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Abstract. A model is computable if its domain is a computable set and its
relations and functions are uniformly computable. Let A be a computable
model and let R be an extra relation on the domain of A. That is, R is not
named in the language of A. We define DgA(R) to be the set of Turing degrees
of the images f(R) under all isomorphisms f from A to computable models.
We investigate conditions on A and R which are sufficient and necessary for
DgA(R) to contain every Turing degree. These conditions imply that if every
Turing degree ≤ 000 can be realized in DgA(R) via an isomorphism of the same
Turing degree as its image of R, then DgA(R) contains every Turing degree.
We also discuss an example of A and R whose DgA(R) coincides with the
Turing degrees which are ≤ 00.

1. Introduction and notation

We consider only computable first-order languages and only countable models.
Models are denoted by script letters, and their domains by the corresponding capital
Latin letters. The isomorphism of models is denoted by ∼=. Let A be a model. L(A)
is the language of A. L(A)A is the language L(A)∪{a :a ∈ A}. AA is the expansion
of A to the language L(A)A such that every a is interpreted by a. A basic sentence
is an atomic sentence or the negation of an atomic sentence. The atomic diagram
of A is the set of all basic sentences of L(A)A which are true in AA. Let α be a
computable ordinal. Ash [1] has defined computable Σα and Πα formulas of Lω1ω,
recursively and simultaneously, and together with their Gődel numbers (because the
indexing of formulas in infinite disjunctions and conjunctions will be by their Gődel
numbers). The computable Σ0 and Π0 formulas are the finitary quantifier-free
formulas. The computable Σα+1 (Πα+1, respectively) formulas are computably
enumerable disjunctions (conjunctions, respectively) of ∃Πα (∀Σα, respectively)
formulas. If α is a limit ordinal, then the Πα (Σα, respectively) formulas are of
the form

W
n∈W

θn (
V

n∈W
θn, respectively), where W is a computably enumerable

set of natural numbers and there is a sequence (αn)n∈W of ordinals having limit
α, given by the ordinal notation for α, such that θn is a Σαn (Σαn , respectively)
formula. For a more precise definition of computable Σα and Πα formulas see [1]. A
sequence of variables displayed after a formula contains all free variables occurring
in the formula.
A model A is computable if its domain A is a computable set and the relations

and functions of A are uniformly computable. Equivalently, A is a computable
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model if A is computable and the atomic diagram of A is computable. That is, A is
computable and there is a computable enumeration (ai)i∈ω of A and an algorithm
which determines for every quantifier-free formula θ(xi0 , . . . , xin−1) in L(A) and for
every sequence (ai0 , . . . , ain−1) ∈ An, whether AA²θ(ai0 , . . . ,ain−1).
Let R be an additional relation on the domain of a computable model A. That

is, R is not named in L(A). For simplicity, we assume that R is unary. (However,
all definitions introduced and results established can be easily extended to relations
of arbitrary arity.) For various computability-theoretic complexity classes P, Ash
and Nerode and others have investigated syntactic conditions on A and R under
which for every isomorphism f from A onto a computable model B, f(R) ∈ P.
Such relations R are called intrinsically P on A. For example, Ash and Nerode
[5] have established that, under some extra decidability condition on A (which
involves R), R is intrinsically c.e. if and only if R is definable by a computable
Σ1 formula with finitely many parameters. Barker [6] has extended this result to
every computable ordinal α ≥ 2. He has established that, under certain extra
decidability conditions on A, R is intrinsically Σ0α on A if and only if R is definable
by a computable Σα formula with finitely many parameters. In the previous results,
the extra decidability conditions are only needed to show that the corresponding
syntactic conditions are necessary. We [8] have defined the (Turing) degree spectrum
of R on A, in symbols DgA(R), to be the set of all Turing degrees of the images
of R under all isomorphisms from A onto computable models. For a computable
model B such that B ∼= A, the (Turing) degree spectrum of R on A with respect to
B, in symbols DgA,B(R), is the set of all Turing degrees of the images f(R) ⊆ B
under all isomorphisms f from A to B. In [8] we have studied uncountable degree
spectra, and have established conditions which are sufficient for DgA(R) to contain
all Turing degrees. Here we prove that these conditions are necessary. For another,
independent proof, see [2].
The computability-theoretic notation is standard and as in [12]. We review some

of it. By Dx we denote the finite set of natural numbers whose canonical index
is x. Thus, D0 = ∅. If ϕ is a partial function, then dom(ϕ) is the domain of ϕ,
rng(ϕ) is the range of ϕ, and ϕ(a) ↓ denotes that a ∈ dom(ϕ). The concatenation
of sequences is denoted by ^. We often identify a set X with its characteristic
function χ

X
. We fix h·, ·i to be a computable bijection from ω2 onto ω. Let X ⊆ ω.

Then ϕX0 ,ϕ
X
1 ,ϕ

X
2 , . . . is a fixed effective enumeration of all unary X-computable

functions. ϕXe is also denoted by {e}X . We write ϕXe,s(n) = m if e, n,m < s, only
numbers z < s are used in the computation, and ϕXe (n) = m in fewer than s steps.
Let p ∈ 2<ω. We write ϕpe,s(n) = m if ϕXe,s(n) = m for some X ⊃ p and only
elements in dom(p) are used in the computation. Let Y ⊆ ω. The join X ⊕ Y
is {2n : n ∈ X} ∪ {2n + 1 : n ∈ Y }. By X ≤T Y (X ≡T Y , respectively) we
denote that X is Turing reducible to Y (X is Turing equivalent to Y , respectively).
X <T Y denotes that X ≤T Y but Y £T X. x = deg(X) is the Turing degree of
X. Hence 0 = deg(∅) and x(n) = deg(X(n)), where X(n) is the n-th jump of X. A
Turing degree is c.e. (∆02, respectively) if it contains a c.e. (∆

0
2, respectively) set.

The set of all Turing degrees is denoted by D. A binary function f : ω2 → ω is
called selective if for every x, y ∈ ω, f(x, y) ∈ {x, y}. X is a semirecursive set if
there is a selective computable function such that if exactly one of x, y belongs to
X, then f(x, y) selects the element in X. An example of a semirecursive set is the
deficiency set of a non-computable c.e. set for a 1-1 computable enumeration.
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2. Realizing every Turing degree in a degree spectrum

Let A be a computable model and let R be an extra relation on the domain A
of A. As mentioned before, we will assume, without loss of generality, that R is
unary. Let a computable model B be such that A ∼= B. By I(A,B) we denote the
set of all isomorphisms from A to B. We say that a partial function p from A to
B is a finite isomorphism from A to B if p is 1− 1, dom(p) is finite and for every
atomic formula α = α(x0, . . . , xn−1) in L(A), and every a0, . . . , an−1 ∈ dom(p),
we have

AA |= α(a0, . . . ,an−1)⇔ BB |= α(b0, . . . ,bn−1).

where b0 = (a0), . . . , bn−1 = p(an−1). By Ifin(A,B) we denote the set of all finite
isomorphisms from A to B. In [8] we have defined the R-equivalence relation ∼R
on Ifin(A,B) as follows:

q ∼R r ⇐⇒ (∀b ∈ ran(q) ∩ ran(r))[q−1(b) ∈ R⇔ r−1(b) ∈ R].
Equivalently,

q ∼R r ⇐⇒ (∀b ∈ ran(q) ∩ ran(r))[b ∈ q(R)⇔ b ∈ r(R)].
Since for every Turing degree x, there are at most countably many Turing degrees

which are ≤ x, and since every countable set of Turing degrees has an upper bound,
a set of Turing degrees is uncountable if and only if it is unbounded.

Theorem 2.1. (Harizanov [8]) (i) The following are equivalent:
(0) DgA(R) is uncountable.
(1) DgA,B(R) is uncountable.
(2) DgA,B(R) has cardinality 2ω.
(3) There is a nonempty set S ⊆Ifin(A,B) such that the following two conditions
are satisfied:

(A) (∀p ∈ S)(∀a ∈ A)(∀b ∈ B)(∃q ∈ S)[q ⊇ p ∧ a ∈ dom(q) ∧ b ∈ ran(q)];

(B) (∀p ∈ S)(∃q, r ∈ S)[q ⊇ p ∧ r ⊇ p ∧ ¬(q ∼R r)].

(ii) Let S be as in (3). Then for every set C ≥T S, there is an isomorphism f from
A to B such that

C ≡T f(R)⊕ S ≡T f ⊕ S.
In particular, if S is computable (or c.e.), then DgA,B(R)=D and, moreover, for

every set C ⊆ ω, there is an isomorphism f from A to B such that
C ≡T f(R) ≡T f.

In [8], we have also given examples of uncountable degree spectra DgA,B(R) such
that DgA,B(R) 6= D. Now we further investigate degree spectra which coincide with
D. The following example motivates the theorem that follows it.
Clearly, Q = (Q,≤), where Q is the set of all rational numbers, is a computable

model. X ⊆ Q is an initial segment of Q if

∀a, b ∈ Q[(a ∈ X ∧ b ≤ a)⇒ b ∈ X].
Example 2.1. Every Turing degree contains an initial segment of Q. That is, if
R = {q ∈ Q : q < √2}, then DgQ,Q(R) = D.
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Proof. Let C be an arbitrary infinite coinfinite set of natural numbers. We will
show that there is an initial segment X of Q of the same Turing degree as C. We
define a real number r

C
by

rC =
X
n∈C

1

2n
.

LetX be the initial segment ofQ determined by r
C
. That is, X = {q ∈ Q : q < r

C}.
First, let us prove that C ≤T X. By transfinite induction on k, we will show

that we can X-computably determine whether k ∈ C. Assume that we can deter-
mine, computably in X, C ∩ {0, . . . , k − 1}. Then we can find, computably in X,P
n∈C∩{0,... ,k−1}

1
2n . If k ∈ C, then, since C is infinite, (

P
n∈C∩{0,... ,k−1}

1
2n )+

1
2k
< r

C
.

Conversely, if (
P

n∈C∩{0,... ,k−1}
1
2n ) +

1
2k
< r

C
, then, since C is coinfinite and 1

2k
=

1
2k+1

+ 1
2k+2

+ . . . , we conclude that k ∈ C. Hence

k ∈ C ⇔ (
X

n∈C∩{0,... ,k−1}

1

2n
) +

1

2k
∈ X.

Thus, we can determine, computably in X, whether k ∈ C.
Now, let us prove that X ≤T C. We will establish the following equivalence

q ∈ X ⇔ ∃n0[
X

n∈C∩{0,... ,n0}

1

2n
≥ q].

The implication ⇐ is clear. Conversely, if ∀n0[
P

n∈C∩{0,... ,n0}
1
2n < q], then rC ≤ q,

so q /∈ X.
If q > rC , then ∃n0[q−rC > 1

2n0 ], hence [q−
P

n∈C∩{0,... ,n0}
1
2n ] >

1
2n0 . Conversely,

if [q− P
n∈C∩{0,... ,n0}

1
2n ] >

1
2n0 , then, since C is coinfinite, we conclude that q−rC >

0. Therefore, for q 6= rC ,

q /∈ X ⇔ ∃n0[q −
X

n∈C∩{0,... ,n0}

1

2n
>

1

2n0
].

Hence, to decide for a given q ∈ Q, computably in C, whether q ∈ X, we search for
n0 such that either X

n∈C∩{0,... ,n0}

1

2n
≥ q

or

[q −
X

n∈C∩{0,... ,n0}

1

2n
] >

1

2n0
.

Theorem 2.2. The following are equivalent:
(1) DgA,B(R)=D and, moreover, for every set C ⊆ ω, there is an isomorphism f
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from A to B such that C ≡T f(R) ≡T f .
(2) There is e ∈ ω and p ∈ 2<ω such that the set

Se,p =def {ϕqe : q ∈ 2<ω ∧ q ⊇ p}
has the following properties:

Se,p ⊆ Ifin(A,B),

(A) from Theorem 2.1 is satisfied for S = Se,p, and

(∃i ∈ ω)(∀q ⊇ p)(∀a ∈ dom(q))[ϕϕqe(R)i (a) ↓= q(a)].

(3) There is a nonempty computable (or c.e.) set S ⊆Ifin(A,B) such that the con-
ditions (A) and (B) from Theorem 2.1 are satisfied.

Proof. ¬(2)⇒ ¬(1) Assume the negation of (2). That is, for every he, ii and every
p ∈ 2<ω, there is q ∈ 2<ω such that q ⊇ p and

(i) ϕqe /∈ Ifin(A,B) or
(ii) (∃a ∈ A)(∀r ⊇ q)[a /∈ dom(ϕre)] or
(iii) (∃b ∈ B)(∀r ⊇ q)[b /∈ ran(ϕre)] or
(iv) (∃a ∈ dom(q))[ϕ

ϕqe(R)
i (a) ↓6= q(a)].

We will now use a finite extension argument to construct the characteristic function
of a set C ⊆ ω which satisfies the following requirement for every he, ii:

Rhe,ii : ϕCe ∈ I(A,B)⇒ ϕ
ϕCe (R)
i 6= C.

Construction
Let p−1 =def ∅.
Stage s. Let s = he, ii. We have already constructed ps−1 ∈ 2<ω. Let q be

the least binary sequence such that q ⊇ ps−1 and one of the conditions (i)-(iv) is
satisfied. Let ps =def q. End of construction.
Let C ⊆ ω be such that χC =

S
s≥−1

ps. Hence, for f ∈ I(A,B), if f ≤T C, that
is, if f = ϕCe for some e ∈ ω, then ¬(C ≤T f(R)). Let c = deg(C). Thus, c can not
be realized in DgA,B(R) via an isomorphism of degree c.
(2)⇒ (3) Fix the corresponding e and p. By assumption, Se,p ⊆ Ifin(A,B) and

(A) is satisfied for S = Se,p. Let us show that (B) is also satisfied for S = Se,p. Fix
the corresponding i ∈ ω. Let p1 ∈ 2<ω be such that p1 ⊇ p. Now, choose binary
sequences q and r such that q ⊇ p1, r ⊇ p1, and

(∃a ∈ dom(q) ∩ dom(r))[q(a) 6= r(a)].
Then

ϕ
ϕqe(R)
i (a) ↓6= ϕ

ϕre(R)
i (a) ↓ .

Hence

∃b[b ∈ ϕqe(R)⇔ b /∈ ϕre(R)].

Thus, ¬(ϕqk ∼R ϕrk).
(3)⇒ (1) This is already proven in [8] (see (ii) of Theorem 2.1).
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The equivalence of (1) and (3) in Theorem 2.2 has also been established inde-
pendently by Ash, Cholak and Knight in [2]. Their proof uses the forcing method.

Remark 2.1. In the proof of ¬(2)⇒ ¬(1) for Theorem 2.2, the construction of C
can be done computably in ∅00. Hence C ∈ ∆03. Thus, if not every Turing degree is
obtained in a degree spectrum DgA,B(R) via an isomorphism of the same Turing
degree, then there is such a ∆03 degree. This conclusion also follows from the proof
in [2] since there is a generic ∆03 set.

3. Realizing ∆02 degrees in a degree spectrum

In [9] we have given a general condition for A and R which is sufficient for every
c.e. degree to be realized in DgA(R) via a c.e. set of the same Turing degree as the
corresponding isomorphism. This condition is satisfied by the following model A0
and relation R0.
Let A0 = (ω,≺) be the following computable linear order of order type ω + ω∗:

0 ≺ 2 ≺ 4 ≺ . . . ≺ 5 ≺ 3 ≺ 1.
A computable relation R0 is the initial segment of type ω; that is, R0 = 2ω.
Hence every c.e. degree can be realized in DgA0

(R0) via a c.e. set of the
same Turing degree as the corresponding isomorphism. It is easy to see that R0 is
intrinsically ∆02 on A, because it satisfies the syntactic condition in [6]. Namely,

x ∈ R0 ⇔
_
n∈ω
∃x0 . . .∃xn[x0 ≺ x1 ≺ . . . ≺ xn ∧ x = xn ∧

∀y[¬(y ≺ x0) ∧ ¬(x0 ≺ y ≺ x1) ∧ . . . ∧ ¬(xn−1 ≺ y ≺ xn)],
and

x /∈ R0 ⇔
_
n∈ω
∃x0 . . .∃xn[x0 Â x1 Â . . . Â xn ∧ x = xn ∧

∀y[¬(y Â x0) ∧ ¬(x0 Â y Â x1) ∧ . . . ∧ ¬(xn−1 Â y Â xn)].
Ash, Cholak and Knight [2] have extended the sufficient condition in [9] to the
α-th level in Ershov’s classification of ∆02 degrees, where α is any fixed computable
ordinal. A Turing degree is α-c.e. if it contains an α-c.e. set. A set C ⊆ ω is α-c.e.
if there is a computable function f : ω2 → {0, 1} and a computable function o :
ω2 → {β : β is an ordinal ∧β ≤ α} with the following properties:

(∀x)[ lim
s→∞ f(x, s) = C(x) ∧ f(x, 0) = 0],

(∀x)(∀s)[o(x, s+ 1) ≤ o(x, s) ∧ o(x, 0) = α], and

(∀x)(∀s)[f(x, s+ 1) 6= f(x, s)⇒ o(x, s+ 1) < o(x, s)].

In particular, 1-c.e. sets are c.e. sets, and 2-c.e. sets are d-c.e. sets. For other
equivalent definitions of α-c.e. sets, see [7] and [4]. Epstein, Haas and Kramer [7]
have shown that some levels in Ershov’s hierarchy are notation-dependent, and that
for every ∆02 set X, there is an ordinal notation in which X is ω2- c.e. Ash and
Knight [4] have given a syntactic condition which is, under appropriate decidability
conditions, sufficient and necessary for R to be intrinsically α-c.e. on A. As a corol-
lary, they have shown that for every computable ordinal α, R0 is not intrinsically
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α-c.e. on A0. This result also follows from the following proposition because for a
fixed ordinal notation, the α-c.e. degrees form a proper hierarchy (see Theorem 9
in [7]).

Proposition 3.1. DgA
0
(R0) consists of all ∆02 degrees.

Proof. (1) Jockusch (Theorem 5.2 in [11]), has established that every nonzero Tur-
ing degree computable in 00 contains a semirecursive set which is both immune
and coimmune. However, a set of natural numbers is semirecursive if and only if
it is an initial segment of a computable linear ordering on ω (see Theorem 4.1 in
[11]). Let c be an arbitrary nonzero ∆02 degree. Hence there is a computable linear
ordering B = (ω,≺B) and an initial segment X on B such that deg(X) = c and X
is immune and coimmune. Since X is immune, no element of X can have infinitely
many predecessors. Similarly, no element of ω −X can have infinitely many suc-
cessors. Thus, the order type of B is ω + ω∗, and X is the ω-part of B. In other
words, there is an isomorphism f from A0 to B such that f(R0) = X. Therefore,
we conclude that DgSpA0

(R0) is the set of all ∆02 degrees.

We will also give a direct proof by constructing a computable model B isomorphic
to A0 and a corresponding isomorphism. In the proof, we will consider binary trees.
Such trees can be viewed as growing downward from the top node ∅. Let ν, µ ∈ 2<ω.
As usual, we say that ν is to the left of µ, in symbols ν <L µ, if

∃γ ∈ 2<ω[γˆ0 ⊆ ν ∧ γˆ1 ⊆ µ].
We have the following partial ordering on 2<ω:

ν < µ⇔def (ν <L µ ∨ ν ( µ).
Let C ⊆ ω. We write ν <L C if for γ = C(0)ˆC(1)ˆ . . . ˆC(lh(ν) − 1), we have
ν <L γ. We similarly define C <L ν and ν < C. Let rC be defined as in Example
2.1. Notice that if C is infinite and coinfinite then (∀x ∈ ω)[

P
n∈Dx

1
2n 6= rC ]. Jockusch

[11] has defined an infinite and coinfinite set C ⊆ ω to be strongly non-c.e. if neither
the set {x ∈ ω :

P
n∈Dx

1
2n < rC} is c.e. nor the set {x ∈ ω :

P
n∈Dx

1
2n > rC} is c.e.

Jockusch [11] has established that every nonzero Turing degree contains a strongly
non-c.e. set.
Let p ∈ Am for some m ∈ ω, and let α = α(x0, . . . , xm−1) be a formula. We say

that p satisfies α in A if

A |= α(x0, . . . , xm−1)[p(0), . . . , p(m− 1)].
Proof. (2) We will construct a computable model B isomorphic to A0. Let the
domain B be ω. Let c be a nonzero ∆02 degree. We choose a strongly non-c.e. set
C ⊆ ω such that deg(C) = c. Let h : ω2 → {0, 1} be a computable function which
approximates C, that is,

(∀n ∈ ω)[C(n) = lim
s→∞h(n, s)].

Now we define the following computable binary tree

T = {h(0, s)ˆh(1, s)ˆ . . . ˆh(n, s) : n ≤ s ∧ s ∈ ω} ∪ {∅}.
For every s ∈ ω, T has exactly one maximal branch of length s+ 1 :

νs = h(0, s)ˆh(1, s)ˆ . . . ˆh(s, s).
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At every stage s of the construction, we define a finite isomorphism ps : {0, 1, ..., s}
→ A0. The function ps has the following properties (*):

(∀n ∈ ω)[(2n+ 2 ∈ ran(ps)⇒ 2n ∈ ran(ps)) ∧
(2n+ 1 ∈ ran(ps)⇒ 2n− 1 ∈ ran(ps))]

(∀n,m ∈ {0, 1, . . . , s− 1})[νn < νm ⇒ ps(n) ≺ ps(m)], and

(∀n ∈ {0, 1, . . . , s− 1})[(νn < νs ⇒ ps(n) ∈ R0) ∧ (νs <L νn ⇒ ps(n) ∈ R0)].
Construction
Stage 0. Let p0 =def {(0, a)}, where a is the least element in R0 if ν0 < ν1, and

the least element in R0 if ν1 <L ν0.
Stage s > 0. We have ps−1 : {0, 1, ..., s−1}→ A0, satisfying the above properties

(*), and a finite part Bs−1 of the atomic diagram of B, which involves constants
0, 1, ..., s− 1 and is determined by ps−1 and A0.
Let n < s− 1 be the least number (if it exists, otherwise let q =def ps−1) such

that νs <L νn < νs−1 or νs−1 <L νn < νs. We change ps−1 into the corresponding
q with the same domain as ps−1 such that (∀m < n)[q(m) = ps−1(m)], q preserves
Bs−1, and satisfies conditions (*). Let

ps = q ∪ {(s, a)},
where a is the least element in R0 − ran(q) if νs−1 < νs, and a the least element
in R0 − ran(q) if νs <L νs−1.
Let Bs be the set of all basic sentences with Gődel number ≤ s, involving con-

stants 0, 1, ..., s, which is satisfied by ps in A0. Note that Bs−1 ⊆ Bs. End of the
construction.
Let the atomic diagram of B be S

s≥0
Bs. Thus, B is a computable model. Fix

n ∈ ω. Let sn be the least number such that sn ≥ n and
(∀m ≤ n)(∀s ≥ sn)[h(m, s) = h(m, sn) = C(m)].

Hence

(∀s ≥ sn)[ps(n) = psn(n)].
We define

f(n) = psn(n).

f is a 1-1 function from B to A0.

Lemma 3.2. f is onto A0.

Proof. Assume inductively that 0, 1, . . . , j − 1 ∈ ran(f). We will prove that j ∈
ran(f). Let f(n

i) = i for i < j. Let n = max{n0, n1, . . . , nj−1} and let t0 = sn.
Hence for every s ≥ t0, νs extends C(0)ˆC(1)ˆ . . . ˆC(n).
Case: j ∈ R.
We claim that there exists s0 ≥ t0 such that (∀s > s0)[νs0 < νs]. Otherwise, we

can effectively enumerate an infinite sequence of stages t0 < t1 < t2 < . . . such
that for every i ∈ ω, νti+1 <L νti . Since h approximates C, we conclude that
(∀i ∈ ω)[C <L νti ]. Hence for every x ∈ ω,

(
X
n∈Dx

1

2n
> rC)⇔ (∃i ∈ ω)[χDx

≥ νti ].
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Thus, the set {x ∈ ω :
P

n∈Dx

1
2n > rC} is c.e., contradicting the fact that C is

strongly non-c.e.
We now choose the least stage s0 with the property described above. It follows

from the construction that j ∈ ran(ps0+1) and that
(∀s > s0 + 1)[p−1s (j) = p−1

s0+1
(j)].

Hence aj ∈ ran(f).
Case: aj ∈ R0.
As in the previous case, we prove that there exists s0 ≥ t0 such that (∀s ≥

s0)[νs <L νs0 ]. For the least such s0, it follows from the construction that

(∀s > s0 + 1)[p−1s (j) = p−1s0+1(j)].
Hence j ∈ ran(f).
Lemma 3.3. f−1(R0) ≡T C
Proof. Let X = f−1(R0). It follows by construction that

X = {n ∈ ω : νn < C}.
Hence

X ≤T C.
We now prove, by induction, that C ≤T X. To determine whether k ∈ C, we
assume that we can find σ using oracle X, where

σ = C(0)ˆC(1)ˆ . . . ˆC(k − 1).
Then

k ∈ C ⇔ (∃n ∈ X)[σˆ(1) ⊆ νn].

Equivalently,

k /∈ C ⇔ (∃n ∈ X)[σˆ(0) ⊆ νn].

Hird [10] has shown that there is a computable copy of A0 in which the initial
segment of type ω is h-simple. However, Jim Owings (unpublished) has observed
that every deficiency set of a non-computable c.e. set for a 1-1 computable enumer-
ation is the initial segment of type ω of some computable linear order isomorphic
to A0. That is because every such deficiency set is semirecursive, immune and
coimmune. Hence for every c.e. non-computable set C, there is a computable copy
of A0 in which the initial segment of type ω is h-simple and Turing equivalent
to C. This conclusion has also been obtained for simple initial segments by Ash,
Knight and Remmel in [3], as an example of their general result for the so-called
quasi-simple relations on computable models. These simple sets are automatically
h-simple because semirecursive immune sets are h-immune. On the other hand,
such sets cannot be hh-simple because no semirecursive set can be hh-immune (see
[11]). Hird [10] has also established that no interval of a computable linear order is
hh-immune.
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