0}$, we will use permitting by A_{0}.

To ensure that V_{∞} / V is computably rigid, we will meet the following requirements for every $e \in \omega$,
R_{e} : If φ_{e} induces an automorphism of $\frac{V_{\infty}}{V}$, then φ_{e} is trivial.
The requirement R_{e} may act at stages of the form $\langle 2 e, t\rangle$, and only if it is permitted by A_{0}. Moreover, if R_{e} acts at stage $s+1$, we will ensure that

$$
D\left(V^{s+1}\right) \cap X(e+2, s)=\emptyset
$$

Hence, the action of R_{e} cannot affect $D_{1}(V), \ldots, D_{e+1}(V)$. Every R_{e} can act only finitely many times. When considering the requirement R_{e}, we will check whether one of the following three conditions is satisfied:
(i) there exist $u, v \in V_{\infty}$ and $\alpha, \beta \in F$ such that $\varphi_{e}(\alpha u+\beta v) \neq \bmod V$ $\alpha \varphi_{e}(u)+\beta \varphi_{e}(v)$,
(ii) there exists $w \notin V$ such that $\varphi_{e}(w) \in V$, or
(iii) there exists $w \notin V$ such that the set $\left\{w, \varphi_{e}(w)\right\}$ is independent $\bmod V$.
If either (i) or (ii) happens, then we will try to preserve it by placing an appropriate marker. If (iii) occurs at stage $s+1$, then we will look for additional vectors $w_{1}, w_{2}, \ldots, w_{e+1}$ with specific properties, which will guarantee that for any u that is a linear combination of w and $w_{1}, w_{2}, \ldots, w_{e+1}$, the set $\left\{u, \varphi_{e}(u)\right\}$ will be independent $\bmod V^{s}$. Since $w, w_{1}, w_{2}, \ldots, w_{e+1}$ will be independent $\bmod V^{s}$, by Lemma 1.2 , we will find such u also satisfying

$$
D\left(\left(V^{s} \cup\{u\}\right)^{*}\right) \cap X(e+2, s)=\emptyset
$$

and enumerate it into B^{s+1}. In addition, the vector u will be selected such that the higher priority R-requirements are preserved. If φ induces
a linear transformation of $\frac{V_{\infty}}{V}$, we will have the marker Γ_{e} on $\varphi_{e}(u)$, and keep $\varphi_{e}(u)$ out of V with priority e. No coding requirement will be allowed to injure R_{e}. We will prove that if some R_{e} is not satisfied, then A_{0} is computable, contrary to the assumption.

Construction

Stage 0. Let $B_{\tilde{\sim}}^{0}=\emptyset$ and $\varepsilon_{i}^{0}=\varepsilon_{i}$ for all $i \geq 0$. There are no vectors marked by Γ_{n} or $\tilde{\Gamma}_{n}$, for any $n \in \omega$.

$$
\text { Stage } s+1=\langle 2 k-1, t\rangle \text { for some } k \geq 2 \text { and } t \in \omega
$$

Suppose $i \in A_{k, t+1}-A_{k, t}$. By Lemma 1.2, there is a linear combination x of the vectors from $C_{k, i}$ such that

$$
\begin{aligned}
& D\left(\left(V^{s} \cup\{x\}\right)^{*}\right) \cap \\
{[X(k, s) \cup\{y:} & \left.\left.y \text { is marked at } s \text { by some } \Gamma_{n} \text { or } \tilde{\Gamma}_{n}\right\}\right]=\emptyset .
\end{aligned}
$$

We let $B^{s+1}=B^{s} \cup\{x\}$ for the least such x, and drop $\varepsilon_{\max (x, s)}^{s}$ from the complementary basis E^{s}.

Stage $s+1=\langle 1, t\rangle$ for some $t \in \omega$.
Suppose $i \in A_{0, t+1}-A_{0, t}$. By Lemma 1.2, there is a linear combination x of the vectors from $C_{0, i}$ such that

$$
D\left(\left(V^{s} \cup\{x\}\right)^{*}\right) \cap
$$

$\left[X(i+1, s) \cup\left\{y: y\right.\right.$ is marked at s by some Γ_{n} or $\left.\left.\tilde{\Gamma}_{n}\right\}\right]=\emptyset$.
We let $B^{s+1}=B^{s} \cup\{x\}$ for the least such x, and $\operatorname{drop} \varepsilon_{\max (x, s)}^{s}$ from the complementary basis E^{s}.

Stage $s+1=\langle 2 e, t\rangle$ for some $t \in \omega$. Assume that the marker $\tilde{\Gamma}_{e}$ is not placed on any vector. Otherwise, go to the next stage.
(i) Check if there exist $u, v \in V_{\infty}$ and $\alpha, \beta \in F$ such that:

$$
\begin{aligned}
& u, v, \alpha, \beta \leq s \\
& \varphi_{e, s+1}(u) \downarrow, \varphi_{e, s+1}(v) \downarrow, \text { and } \varphi_{e, s+1}(\alpha u+\beta v) \downarrow \\
& \varphi_{e, s+1}(\alpha u+\beta v) \neq \bmod V^{s} \alpha \varphi_{e, s+1}(u)+\beta \varphi_{e, s+1}(v)
\end{aligned}
$$

If there are such u, v, α, β, then find the least such sequence, and put a $\tilde{\Gamma}_{e}$ marker on $\alpha \varphi_{e, s+1}(u)+\beta \varphi_{e, s+1}(v)-\varphi_{e, s+1}(\alpha u+\beta v)$. We say that R_{e} acts. Go to the next stage. If there are no such u, v, α, β, go to (ii).
(ii) Check whether there exists $w \leq s$ such that $w \notin V^{s}, \varphi_{e, s+1}(w) \downarrow$, and $\varphi_{e, s+1}(w) \in V^{s}$. If there is w, then put a $\tilde{\Gamma}_{e}$ marker on the least such w and go to the next stage. We say that R_{e} acts. If there is
no such w, and if a Γ_{e} marker is not placed on any vector, go to (iii).
Otherwise, go to the next stage.
(iii) Let

$$
F_{e}^{s}={ }_{\text {def }}\left\{\varepsilon_{\langle 2 e, t\rangle}: t \geq 0\right\} \cap E^{s} .
$$

Check if there exists a vector $w_{0} \leq s$ such that:
$\left(\mathcal{C}_{0}\right) \quad w_{0} \notin V^{s}, \varphi_{e, s+1}\left(w_{0}\right) \downarrow$, and the set $\left\{w_{0}, \varphi_{e, s+1}\left(w_{0}\right)\right\}$ is independent $\bmod V^{s}$.

If there is no such w_{0}, go to the next stage. Otherwise, choose the least one. Check if there exist additional vectors $w_{1}, w_{2}, \ldots, w_{e+1} \leq s$ such that for every $i \in\{0, \ldots, e\}$, the following conditions are satisfied for $m_{i}^{s}={ }_{\text {def }} \max \left\{\max \left(w_{i}, s\right), \max \left(\varphi_{e, s+1}\left(w_{i}\right), s\right)\right\}:$
$\left(\mathcal{C}_{1}\right) \quad \operatorname{supp}\left(w_{i+1}, s\right) \subset F_{e}^{s}$, and $\varphi_{e, s+1}\left(w_{i+1}\right) \downarrow$,
$\left(\mathcal{C}_{2}\right) \quad \operatorname{supp}\left(w_{i+1}, s\right) \cap\left\{\varepsilon_{0}^{s}, \ldots, \varepsilon_{m_{i}^{s}}^{s}\right\}=\emptyset$,
$\left(\mathcal{C}_{3}\right) \quad \operatorname{supp}\left(\varphi_{e, s+1}\left(w_{i+1}\right), s\right) \cap\left\{\varepsilon_{0}^{s}, \ldots, \varepsilon_{m_{i}^{s}}^{s}\right\}=\emptyset$, and
$\left(\mathcal{C}_{4}\right) \quad \max \left(w_{e+1}, s\right)>j$, where $j \in A_{0, s+1}-A_{0, s}$.
If a sequence w_{1}, \ldots, w_{e+1} does not exist, go to the next stage. Otherwise, find the least such sequence. By Lemma 1.2, there exist $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{e+1} \in$ $F-\{0\}$ such that for $u=\sum_{j=0}^{e+1} \lambda_{j} w_{j}$, we have

$$
D\left(\left(V^{s} \cup\{u\}\right)^{*}\right) \cap
$$

$\left[X(e+2, s) \cup\left\{y: \quad(\exists n<e)\left(y\right.\right.\right.$ is marked at s by Γ_{n} or $\left.\left.\left.\tilde{\Gamma}_{n}\right)\right\}\right]=\emptyset$.
In this case, we will:
(a) enumerate the least such u into B^{s+1},
(b) $\quad \operatorname{drop} \varepsilon_{\max (u, s)}^{s}$ from the complementary basis E^{s},
(c) put a Γ_{e} marker on $\sum_{j=0}^{e+1} \lambda_{j} \varphi_{e, s+1}\left(w_{j}\right)$, and
(d) remove all Γ_{n} and $\tilde{\Gamma}_{n}$ markers for $n>e$.

We say that R_{e} acts. Go to the next stage.
If the vectors $w_{0}, w_{1}, \ldots, w_{e+1}$ satisfy only $\left(\mathcal{C}_{0}\right),\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$, then we will say that R_{e} can possibly act at stage $s+1$ via the sequence $w_{0}, w_{1}, \ldots, w_{e+1}$ (if permitted by A_{0}).

End of the Construction.
Lemma 2.3. The space \mathcal{V} is computable.

Proof. Let $v \in V_{\infty}$. It follows from the construction that if a stage s is such that $s \geq v$, then $\left(v \in V \Leftrightarrow v \in V^{s}\right)$.

Lemma 2.4. For $k \geq 2$, we have $A_{k} \leq_{T} D_{k}(V)$.
Proof. Let $k \geq 2$. It is enough to prove that for every $i \in \omega$,

$$
i \in A_{k} \Leftrightarrow\left\langle\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\rangle \in D_{k}(V)
$$

If $i \in A_{k}$, then $i \in A_{k, t+1}-A_{k, t}$ for some t. By the construction at the stage $\langle 2 k-1, t\rangle$, we have that $\left\langle\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\rangle \in D_{k}(V)$.

To prove the converse, notice that our construction is such that a vector u with $\operatorname{supp}(u) \cap C_{k, i} \neq \emptyset$ can be enumerated in B either at a stage $s+1$ of the form $s+1=\langle 2 k-1, \cdot\rangle$ (when $i \in A_{k}$), or of the form $s+1=\langle 2 e, \cdot\rangle$. In the latter case, we have $\varepsilon_{\max (u, s)}^{s}=$ $\varepsilon_{\langle 2 e, t\rangle}$ for some t. Moreover, if a different such element u_{1} is enumerated in B at a stage $s_{1}+1=\langle 2 e, \cdot\rangle$, and $\varepsilon_{\max \left(u_{1}, s_{1}\right)}^{s_{1}}=\varepsilon_{\left\langle 2 e, t_{1}\right\rangle}$ for some t_{1}, then $t \neq t_{1}$. Enumeration of such vectors cannot cause $\left\langle\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\rangle \in D_{k}(V)$. Therefore, if $i \notin A_{k}$, then $\left\langle\varepsilon_{\langle 2 k-1, k i\rangle}, \ldots, \varepsilon_{\langle 2 k-1, k i+k-1\rangle}\right\rangle \notin D_{k}(V)$.

Lemma 2.5. For $k \geq 2$, we have $D_{k}(V) \leq_{T} A_{k}$.
Proof. Given $v=\left\langle v_{1}, \ldots, v_{k}\right\rangle$, we will determine whether $v \in D_{k}(V)$, using oracle A_{k}. Fix a stage s_{0} such that $s_{0} \geq v, A_{0} \upharpoonright k=A_{0, s_{0}} \upharpoonright k$, and no requirement R_{e} with $e<k-1$ acts after s_{0}. Using oracle A_{k}, find the least stage $s_{1}>s_{0}$ such that

$$
(\forall j)\left[2 \leq j \leq k \Rightarrow A_{j} \upharpoonright v=A_{j, s_{1}} \upharpoonright v\right] .
$$

We will prove that

$$
\left\langle v_{1}, \ldots, v_{k}\right\rangle \in D_{k}(V) \Leftrightarrow\left\langle v_{1}, \ldots, v_{k}\right\rangle \in D_{k}\left(V^{s_{1}}\right)
$$

At stages of the form $\langle 2 j-1, \cdot\rangle$ for $2 \leq j \leq k$, greater than s_{1}, we can enumerate into V, for the sake of the coding requirement Q_{j}, only linear combinations of the vectors $\varepsilon_{\langle 2 j-1, j i\rangle}, \ldots, \varepsilon_{\langle 2 j-1, j i+j-1\rangle}$ for some $i \geq v$. If at such a stage, we enumerate v into $D_{k}(V)$, then at least one of the vectors $\varepsilon_{\langle 2 j-1, j i\rangle}, \ldots, \varepsilon_{\langle 2 j-1, j i+j-1\rangle}$ is in the support of some vector v_{n} among v_{1}, \ldots, v_{k}. However, this is impossible because

$$
v_{n} \leq\left\langle v_{1}, \ldots, v_{k}\right\rangle=v \leq i<\langle 2 j-1, j i\rangle
$$

If some element x is enumerated into V at any other stage $s+1>s_{1}$, then the choice of s_{1} and the construction guarantee that $D\left(\left(V^{s} \cup\right.\right.$ $\left.\{x\})^{*}\right) \cap X(k+1, s)=\emptyset$. Hence, these stages cannot enumerate $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ into $D_{k}(V)$.

Lemma 2.6. $A_{0} \leq_{T} D(V)$
Proof. It is similar to the proof of Lemma 2.4.

Lemma 2.7. $D(V) \leq_{T} A_{0}$
Proof. Given $v=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ for some k, we would like to determine whether $v \in D(V)$, using oracle A_{0}. Although we have $A_{k} \leq_{T} A_{0}$, uniformly in k, because of the R-requirements, we cannot assume that $D_{k}(V) \leq_{T} A_{k}$, uniformly in k. This is why we also used permitting by A_{0} in the construction. Using oracle A_{0}, find the least stage $s_{0} \geq v$ such that $A_{0} \upharpoonright k=A_{0, s_{0}} \upharpoonright k, A_{0} \upharpoonright v=A_{0, s_{0}} \upharpoonright v$, and

$$
(\forall j)\left[2 \leq j \leq k \Rightarrow A_{j} \upharpoonright v=A_{j, s_{0}} \upharpoonright v\right] .
$$

We will prove that

$$
\left\langle v_{1}, \ldots, v_{k}\right\rangle \in D(V) \Leftrightarrow\left\langle v_{1}, \ldots, v_{k}\right\rangle \in D\left(V^{s_{0}}\right) .
$$

At stages of the form $\langle 2 j-1, \cdot\rangle$ for $2 \leq j \leq k$, greater than s_{0}, we can enumerate into V only linear combinations of the vectors
$\varepsilon_{\langle 2 j-1, j i\rangle}, \ldots, \varepsilon_{\langle 2 j-1, j i+j-1\rangle}$ for some $i \geq v$ (by the choice of s_{0}). As in Lemma 2.5, we can show that these linear combinations cannot make v_{1}, \ldots, v_{k} dependent over V. If at some stage $s+1>s_{0}$, we enumerate a vector x into B for the sake of a coding requirement Q_{j} for $j>k$, then $D\left(\left(V^{s} \cup\{x\}\right)^{*}\right) \cap X(k+1, s)=\emptyset$. Thus, the action at such a stage cannot cause $\left\langle v_{1}, \ldots, v_{k}\right\rangle \in D(V)$. If at a stage $s+1>s_{0}$ of the form $s+1=\langle 2 e, \cdot\rangle$, we enumerate some u into B then, by permitting by $A_{0}, \max (u, s)>v$. Hence, the action at this stage will not enumerate $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ into $D(V)$.

Lemma 2.8. For every $e \in \omega$, the requirement R_{e} is satisfied.
Proof. Assume otherwise. Let e be the least number such that R_{e} is not satisfied. Let s_{0} be a stage such that no R_{i} for $i<e$ acts after s_{0}. Note that if R_{e} acts after s_{0}, then it will be satisfied. By Lemma 2.1, one of the conditions (1), (2), (3) must be satisfied. If (1) or (2) is satisfied, then the conditions (i) or (ii) will be satisfied at some stage $s+1>s_{0}$ of the form $s+1=\langle 2 e, \cdot\rangle$, and R_{e} will act at the least such stage. Suppose that φ_{e} induces a $1-1$ linear transformation of $\frac{V_{\infty}}{V}$ that satisfies condition (3). Since R_{e} acts at most finitely often, some cofinite subset of $\left\{\varepsilon_{\langle 2 e, t\rangle}: t \geq 0\right\}$ is independent $\bmod V$. Let $\varepsilon_{n}^{\infty}={ }_{\text {def }} \lim _{s \rightarrow \infty} \varepsilon_{n}^{s}, n \in \omega$. These vectors are independent over \mathcal{V}. For every $x \in V_{\infty}-V$, we define $\operatorname{supp}(x, \infty)$ to be the index set J in the
unique representation of x as

$$
x=v+\sum_{j \in J} \lambda_{j} \varepsilon_{j}^{\infty}
$$

where $v \in V$, and $\lambda_{j} \in F-\{0\}$ for $j \in J$. We then define

$$
\max (x, \infty)=\max \left\{j: \varepsilon_{j}^{\infty} \in \operatorname{supp}(x, \infty)\right\}
$$

Let w_{0} be the least vector such that the set $\left\{w_{0}, \varphi_{e}\left(w_{0}\right)\right\}$ is independent $\bmod V$. Let

$$
m_{0}=\max \left\{\max \left(w_{0}, \infty\right), \max \left(\varphi_{e}\left(w_{0}\right), \infty\right)\right\}
$$

Let $s_{1}>s_{0}$ be the least stage by which $\varepsilon_{m_{0}}^{\infty}$ has reached its limit, $\varphi_{e, s_{1}}\left(w_{0}\right) \downarrow$, and such that at every stage $s>s_{1}, w_{0}$ is the least vector with the set $\left\{w_{0}, \varphi_{e, s}\left(w_{0}\right)\right\}$ independent $\bmod V^{s}$. Recall that $F_{e}^{s_{1}}=\left\{\varepsilon_{\langle 2 e, t\rangle}: t \geq 0\right\} \cap E^{s_{1}}$. Since R_{e} does not act after s_{1}, our construction guarantees that F_{e}^{s} remains unchanged at stages $s \geq s_{1}$. Let $F_{e}={ }_{\text {def }} F_{e}^{s_{1}}$. Fix distinct vectors $v_{0}, v_{1}, \ldots, v_{m_{0}+1} \in F_{e}$ such that for every $j \in\left\{0, \ldots, m_{0}+1\right\}$, we have $\operatorname{supp}\left(v_{j}, \infty\right) \cap\left\{\varepsilon_{0}^{\infty}, \ldots, \varepsilon_{m_{0}}^{\infty}\right\}=\emptyset$. Since the transformation induced by φ_{e} is linear, there is a vector w_{1}, obtained as a linear combination of the vectors $v_{0}, v_{1}, \ldots, v_{m_{0}+1}$, such that $\operatorname{supp}\left(\varphi_{e}\left(w_{1}\right), \infty\right) \cap\left\{\varepsilon_{0}^{\infty}, \ldots, \varepsilon_{m_{0}}^{\infty}\right\}=\emptyset$. Similarly, we can find w_{2}, \ldots, w_{e+1} such that for every $i \in\{0, \ldots, e\}$, the following conditions are satisfied for $m_{i}={ }_{\text {def }} \max \left\{\max \left(w_{i}, \infty\right), \max \left(\varphi_{e}\left(w_{i}\right), \infty\right)\right\}$:

$$
\begin{array}{ll}
\left(\mathcal{C}_{1}^{\infty}\right) & \operatorname{supp}\left(w_{i+1}, \infty\right) \subset F_{e}, \\
\left(\mathcal{C}_{2}^{\infty}\right) & \operatorname{supp}\left(w_{i+1}, \infty\right) \cap\left\{\varepsilon_{0}^{\infty}, \ldots, \varepsilon_{m_{i}}^{\infty}\right\}=\emptyset, \text { and } \\
\left(\mathcal{C}_{3}^{\infty}\right) & \operatorname{supp}\left(\varphi_{e}\left(w_{i+1}\right), \infty\right) \cap\left\{\varepsilon_{0}^{\infty}, \ldots, \varepsilon_{m_{i}}^{\infty}\right\}=\emptyset
\end{array}
$$

Since such vectors exist for the space V, there are a stage $s_{2}>s_{1}$ and vectors w_{1}, \ldots, w_{e+1} such that $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$ are satisfied at s_{2}. That is, R_{e} can possibly act via $w_{0}, w_{1}, \ldots, w_{e+1}$. The reason R_{e} does not act is that the enumeration of A_{0} does not permit it, i.e., $\left(\mathcal{C}_{4}\right)$ from the construction is not satisfied. Also, notice that w_{1}, \ldots, w_{e+1} can be chosen so that $\left|\bigcup_{j=1}^{e+1} \operatorname{supp}\left(w_{j}\right)\right|$ is arbitrarily large. Thus, assuming that the condition $\left(\mathcal{C}_{4}\right)$ is not satisfied, we will have a decision procedure for computing A_{0}. Given $z \in \omega$, to determine whether $z \in A_{0}$, we effectively find $s_{2}>s_{1}$ such that R_{e} can possibly act at s_{2} via some sequence $w_{0}, w_{1}, \ldots, w_{e+1}$ for which $\left|\bigcup_{j=1}^{e+1} \operatorname{supp}\left(w_{j}\right)\right|>z$. It is clear that R_{e} can possibly act via the same sequence $w_{0}, w_{1}, \ldots, w_{e+1}$ at any stage $s>s_{2}$. Thus, since $\bigcup_{j=1}^{e+1} \operatorname{supp}\left(w_{j}\right) \subset F_{e}$, we have that $\max \left(w_{e+1}, s\right) \geq\left|\bigcup_{j=1}^{e+1} \operatorname{supp}\left(w_{j}\right)\right|>z$ for every $s>s_{2}$. It must be
that $A_{0} \upharpoonright(z+1)=A_{0}^{s_{2}} \upharpoonright(z+1)$, or R_{e} would actually act via $w_{0}, w_{1}, \ldots, w_{e+1}$ if a number $\leq z$ is enumerated into A_{0} after stage s_{2}.

References

[1] J.N. Crossley and A. Nerode, Effective dimension, Journal of Algebra 41 (1976), 389-412.
[2] R.D. Dimitrov, Computably Enumerable Vector Spaces, Dependence Relations, and Turing Degrees, Ph.D. Dissertation, The George Washington University, 2002.
[3] D.V. Lytkina, Algebraically nonequivalent constructivizations for infinitedimensional vector space, Algebra and Logic 29 (6), 659-674 (1990) (in Russian); 430-440 (1991) (English translation).
[4] A.I. Mal'tsev, On recursive Abelian groups, Doklady Akademii Nauk SSSR 146 (1962), 1009-1012 (in Russian).
[5] G. Metakides and A. Nerode, Recursively enumerable vector spaces, Annals of Mathematical Logic 11 (1977), 147-171.
[6] G. Metakides and A. Nerode, Recursion theory on fields and abstract dependence, Journal of Algebra 65 (1980), 36-59.
[7] A.S. Morozov, Rigid constructive modules, Algebra and Logic 28 (5), 570-583 (1989) (in Russian); 379-387 (1990) (English translation).
[8] A. Nerode and J.B. Remmel, Recursion theory on matroids II, in: C.T. Chong and M.J. Wicks, editors, Southeast Asian Conference on Logic (North-Holland, New York, 1983), 133-184.
[9] R.A. Shore, Controlling the dependence degree of a recursively enumerable vector space, Journal of Symbolic Logic 43 (1978), 13-22.
[10] R.I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets (Springer-Verlag, Berlin, 1987).

Department of Mathematics, George Washington University, Washington, D.C. 20052, USA, Rumen@gwu.edu

Current address: Department of Mathematics, Western Illinois University, Macomb, IL 61455, USA, rd-dimitrov@wiu.edu

Department of Mathematics, George Washington University, Washington, D.C. 20052, USA, harizanv@gWu.edu

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia, moRozov@math.nsc.ru

