TURING DEGREES OF CERTAIN ISOMORPHIC IMAGES OF COMPUTABLE RELATIONS

VALENTINA S. HARIZANOV

This paper is dedicated to Chris Ash, who invented α -systems.

ABSTRACT. A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let \mathcal{A} be a computable model and let R be an extra relation on the domain of \mathcal{A} . That is, R is not named in the language of \mathcal{A} . We define $Dg_{\mathcal{A}}(R)$ to be the set of Turing degrees of the images f(R) under all isomorphisms f from \mathcal{A} to computable models. We investigate conditions on \mathcal{A} and R which are sufficient and necessary for $Dg_{\mathcal{A}}(R)$ to contain every Turing degree. These conditions imply that if every Turing degree $\leq \mathbf{0}''$ can be realized in $Dg_{\mathcal{A}}(R)$ via an isomorphism of the same Turing degree as its image of R, then $Dg_{\mathcal{A}}(R)$ contains every Turing degree. We also discuss an example of \mathcal{A} and R whose $Dg_{\mathcal{A}}(R)$ coincides with the Turing degrees which are $< \mathbf{0}'$.

1. INTRODUCTION AND NOTATION

We consider only computable first-order languages and only countable models. Models are denoted by script letters, and their domains by the corresponding capital Latin letters. The isomorphism of models is denoted by \cong . Let \mathcal{A} be a model. $L(\mathcal{A})$ is the language of \mathcal{A} . $L(\mathcal{A})_A$ is the language $L(\mathcal{A}) \cup \{\mathbf{a} : a \in A\}$. \mathcal{A}_A is the expansion of \mathcal{A} to the language $L(\mathcal{A})_{\mathcal{A}}$ such that every **a** is interpreted by a. A basic sentence is an atomic sentence or the negation of an atomic sentence. The atomic diagram of \mathcal{A} is the set of all basic sentences of $L(\mathcal{A})_{\mathcal{A}}$ which are true in $\mathcal{A}_{\mathcal{A}}$. Let α be a computable ordinal. Ash [1] has defined computable Σ_{α} and Π_{α} formulas of $L_{\omega_1\omega}$, recursively and simultaneously, and together with their Gődel numbers (because the indexing of formulas in infinite disjunctions and conjunctions will be by their Gődel numbers). The computable Σ_0 and Π_0 formulas are the finitary quantifier-free formulas. The computable $\Sigma_{\alpha+1}$ ($\Pi_{\alpha+1}$, respectively) formulas are computably enumerable disjunctions (conjunctions, respectively) of $\exists \Pi_{\alpha} \ (\forall \Sigma_{\alpha}, \text{ respectively})$ formulas. If α is a limit ordinal, then the Π_{α} (Σ_{α} , respectively) formulas are of the form $\bigvee_{n \in W} \theta_n$ ($\bigwedge_{n \in W} \theta_n$, respectively), where W is a computably enumerable set of natural numbers and there is a sequence $(\alpha_n)_{n \in W}$ of ordinals having limit α , given by the ordinal notation for α , such that θ_n is a Σ_{α_n} (Σ_{α_n} , respectively) formula. For a more precise definition of computable Σ_{α} and Π_{α} formulas see [1]. A

sequence of variables displayed after a formula contains all free variables occurring in the formula.

A model \mathcal{A} is computable if its domain A is a computable set and the relations and functions of \mathcal{A} are uniformly computable. Equivalently, \mathcal{A} is a computable

This paper has been supported by the George Washington University Facilitating Fund. I thank Doug Cenzer for very useful discussions.

model if A is computable and the atomic diagram of \mathcal{A} is computable. That is, A is computable and there is a computable enumeration $(a_i)_{i\in\omega}$ of A and an algorithm which determines for every quantifier-free formula $\theta(x_{i_0}, \ldots, x_{i_{n-1}})$ in $L(\mathcal{A})$ and for every sequence $(a_{i_0}, \ldots, a_{i_{n-1}}) \in \mathcal{A}^n$, whether $\mathcal{A}_{\mathcal{A}} \models \theta(\mathbf{a}_{i_0}, \ldots, \mathbf{a}_{i_{n-1}})$.

Let R be an additional relation on the domain of a computable model \mathcal{A} . That is, R is not named in $L(\mathcal{A})$. For simplicity, we assume that R is unary. (However, all definitions introduced and results established can be easily extended to relations of arbitrary arity.) For various computability-theoretic complexity classes \mathcal{P} , Ash and Nerode and others have investigated syntactic conditions on \mathcal{A} and R under which for every isomorphism f from \mathcal{A} onto a computable model \mathcal{B} , $f(R) \in \mathcal{P}$. Such relations R are called *intrinsically* \mathcal{P} on \mathcal{A} . For example, Ash and Nerode [5] have established that, under some extra decidability condition on \mathcal{A} (which involves R), R is intrinsically c.e. if and only if R is definable by a computable Σ_1 formula with finitely many parameters. Barker [6] has extended this result to every computable ordinal $\alpha > 2$. He has established that, under certain extra decidability conditions on \mathcal{A} , R is intrinsically Σ^0_{α} on \mathcal{A} if and only if R is definable by a computable Σ_{α} formula with finitely many parameters. In the previous results, the extra decidability conditions are only needed to show that the corresponding syntactic conditions are necessary. We [8] have defined the (*Turing*) degree spectrum of R on A, in symbols $Dg_{\mathcal{A}}(R)$, to be the set of all Turing degrees of the images of R under all isomorphisms from \mathcal{A} onto computable models. For a computable model \mathcal{B} such that $\mathcal{B} \cong \mathcal{A}$, the (Turing) degree spectrum of R on \mathcal{A} with respect to \mathcal{B} , in symbols $Dg_{\mathcal{A},\mathcal{B}}(R)$, is the set of all Turing degrees of the images $f(R) \subseteq B$ under all isomorphisms f from \mathcal{A} to \mathcal{B} . In [8] we have studied uncountable degree spectra, and have established conditions which are sufficient for $Dg_{\mathcal{A}}(R)$ to contain all Turing degrees. Here we prove that these conditions are necessary. For another, independent proof, see [2].

The computability-theoretic notation is standard and as in [12]. We review some of it. By D_x we denote the finite set of natural numbers whose canonical index is x. Thus, $D_0 = \emptyset$. If φ is a partial function, then $dom(\varphi)$ is the domain of φ , $rng(\varphi)$ is the range of φ , and $\varphi(a) \downarrow$ denotes that $a \in dom(\varphi)$. The concatenation of sequences is denoted by $\hat{}$. We often identify a set X with its characteristic function χ_x . We fix $\langle \cdot, \cdot \rangle$ to be a computable bijection from ω^2 onto ω . Let $X \subseteq \omega$. Then $\varphi_0^X, \varphi_1^X, \varphi_2^X, \ldots$ is a fixed effective enumeration of all unary X-computable functions. φ_e^X is also denoted by $\{e\}^X$. We write $\varphi_{e,s}^X(n) = m$ if e, n, m < s, only numbers z < s are used in the computation, and $\varphi_e^X(n) = m$ in fewer than s steps. Let $p \in 2^{<\omega}$. We write $\varphi_{e,s}^p(n) = m$ if $\varphi_{e,s}^X(n) = m$ for some $X \supset p$ and only elements in dom(p) are used in the computation. Let $Y \subseteq \omega$. The join $X \oplus Y$ is $\{2n : n \in X\} \cup \{2n+1 : n \in Y\}$. By $X \leq_T Y$ $(X \equiv_T Y, \text{ respectively})$ we denote that X is Turing reducible to Y (X is Turing equivalent to Y, respectively). $X <_T Y$ denotes that $X \leq_T Y$ but $Y \not\leq_T X$. $\mathbf{x} = \deg(X)$ is the Turing degree of X. Hence $\mathbf{0} = \deg(\emptyset)$ and $\mathbf{x}^{(n)} = \deg(X^{(n)})$, where $X^{(n)}$ is the *n*-th jump of X. A Turing degree is c.e. $(\Delta_2^0, \text{ respectively})$ if it contains a c.e. $(\Delta_2^0, \text{ respectively})$ set. The set of all Turing degrees is denoted by \mathcal{D} . A binary function $f: \omega^2 \to \omega$ is called selective if for every $x, y \in \omega$, $f(x, y) \in \{x, y\}$. X is a semirecursive set if there is a selective computable function such that if exactly one of x, y belongs to X, then f(x,y) selects the element in X. An example of a semirecursive set is the deficiency set of a non-computable c.e. set for a 1-1 computable enumeration.

2. Realizing every Turing degree in a degree spectrum

Let \mathcal{A} be a computable model and let R be an extra relation on the domain Aof \mathcal{A} . As mentioned before, we will assume, without loss of generality, that R is unary. Let a computable model \mathcal{B} be such that $\mathcal{A} \cong \mathcal{B}$. By $\mathcal{I}(\mathcal{A}, \mathcal{B})$ we denote the set of all isomorphisms from \mathcal{A} to \mathcal{B} . We say that a partial function p from \mathcal{A} to \mathcal{B} is a *finite isomorphism* from \mathcal{A} to \mathcal{B} if p is 1 - 1, dom(p) is finite and for every atomic formula $\alpha = \alpha(x_0, \ldots, x_{n-1})$ in $L(\mathcal{A})$, and every $a_0, \ldots, a_{n-1} \in dom(p)$, we have

$$\mathcal{A}_A \models \alpha(\mathbf{a}_0, \dots, \mathbf{a}_{n-1}) \Leftrightarrow \mathcal{B}_B \models \alpha(\mathbf{b}_0, \dots, \mathbf{b}_{n-1}).$$

where $b_0 = (a_0), \ldots, b_{n-1} = p(a_{n-1})$. By $\mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$ we denote the set of all finite isomorphisms from \mathcal{A} to \mathcal{B} . In [8] we have defined the *R*-equivalence relation \sim_R on $\mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$ as follows:

$$q \sim_R r \iff (\forall b \in ran(q) \cap ran(r))[q^{-1}(b) \in R \Leftrightarrow r^{-1}(b) \in R].$$

Equivalently,

$$q \sim_R r \iff (\forall b \in ran(q) \cap ran(r))[b \in q(R) \Leftrightarrow b \in r(R)].$$

Since for every Turing degree \mathbf{x} , there are at most countably many Turing degrees which are $\leq \mathbf{x}$, and since every countable set of Turing degrees has an upper bound, a set of Turing degrees is uncountable if and only if it is unbounded.

Theorem 2.1. (Harizanov [8]) (i) The following are equivalent:

(0) $Dg_{\mathcal{A}}(R)$ is uncountable.

(1) $Dg_{\mathcal{A},\mathcal{B}}(R)$ is uncountable.

(2) $Dg_{\mathcal{A},\mathcal{B}}(R)$ has cardinality 2^{ω} .

(3) There is a nonempty set $\mathbb{S} \subseteq \mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$ such that the following two conditions are satisfied:

$$(A) \ (\forall p \in \mathbb{S})(\forall a \in A)(\forall b \in B)(\exists q \in \mathbb{S})[q \supseteq p \land a \in dom(q) \land b \in ran(q)];$$

$$(B) \ (\forall p \in \mathbb{S})(\exists q, r \in \mathbb{S})[q \supseteq p \land r \supseteq p \land \neg (q \sim_R r)].$$

(ii) Let S be as in (3). Then for every set $C \geq_T S$, there is an isomorphism f from \mathcal{A} to \mathcal{B} such that

$$C \equiv_T f(R) \oplus \mathbb{S} \equiv_T f \oplus \mathbb{S}.$$

In particular, if S is computable (or c.e.), then $Dg_{\mathcal{A},\mathcal{B}}(R)=\mathcal{D}$ and, moreover, for every set $C \subseteq \omega$, there is an isomorphism f from \mathcal{A} to \mathcal{B} such that

$$C \equiv_T f(R) \equiv_T f.$$

In [8], we have also given examples of uncountable degree spectra $Dg_{\mathcal{A},\mathcal{B}}(R)$ such that $Dg_{\mathcal{A},\mathcal{B}}(R) \neq \mathcal{D}$. Now we further investigate degree spectra which coincide with \mathcal{D} . The following example motivates the theorem that follows it.

Clearly, $\mathcal{Q} = (Q, \leq)$, where Q is the set of all rational numbers, is a computable model. $X \subseteq Q$ is an initial segment of \mathcal{Q} if

$$\forall a, b \in Q[(a \in X \land b \le a) \Rightarrow b \in X]$$

Example 2.1. Every Turing degree contains an initial segment of Q. That is, if $R = \{q \in Q : q < \sqrt{2}\}$, then $Dg_{Q,Q}(R) = D$.

Proof. Let C be an arbitrary infinite coinfinite set of natural numbers. We will show that there is an initial segment X of Q of the same Turing degree as C. We define a real number r_{c} by

$$r_{\scriptscriptstyle C} = \sum_{n \in C} \frac{1}{2^n}$$

Let X be the initial segment of \mathcal{Q} determined by r_c . That is, $X = \{q \in Q : q < r_c\}$.

First, let us prove that $C \leq_T X$. By transfinite induction on k, we will show that we can X-computably determine whether $k \in C$. Assume that we can determine, computably in $X, C \cap \{0, \ldots, k-1\}$. Then we can find, computably in X, $\sum_{n \in C \cap \{0, \ldots, k-1\}} \frac{1}{2^n}$. If $k \in C$, then, since C is infinite, $(\sum_{n \in C \cap \{0, \ldots, k-1\}} \frac{1}{2^n}) + \frac{1}{2^k} < r_C$. Conversely, if $(\sum_{n \in C \cap \{0, \ldots, k-1\}} \frac{1}{2^n}) + \frac{1}{2^k} < r_C$, then, since C is coinfinite and $\frac{1}{2^k} = \frac{1}{2^k} + \frac{1}$

 $\frac{1}{2^{k+1}}+\frac{1}{2^{k+2}}+\ldots,$ we conclude that $k\in C.$ Hence

$$k \in C \Leftrightarrow \big(\sum_{n \in C \cap \{0, \dots, k-1\}} \frac{1}{2^n}\big) + \frac{1}{2^k} \in X.$$

Thus, we can determine, computably in X, whether $k \in C$.

Now, let us prove that $X \leq_T C$. We will establish the following equivalence

$$q \in X \Leftrightarrow \exists n_0 [\sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n} \ge q].$$

The implication \Leftarrow is clear. Conversely, if $\forall n_0 [\sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n} < q]$, then $r_c \leq q$,

so $q \notin X$. If $q > r_c$, then $\exists n_0[q - r_c > \frac{1}{2^{n_0}}]$, hence $[q - \sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n}] > \frac{1}{2^{n_0}}$. Conversely, if $[q - \sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n}] > \frac{1}{2^{n_0}}$, then, since C is coinfinite, we conclude that $q - r_c > 0$. Therefore, for $q \neq r_c$,

$$q \notin X \Leftrightarrow \exists n_0 [q - \sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n} > \frac{1}{2^{n_0}}].$$

Hence, to decide for a given $q \in Q$, computably in C, whether $q \in X$, we search for n_0 such that either

$$\sum_{a \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n} \ge q$$

or

$$[q - \sum_{n \in C \cap \{0, \dots, n_0\}} \frac{1}{2^n}] > \frac{1}{2^{n_0}}$$

Theorem 2.2. The following are equivalent: (1) $Dg_{\mathcal{A},\mathcal{B}}(R) = \mathcal{D}$ and, moreover, for every set $C \subseteq \omega$, there is an isomorphism f from \mathcal{A} to \mathcal{B} such that $C \equiv_T f(R) \equiv_T f$. (2) There is $e \in \omega$ and $p \in 2^{<\omega}$ such that the set

$$\mathbb{S}_{e,p} =_{def} \{ \varphi_e^q : q \in 2^{<\omega} \land q \supseteq p \}$$

has the following properties:

$$\mathbb{S}_{e,p} \subseteq \mathcal{I}_{fin}(\mathcal{A}, \mathcal{B}),$$

(A) from Theorem 2.1 is satisfied for $\mathbb{S} = \mathbb{S}_{e,p}$, and

$$(\exists i \in \omega)(\forall q \supseteq p)(\forall a \in dom(q))[\varphi_i^{\varphi_e^q(R)}(a) \downarrow = q(a)].$$

(3) There is a nonempty computable (or c.e.) set $\mathbb{S} \subseteq \mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$ such that the conditions (A) and (B) from Theorem 2.1 are satisfied.

Proof. $\neg(2) \Rightarrow \neg(1)$ Assume the negation of (2). That is, for every $\langle e, i \rangle$ and every $p \in 2^{<\omega}$, there is $q \in 2^{<\omega}$ such that $q \supseteq p$ and

(i)
$$\varphi_e^q \notin \mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$$
 or
(ii) $(\exists a \in A)(\forall r \supseteq q)[a \notin dom(\varphi_e^r)]$ or
(iii) $(\exists b \in B)(\forall r \supseteq q)[b \notin ran(\varphi_e^r)]$ or
(iv) $(\exists a \in dom(q))[\varphi_i^{\varphi_e^q(R)}(a) \downarrow \neq q(a)].$

We will now use a finite extension argument to construct the characteristic function of a set $C \subseteq \omega$ which satisfies the following requirement for every $\langle e, i \rangle$:

$$R_{\langle e,i\rangle}:\varphi_e^C\in\mathcal{I}(\mathcal{A},\mathcal{B})\Rightarrow\varphi_i^{\varphi_e^{\subset}(R)}\neq C.$$

Construction

Let $p_{-1} =_{def} \emptyset$.

Stage s. Let $s = \langle e, i \rangle$. We have already constructed $p_{s-1} \in 2^{<\omega}$. Let q be the least binary sequence such that $q \supseteq p_{s-1}$ and one of the conditions (i)-(iv) is satisfied. Let $p_s =_{def} q$. End of construction.

Let $C \subseteq \omega$ be such that $\chi_C = \bigcup_{s \ge -1} p_s$. Hence, for $f \in \mathcal{I}(\mathcal{A}, \mathcal{B})$, if $f \leq_T C$, that is, if $f = \varphi_e^C$ for some $e \in \omega$, then $\neg(C \leq_T f(R))$. Let $\mathbf{c} = \deg(C)$. Thus, \mathbf{c} can not be realized in $Dg_{\mathcal{A},\mathcal{B}}(R)$ via an isomorphism of degree \mathbf{c} .

(2) \Rightarrow (3) Fix the corresponding e and p. By assumption, $\mathbb{S}_{e,p} \subseteq \mathcal{I}_{fin}(\mathcal{A}, \mathcal{B})$ and (A) is satisfied for $\mathbb{S} = \mathbb{S}_{e,p}$. Let us show that (B) is also satisfied for $\mathbb{S} = \mathbb{S}_{e,p}$. Fix the corresponding $i \in \omega$. Let $p_1 \in 2^{<\omega}$ be such that $p_1 \supseteq p$. Now, choose binary sequences q and r such that $q \supseteq p_1, r \supseteq p_1$, and

$$(\exists a \in dom(q) \cap dom(r))[q(a) \neq r(a)].$$

Then

$$\varphi_i^{\varphi_e^q(R)}(a) \downarrow \neq \varphi_i^{\varphi_e^r(R)}(a) \downarrow .$$

Hence

$$\exists b[b \in \varphi_e^q(R) \Leftrightarrow b \notin \varphi_e^r(R)].$$

Thus, $\neg(\varphi_k^q \sim_R \varphi_k^r)$.

 $(3) \Rightarrow (1)$ This is already proven in [8] (see (*ii*) of Theorem 2.1).

The equivalence of (1) and (3) in Theorem 2.2 has also been established independently by Ash, Cholak and Knight in [2]. Their proof uses the forcing method.

Remark 2.1. In the proof of $\neg(2) \Rightarrow \neg(1)$ for Theorem 2.2, the construction of C can be done computably in \emptyset'' . Hence $C \in \Delta_3^0$. Thus, if not every Turing degree is obtained in a degree spectrum $Dg_{\mathcal{A},\mathcal{B}}(R)$ via an isomorphism of the same Turing degree, then there is such a Δ_3^0 degree. This conclusion also follows from the proof in [2] since there is a generic Δ_3^0 set.

3. Realizing Δ_2^0 degrees in a degree spectrum

In [9] we have given a general condition for \mathcal{A} and R which is sufficient for every c.e. degree to be realized in $Dg_{\mathcal{A}}(R)$ via a c.e. set of the same Turing degree as the corresponding isomorphism. This condition is satisfied by the following model \mathcal{A}_0 and relation R_0 .

Let $\mathcal{A}_0 = (\omega, \prec)$ be the following computable linear order of order type $\omega + \omega^*$:

$$0 \prec 2 \prec 4 \prec \ldots \prec 5 \prec 3 \prec 1.$$

A computable relation R_0 is the initial segment of type ω ; that is, $R_0 = 2\omega$.

Hence every c.e. degree can be realized in $Dg_{\mathcal{A}_0}(R_0)$ via a c.e. set of the same Turing degree as the corresponding isomorphism. It is easy to see that R_0 is intrinsically Δ_2^0 on \mathcal{A} , because it satisfies the syntactic condition in [6]. Namely,

$$x \in R_0 \Leftrightarrow \bigvee_{n \in \omega} \exists x_0 \dots \exists x_n [x_0 \prec x_1 \prec \dots \prec x_n \land x = x_n \land \forall y [\neg (y \prec x_0) \land \neg (x_0 \prec y \prec x_1) \land \dots \land \neg (x_{n-1} \prec y \prec x_n)],$$

and

$$x \notin R_0 \Leftrightarrow \bigvee_{n \in \omega} \exists x_0 \dots \exists x_n [x_0 \succ x_1 \succ \dots \succ x_n \land x = x_n \land \forall y [\neg (y \succ x_0) \land \neg (x_0 \succ y \succ x_1) \land \dots \land \neg (x_{n-1} \succ y \succ x_n)].$$

Ash, Cholak and Knight [2] have extended the sufficient condition in [9] to the α -th level in Ershov's classification of Δ_2^0 degrees, where α is any fixed computable ordinal. A Turing degree is α -c.e. if it contains an α -c.e. set. A set $C \subseteq \omega$ is α -c.e. if there is a computable function $f : \omega^2 \to \{0, 1\}$ and a computable function $o : \omega^2 \to \{\beta : \beta \text{ is an ordinal } \land \beta \leq \alpha\}$ with the following properties:

$$(\forall x)[\lim_{s \to \infty} f(x, s) = C(x) \land f(x, 0) = 0],$$
$$(\forall x)(\forall s)[o(x, s+1) \le o(x, s) \land o(x, 0) = \alpha], \text{ and}$$

$$(\forall x)(\forall s)[f(x,s+1) \neq f(x,s) \Rightarrow o(x,s+1) < o(x,s)]$$

In particular, 1-c.e. sets are c.e. sets, and 2-c.e. sets are *d*-c.e. sets. For other equivalent definitions of α -c.e. sets, see [7] and [4]. Epstein, Haas and Kramer [7] have shown that some levels in Ershov's hierarchy are notation-dependent, and that for every Δ_2^0 set X, there is an ordinal notation in which X is ω^2 - c.e. Ash and Knight [4] have given a syntactic condition which is, under appropriate decidability conditions, sufficient and necessary for R to be intrinsically α -c.e. on \mathcal{A} . As a corollary, they have shown that for every computable ordinal α , R_0 is not intrinsically α -c.e. on \mathcal{A}_0 . This result also follows from the following proposition because for a fixed ordinal notation, the α -c.e. degrees form a proper hierarchy (see Theorem 9 in [7]).

Proposition 3.1. $Dg_{\mathcal{A}_{\alpha}}(R_0)$ consists of all Δ_2^0 degrees.

Proof. (1) Jockusch (Theorem 5.2 in [11]), has established that every nonzero Turing degree computable in $\mathbf{0}'$ contains a semirecursive set which is both immune and coimmune. However, a set of natural numbers is semirecursive if and only if it is an initial segment of a computable linear ordering on ω (see Theorem 4.1 in [11]). Let \mathbf{c} be an arbitrary nonzero Δ_2^0 degree. Hence there is a computable linear ordering $\mathcal{B} = (\omega, \prec_{\mathcal{B}})$ and an initial segment X on \mathcal{B} such that $deg(X) = \mathbf{c}$ and X is immune and coimmune. Since X is immune, no element of X can have infinitely many predecessors. Similarly, no element of $\omega - X$ can have infinitely many successors. Thus, the order type of \mathcal{B} is $\omega + \omega^*$, and X is the ω -part of \mathcal{B} . In other words, there is an isomorphism f from \mathcal{A}_0 to \mathcal{B} such that $f(R_0) = X$. Therefore, we conclude that $DgSp_{\mathcal{A}_0}(R_0)$ is the set of all Δ_2^0 degrees.

We will also give a direct proof by constructing a computable model \mathcal{B} isomorphic to \mathcal{A}_0 and a corresponding isomorphism. In the proof, we will consider binary trees. Such trees can be viewed as growing downward from the top node \emptyset . Let $\nu, \mu \in 2^{<\omega}$. As usual, we say that ν is to the left of μ , in symbols $\nu <_L \mu$, if

$$\exists \gamma \in 2^{<\omega} [\gamma^{\hat{}} 0 \subseteq \nu \land \gamma^{\hat{}} 1 \subseteq \mu].$$

We have the following partial ordering on $2^{<\omega}$:

$$\nu < \mu \Leftrightarrow_{def} (\nu <_L \mu \lor \nu \subsetneq \mu).$$

Let $C \subseteq \omega$. We write $\nu <_L C$ if for $\gamma = C(0)^{\circ}C(1)^{\circ} \dots^{\circ}C(lh(\nu) - 1)$, we have $\nu <_L \gamma$. We similarly define $C <_L \nu$ and $\nu < C$. Let r_C be defined as in Example 2.1. Notice that if C is infinite and coinfinite then $(\forall x \in \omega) [\sum_{n \in D_x} \frac{1}{2^n} \neq r_C]$. Jockusch [11] has defined an infinite and coinfinite set $C \subseteq \omega$ to be strongly non-c.e. if neither

[11] has defined an infinite and coinfinite set $C \subseteq \omega$ to be strongly non-c.e. if neither the set $\{x \in \omega : \sum_{n \in D_x} \frac{1}{2^n} < r_C\}$ is c.e. nor the set $\{x \in \omega : \sum_{n \in D_x} \frac{1}{2^n} > r_C\}$ is c.e. Jockusch [11] has established that every nonzero Turing degree contains a strongly

non-c.e. set. Let $p \in A^m$ for some $m \in \omega$, and let $\alpha = \alpha(x_0, \ldots, x_{m-1})$ be a formula. We say

Let $p \in A^m$ for some $m \in \omega$, and let $\alpha = \alpha(x_0, \ldots, x_{m-1})$ be a formula. We say that p satisfies α in \mathcal{A} if

$$\mathcal{A} \models \alpha(x_0, \dots, x_{m-1})[p(0), \dots, p(m-1)].$$

Proof. (2) We will construct a computable model \mathcal{B} isomorphic to \mathcal{A}_0 . Let the domain B be ω . Let \mathbf{c} be a nonzero Δ_2^0 degree. We choose a strongly non-c.e. set $C \subseteq \omega$ such that $deg(C) = \mathbf{c}$. Let $h : \omega^2 \to \{0, 1\}$ be a computable function which approximates C, that is,

$$(\forall n \in \omega)[C(n) = \lim_{n \to \infty} h(n, s)].$$

Now we define the following computable binary tree

$$T = \{h(0,s)^{\hat{}}h(1,s)^{\hat{}}\dots^{\hat{}}h(n,s) : n \le s \land s \in \omega\} \cup \{\emptyset\}$$

For every $s \in \omega$, T has exactly one maximal branch of length s + 1:

$$\nu_s = h(0,s)^{\hat{}}h(1,s)^{\hat{}}\dots^{\hat{}}h(s,s).$$

At every stage s of the construction, we define a finite isomorphism $p_s : \{0, 1, ..., s\} \rightarrow A_0$. The function p_s has the following properties (*):

$$(\forall n \in \omega)[(2n+2 \in ran(p_s)) \Rightarrow 2n \in ran(p_s)) \land$$
$$(2n+1 \in ran(p_s) \Rightarrow 2n-1 \in ran(p_s))]$$
$$(\forall n, m \in \{0, 1, \dots, s-1\})[\nu_n < \nu_m \Rightarrow p_s(n) \prec p_s(m)], \text{ and}$$
$$(\forall n \in \{0, 1, \dots, s-1\})[(\nu_n < \nu_s \Rightarrow p_s(n) \in R_0) \land (\nu_s <_L \nu_n \Rightarrow p_s(n) \in R_0)]$$

 \overline{R}_0].

Construction

Stage 0. Let $p_0 =_{def} \{(0, a)\}$, where a is the least element in R_0 if $\nu_0 < \nu_1$, and the least element in \overline{R}_0 if $\nu_1 <_L \nu_0$.

Stage s > 0. We have $p_{s-1} : \{0, 1, ..., s-1\} \to A_0$, satisfying the above properties (*), and a finite part \mathcal{B}_{s-1} of the atomic diagram of \mathcal{B} , which involves constants 0, 1, ..., s-1 and is determined by p_{s-1} and \mathcal{A}_0 .

Let n < s - 1 be the least number (if it exists, otherwise let $q =_{def} p_{s-1}$) such that $\nu_s <_L \nu_n < \nu_{s-1}$ or $\nu_{s-1} <_L \nu_n < \nu_s$. We change p_{s-1} into the corresponding q with the same domain as p_{s-1} such that $(\forall m < n)[q(m) = p_{s-1}(m)]$, q preserves \mathcal{B}_{s-1} , and satisfies conditions (*). Let

$$p_s = q \cup \{(s,a)\}$$

where a is the least element in $R_0 - ran(q)$ if $\nu_{s-1} < \nu_s$, and a the least element in $\overline{R}_0 - ran(q)$ if $\nu_s <_L \nu_{s-1}$.

Let \mathcal{B}_s be the set of all basic sentences with Gödel number $\leq s$, involving constants 0, 1, ..., s, which is satisfied by p_s in \mathcal{A}_0 . Note that $\mathcal{B}_{s-1} \subseteq \mathcal{B}_s$. End of the construction.

Let the atomic diagram of \mathcal{B} be $\bigcup_{s\geq 0} \mathcal{B}_s$. Thus, \mathcal{B} is a computable model. Fix

 $n \in \omega$. Let s_n be the least number such that $s_n \ge n$ and

$$(\forall m \le n)(\forall s \ge s_n)[h(m,s) = h(m,s_n) = C(m)].$$

Hence

$$(\forall s \ge s_n)[p_s(n) = p_{s_n}(n)].$$

We define

$$f(n) = p_{s_n}(n).$$

f is a 1-1 function from B to A_0 .

Lemma 3.2. f is onto A_0 .

Proof. Assume inductively that $0, 1, \ldots, j-1 \in ran(f)$. We will prove that $j \in ran(f)$. Let $f(n_i) = i$ for i < j. Let $n = \max\{n_0, n_1, \ldots, n_{j-1}\}$ and let $t_0 = s_n$. Hence for every $s \ge t_0$, ν_s extends $C(0)^{\hat{}}C(1)^{\hat{}} \ldots ^{\hat{}}C(n)$.

Case: $j \in R$.

We claim that there exists $s' \geq t_0$ such that $(\forall s > s')[\nu_{s'} < \nu_s]$. Otherwise, we can effectively enumerate an infinite sequence of stages $t_0 < t_1 < t_2 < \ldots$ such that for every $i \in \omega$, $\nu_{t_{i+1}} <_L \nu_{t_i}$. Since h approximates C, we conclude that $(\forall i \in \omega)[C <_L \nu_{t_i}]$. Hence for every $x \in \omega$,

$$\left(\sum_{n\in D_x}\frac{1}{2^n}>r_C\right)\Leftrightarrow (\exists i\in\omega)[\chi_{D_x}\geq\nu_{t_i}].$$

8

Thus, the set $\{x \in \omega : \sum_{n \in D_x} \frac{1}{2^n} > r_C\}$ is c.e., contradicting the fact that C is strongly non-c.e.

We now choose the least stage s' with the property described above. It follows from the construction that $j \in ran(p_{s'+1})$ and that

$$(\forall s > s' + 1)[p_s^{-1}(j) = p_{s'+1}^{-1}(j)].$$

Hence $a_j \in ran(f)$.

Case: $a_j \in \overline{R}_0$.

As in the previous case, we prove that there exists $s' \ge t_0$ such that $(\forall s \ge s')[\nu_s <_L \nu_{s'}]$. For the least such s', it follows from the construction that

$$(\forall s > s' + 1)[p_s^{-1}(j) = p_{s'+1}^{-1}(j)]$$

Hence $j \in ran(f)$.

Lemma 3.3.
$$f^{-1}(R_0) \equiv_T C$$

Proof. Let $X = f^{-1}(R_0)$. It follows by construction that

$$X = \{ n \in \omega : \nu_n < C \}.$$

Hence

$$X \leq_T C.$$

We now prove, by induction, that $C \leq_T X$. To determine whether $k \in C$, we assume that we can find σ using oracle X, where

$$\sigma = C(0)^{\hat{}}C(1)^{\hat{}}\dots^{\hat{}}C(k-1).$$

Then

$$k \in C \Leftrightarrow (\exists n \in X) [\sigma^{\hat{}}(1) \subseteq \nu_n].$$

Equivalently,

$$k \notin C \Leftrightarrow (\exists n \in \overline{X}) [\sigma^{\hat{}}(0) \subseteq \nu_n].$$

Hird [10] has shown that there is a computable copy of \mathcal{A}_0 in which the initial segment of type ω is *h*-simple. However, Jim Owings (unpublished) has observed that every deficiency set of a non-computable c.e. set for a 1-1 computable enumeration is the initial segment of type ω of some computable linear order isomorphic to \mathcal{A}_0 . That is because every such deficiency set is semirecursive, immune and coimmune. Hence for every c.e. non-computable set C, there is a computable copy of \mathcal{A}_0 in which the initial segment of type ω is *h*-simple and Turing equivalent to C. This conclusion has also been obtained for simple initial segments by Ash, Knight and Remmel in [3], as an example of their general result for the so-called quasi-simple relations on computable models. These simple sets are automatically *h*-simple because semirecursive immune sets are *h*-immune. On the other hand, such sets cannot be *hh*-simple because no semirecursive set can be *hh*-immune (see [11]). Hird [10] has also established that no interval of a computable linear order is *hh*-immune.

VALENTINA S. HARIZANOV

References

- C. J. Ash, Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees, Transactions of the American Mathematical Society 298 (1996), 497-514.
- [2] C. J. Ash, P. Cholak and J. F. Knight, Permitting, forcing, and copies of a given recursive relation, to appear in Annals of Pure and Applied Logic.
- [3] C. J. Ash, J. F. Knight and J. B. Remmel, Quasi-simple relations in copies of a given recursive structure, to appear in Annals of Pure and Applied Logic.
- [4] C. J. Ash and J. F. Knight, Recursive structures and Ershov's hierarchy, Logic Paper No. 82 (1995), Monash University.
- [5] C. J. Ash and A. Nerode, Intrinsically recursive relations, in: J. N. Crossley, editor, Aspects of Effective Algebra (U.D.A. Book Co., Steel's Creek, Australia, 1981), 26-41.
- [6] E. Barker, Intrinsically Σ^0_{α} relations, Annals of Pure and Applied Logic 39 (1988), 105-130.
- [7] R. L. Epstein, R. Haas and R. L. Kramer, Hierarchies of sets and degrees below 0', in: J. H. Schmerl, M. Lerman and R. I. Soare, editors, Logic Year 1979-1980: University of Connecticut (Lecture Notes in Mathematics 859, Springer-Verlag, Berlin-Heidelberg-New York, 1987), 32-48.
- [8] V. S. Harizanov, Uncountable degree spectra, Annals of Pure and Applied Logic 54 (1991), 255-263.
- [9] V. S. Harizanov, Some effects of Ash-Nerode and other decidability conditions on degree spectra, Annals of Pure and Applied Logic 55 (1991), 51-65.
- [10] G. Hird, Recursive properties of intervals of recursive linear orders, in: J. N. Crossley, J. B. Remmel, R. A. Shore, and M. E. Sweedler, editors, Logical Methods (Birkhäuser Boston, 1993), 422-437.
- [11] C. G. Jockusch, Jr., Semirecursive sets and positive reducibility, Transactions of the American Mathematical Society 131 (1968), 420-536.
- [12] R. I. Soare, Recursively Enumerable Sets and Degrees (Springer-Verlag, Berlin, 1987).

DEPARTMENT OF MATHEMATICS, THE GEORGE WASHINGTON UNIVERSITY, WASHINGTON, D. C. 20052

E-mail address: val@@math.gwu.edu