TURING DEGREES OF CERTAIN ISOMORPHIC IMAGES OF COMPUTABLE RELATIONS

VALENTINA S. HARIZANOV
This paper is dedicated to Chris Ash, who invented α-systems.

Abstract

A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let \mathcal{A} be a computable model and let R be an extra relation on the domain of \mathcal{A}. That is, R is not named in the language of \mathcal{A}. We define $D g_{\mathcal{A}}(R)$ to be the set of Turing degrees of the images $f(R)$ under all isomorphisms f from \mathcal{A} to computable models. We investigate conditions on \mathcal{A} and R which are sufficient and necessary for $D g_{\mathcal{A}}(R)$ to contain every Turing degree. These conditions imply that if every Turing degree $\leq \mathbf{0}^{\prime \prime}$ can be realized in $D g_{\mathcal{A}}(R)$ via an isomorphism of the same Turing degree as its image of R, then $D g_{\mathcal{A}}(R)$ contains every Turing degree. We also discuss an example of \mathcal{A} and R whose $D g_{\mathcal{A}}(R)$ coincides with the Turing degrees which are $\leq \mathbf{0}^{\prime}$.

1. Introduction and notation

We consider only computable first-order languages and only countable models. Models are denoted by script letters, and their domains by the corresponding capital Latin letters. The isomorphism of models is denoted by \cong. Let \mathcal{A} be a model. $L(\mathcal{A})$ is the language of $\mathcal{A} . L(\mathcal{A})_{A}$ is the language $L(\mathcal{A}) \cup\{\mathbf{a}: a \in A\} . \mathcal{A}_{A}$ is the expansion of \mathcal{A} to the language $L(\mathcal{A})_{A}$ such that every a is interpreted by a. A basic sentence is an atomic sentence or the negation of an atomic sentence. The atomic diagram of \mathcal{A} is the set of all basic sentences of $L(\mathcal{A})_{A}$ which are true in \mathcal{A}_{A}. Let α be a computable ordinal. Ash [1] has defined computable Σ_{α} and Π_{α} formulas of $L_{\omega_{1} \omega}$, recursively and simultaneously, and together with their Gödel numbers (because the indexing of formulas in infinite disjunctions and conjunctions will be by their Gődel numbers). The computable Σ_{0} and Π_{0} formulas are the finitary quantifier-free formulas. The computable $\Sigma_{\alpha+1}\left(\Pi_{\alpha+1}\right.$, respectively) formulas are computably enumerable disjunctions (conjunctions, respectively) of $\exists \Pi_{\alpha}$ ($\forall \Sigma_{\alpha}$, respectively) formulas. If α is a limit ordinal, then the $\Pi_{\alpha}\left(\Sigma_{\alpha}\right.$, respectively) formulas are of the form $\bigvee_{n \in W} \theta_{n}\left(\bigwedge_{n \in W} \theta_{n}\right.$, respectively), where W is a computably enumerable set of natural numbers and there is a sequence $\left(\alpha_{n}\right)_{n \in W}$ of ordinals having limit α, given by the ordinal notation for α, such that θ_{n} is a $\Sigma_{\alpha_{n}}\left(\Sigma_{\alpha_{n}}\right.$, respectively $)$ formula. For a more precise definition of computable Σ_{α} and Π_{α} formulas see [1]. A sequence of variables displayed after a formula contains all free variables occurring in the formula.

A model \mathcal{A} is computable if its domain A is a computable set and the relations and functions of \mathcal{A} are uniformly computable. Equivalently, \mathcal{A} is a computable

[^0]model if A is computable and the atomic diagram of \mathcal{A} is computable. That is, A is computable and there is a computable enumeration $\left(a_{i}\right)_{i \in \omega}$ of A and an algorithm which determines for every quantifier-free formula $\theta\left(x_{i_{0}}, \ldots, x_{i_{n-1}}\right)$ in $L(\mathcal{A})$ and for every sequence $\left(a_{i_{0}}, \ldots, a_{i_{n-1}}\right) \in A^{n}$, whether $\mathcal{A}_{A} \vDash \theta\left(\mathbf{a}_{i_{0}}, \ldots, \mathbf{a}_{i_{n-1}}\right)$.

Let R be an additional relation on the domain of a computable model \mathcal{A}. That is, R is not named in $L(\mathcal{A})$. For simplicity, we assume that R is unary. (However, all definitions introduced and results established can be easily extended to relations of arbitrary arity.) For various computability-theoretic complexity classes \mathcal{P}, Ash and Nerode and others have investigated syntactic conditions on \mathcal{A} and R under which for every isomorphism f from \mathcal{A} onto a computable model $\mathcal{B}, f(R) \in \mathcal{P}$. Such relations R are called intrinsically \mathcal{P} on \mathcal{A}. For example, Ash and Nerode [5] have established that, under some extra decidability condition on \mathcal{A} (which involves R), R is intrinsically c.e. if and only if R is definable by a computable Σ_{1} formula with finitely many parameters. Barker [6] has extended this result to every computable ordinal $\alpha \geq 2$. He has established that, under certain extra decidability conditions on \mathcal{A}, R is intrinsically Σ_{α}^{0} on \mathcal{A} if and only if R is definable by a computable Σ_{α} formula with finitely many parameters. In the previous results, the extra decidability conditions are only needed to show that the corresponding syntactic conditions are necessary. We [8] have defined the (Turing) degree spectrum of R on \mathcal{A}, in symbols $D g_{\mathcal{A}}(R)$, to be the set of all Turing degrees of the images of R under all isomorphisms from \mathcal{A} onto computable models. For a computable model \mathcal{B} such that $\mathcal{B} \cong \mathcal{A}$, the (Turing) degree spectrum of R on \mathcal{A} with respect to \mathcal{B}, in symbols $D g_{\mathcal{A}, \mathcal{B}}(R)$, is the set of all Turing degrees of the images $f(R) \subseteq B$ under all isomorphisms f from \mathcal{A} to \mathcal{B}. In [8] we have studied uncountable degree spectra, and have established conditions which are sufficient for $D g_{\mathcal{A}}(R)$ to contain all Turing degrees. Here we prove that these conditions are necessary. For another, independent proof, see [2].

The computability-theoretic notation is standard and as in [12]. We review some of it. By D_{x} we denote the finite set of natural numbers whose canonical index is x. Thus, $D_{0}=\emptyset$. If φ is a partial function, then $\operatorname{dom}(\varphi)$ is the domain of φ, $r n g(\varphi)$ is the range of φ, and $\varphi(a) \downarrow$ denotes that $a \in \operatorname{dom}(\varphi)$. The concatenation of sequences is denoted by ${ }^{\wedge}$. We often identify a set X with its characteristic function χ_{X}. We fix $\langle\cdot, \cdot\rangle$ to be a computable bijection from ω^{2} onto ω. Let $X \subseteq \omega$. Then $\varphi_{0}^{X}, \varphi_{1}^{X}, \varphi_{2}^{X}, \ldots$ is a fixed effective enumeration of all unary X-computable functions. φ_{e}^{X} is also denoted by $\{e\}^{X}$. We write $\varphi_{e, s}^{X}(n)=m$ if $e, n, m<s$, only numbers $z<s$ are used in the computation, and $\varphi_{e}^{X}(n)=m$ in fewer than s steps. Let $p \in 2^{<\omega}$. We write $\varphi_{e, s}^{p}(n)=m$ if $\varphi_{e, s}^{X}(n)=m$ for some $X \supset p$ and only elements in $\operatorname{dom}(p)$ are used in the computation. Let $Y \subseteq \omega$. The join $X \oplus Y$ is $\{2 n: n \in X\} \cup\{2 n+1: n \in Y\}$. By $X \leq_{T} Y\left(X \equiv_{T} Y\right.$, respectively $)$ we denote that X is Turing reducible to Y (X is Turing equivalent to Y, respectively). $X<_{T} Y$ denotes that $X \leq_{T} Y$ but $Y \not \not_{T} X . \mathbf{x}=\operatorname{deg}(X)$ is the Turing degree of X. Hence $\mathbf{0}=\operatorname{deg}(\emptyset)$ and $\mathbf{x}^{(n)}=\operatorname{deg}\left(X^{(n)}\right)$, where $X^{(n)}$ is the n-th jump of X. A Turing degree is c.e. $\left(\Delta_{2}^{0}\right.$, respectively) if it contains a c.e. $\left(\Delta_{2}^{0}\right.$, respectively) set. The set of all Turing degrees is denoted by \mathcal{D}. A binary function $f: \omega^{2} \rightarrow \omega$ is called selective if for every $x, y \in \omega, f(x, y) \in\{x, y\} . X$ is a semirecursive set if there is a selective computable function such that if exactly one of x, y belongs to X, then $f(x, y)$ selects the element in X. An example of a semirecursive set is the deficiency set of a non-computable c.e. set for a 1-1 computable enumeration.

2. Realizing every Turing degree in a degree spectrum

Let \mathcal{A} be a computable model and let R be an extra relation on the domain A of \mathcal{A}. As mentioned before, we will assume, without loss of generality, that R is unary. Let a computable model \mathcal{B} be such that $\mathcal{A} \cong \mathcal{B}$. By $\mathcal{I}(\mathcal{A}, \mathcal{B})$ we denote the set of all isomorphisms from \mathcal{A} to \mathcal{B}. We say that a partial function p from A to B is a finite isomorphism from \mathcal{A} to \mathcal{B} if p is $1-1, \operatorname{dom}(p)$ is finite and for every atomic formula $\alpha=\alpha\left(x_{0}, \ldots, x_{n-1}\right)$ in $L(\mathcal{A})$, and every $a_{0}, \ldots, a_{n-1} \in \operatorname{dom}(p)$, we have

$$
\mathcal{A}_{A} \models \alpha\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n-1}\right) \Leftrightarrow \mathcal{B}_{B} \models \alpha\left(\mathbf{b}_{0}, \ldots, \mathbf{b}_{n-1}\right)
$$

where $b_{0}=\left(a_{0}\right), \ldots, b_{n-1}=p\left(a_{n-1}\right)$. By $\mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ we denote the set of all finite isomorphisms from \mathcal{A} to \mathcal{B}. In [8] we have defined the R-equivalence relation \sim_{R} on $\mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ as follows:

$$
q \sim_{R} r \Longleftrightarrow(\forall b \in \operatorname{ran}(q) \cap \operatorname{ran}(r))\left[q^{-1}(b) \in R \Leftrightarrow r^{-1}(b) \in R\right]
$$

Equivalently,

$$
q \sim_{R} r \Longleftrightarrow(\forall b \in \operatorname{ran}(q) \cap \operatorname{ran}(r))[b \in q(R) \Leftrightarrow b \in r(R)] .
$$

Since for every Turing degree \mathbf{x}, there are at most countably many Turing degrees which are $\leq \mathbf{x}$, and since every countable set of Turing degrees has an upper bound, a set of Turing degrees is uncountable if and only if it is unbounded.
Theorem 2.1. (Harizanov [8]) (i) The following are equivalent:
(0) $D g_{\mathcal{A}}(R)$ is uncountable.
(1) $D g_{\mathcal{A}, \mathcal{B}}(R)$ is uncountable.
(2) $D g_{\mathcal{A}, \mathcal{B}}(R)$ has cardinality 2^{ω}.
(3) There is a nonempty set $\mathbb{S} \subseteq \mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ such that the following two conditions are satisfied:
$(A)(\forall p \in \mathbb{S})(\forall a \in A)(\forall b \in B)(\exists q \in \mathbb{S})[q \supseteq p \wedge a \in \operatorname{dom}(q) \wedge b \in \operatorname{ran}(q)] ;$

$$
(B)(\forall p \in \mathbb{S})(\exists q, r \in \mathbb{S})\left[q \supseteq p \wedge r \supseteq p \wedge \neg\left(q \sim_{R} r\right)\right]
$$

(ii) Let \mathbb{S} be as in (3). Then for every set $C \geq_{T} \mathbb{S}$, there is an isomorphism f from \mathcal{A} to \mathcal{B} such that

$$
C \equiv_{T} f(R) \oplus \mathbb{S} \equiv_{T} f \oplus \mathbb{S}
$$

In particular, if \mathbb{S} is computable (or c.e.), then $D g_{\mathcal{A}, \mathcal{B}}(R)=\mathcal{D}$ and, moreover, for every set $C \subseteq \omega$, there is an isomorphism from \mathcal{A} to \mathcal{B} such that

$$
C \equiv_{T} f(R) \equiv_{T} f
$$

In [8], we have also given examples of uncountable degree spectra $D g_{\mathcal{A}, \mathcal{B}}(R)$ such that $D g_{\mathcal{A}, \mathcal{B}}(R) \neq \mathcal{D}$. Now we further investigate degree spectra which coincide with \mathcal{D}. The following example motivates the theorem that follows it.

Clearly, $\mathcal{Q}=(Q, \leq)$, where Q is the set of all rational numbers, is a computable model. $X \subseteq Q$ is an initial segment of \mathcal{Q} if

$$
\forall a, b \in Q[(a \in X \wedge b \leq a) \Rightarrow b \in X]
$$

Example 2.1. Every Turing degree contains an initial segment of \mathcal{Q}. That is, if $R=\{q \in Q: q<\sqrt{2}\}$, then $D g_{\mathcal{Q}, \mathcal{Q}}(R)=\mathcal{D}$.

Proof. Let C be an arbitrary infinite coinfinite set of natural numbers. We will show that there is an initial segment X of \mathcal{Q} of the same Turing degree as C. We define a real number r_{C} by

$$
r_{C}=\sum_{n \in C} \frac{1}{2^{n}}
$$

Let X be the initial segment of \mathcal{Q} determined by r_{C}. That is, $X=\left\{q \in Q: q<r_{C}\right\}$.
First, let us prove that $C \leq_{T} X$. By transfinite induction on k, we will show that we can X-computably determine whether $k \in C$. Assume that we can determine, computably in $X, C \cap\{0, \ldots, k-1\}$. Then we can find, computably in X, $\sum_{n \in C \cap\{0, \ldots, k-1\}} \frac{1}{2^{n}}$. If $k \in C$, then, since C is infinite, $\left(\sum_{n \in C \cap\{0, \ldots, k-1\}} \frac{1}{2^{n}}\right)+\frac{1}{2^{k}}<r_{C}$. Conversely, if $\left(\sum_{n \in C \cap\{0, \ldots, k-1\}} \frac{1}{2^{n}}\right)+\frac{1}{2^{k}}<r_{C}$, then, since C is coinfinite and $\frac{1}{2^{k}}=$ $\frac{1}{2^{k+1}}+\frac{1}{2^{k+2}}+\ldots$, we conclude that $k \in C$. Hence

$$
k \in C \Leftrightarrow\left(\sum_{n \in C \cap\{0, \ldots, k-1\}} \frac{1}{2^{n}}\right)+\frac{1}{2^{k}} \in X
$$

Thus, we can determine, computably in X, whether $k \in C$.
Now, let us prove that $X \leq_{T} C$. We will establish the following equivalence

$$
q \in X \Leftrightarrow \exists n_{0}\left[\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}} \geq q\right]
$$

The implication \Leftarrow is clear. Conversely, if $\forall n_{0}\left[\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}}<q\right]$, then $r_{C} \leq q$, so $q \notin X$.

If $q>r_{C}$, then $\exists n_{0}\left[q-r_{C}>\frac{1}{2^{n_{0}}}\right]$, hence $\left[q-\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}}\right]>\frac{1}{2^{n_{0}}}$. Conversely, if $\left[q-\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}}\right]>\frac{1}{2^{n_{0}}}$, then, since C is coinfinite, we conclude that $q-r_{C}>$ 0 . Therefore, for $q \neq r_{C}$,

$$
q \notin X \Leftrightarrow \exists n_{0}\left[q-\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}}>\frac{1}{2^{n_{0}}}\right] .
$$

Hence, to decide for a given $q \in Q$, computably in C, whether $q \in X$, we search for n_{0} such that either

$$
\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}} \geq q
$$

or

$$
\left[q-\sum_{n \in C \cap\left\{0, \ldots, n_{0}\right\}} \frac{1}{2^{n}}\right]>\frac{1}{2^{n_{0}}}
$$

Theorem 2.2. The following are equivalent:
(1) $D g_{\mathcal{A}, \mathcal{B}}(R)=\mathcal{D}$ and, moreover, for every set $C \subseteq \omega$, there is an isomorphism f
from \mathcal{A} to \mathcal{B} such that $C \equiv{ }_{T} f(R) \equiv_{T} f$.
(2) There is $e \in \omega$ and $p \in 2^{<\omega}$ such that the set

$$
\mathbb{S}_{e, p}={ }_{d e f}\left\{\varphi_{e}^{q}: q \in 2^{<\omega} \wedge q \supseteq p\right\}
$$

has the following properties:

$$
\mathbb{S}_{e, p} \subseteq \mathcal{I}_{f i n}(\mathcal{A}, \mathcal{B})
$$

(A) from Theorem 2.1 is satisfied for $\mathbb{S}=\mathbb{S}_{e, p}$, and

$$
(\exists i \in \omega)(\forall q \supseteq p)(\forall a \in \operatorname{dom}(q))\left[\varphi_{i}^{\varphi_{e}^{q}(R)}(a) \downarrow=q(a)\right] .
$$

(3) There is a nonempty computable (or c.e.) set $\mathbb{S} \subseteq \mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ such that the conditions (A) and (B) from Theorem 2.1 are satisfied.

Proof. $\neg(2) \Rightarrow \neg(1)$ Assume the negation of (2). That is, for every $\langle e, i\rangle$ and every $p \in 2^{<\omega}$, there is $q \in 2^{<\omega}$ such that $q \supseteq p$ and
(i) $\varphi_{e}^{q} \notin \mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ or
(ii) $(\exists a \in A)(\forall r \supseteq q)\left[a \notin \operatorname{dom}\left(\varphi_{e}^{r}\right)\right]$ or
(iii) $(\exists b \in B)(\forall r \supseteq q)\left[b \notin \operatorname{ran}\left(\varphi_{e}^{r}\right)\right]$ or
(iv) $(\exists a \in \operatorname{dom}(q))\left[\varphi_{i}^{\varphi_{e}^{q}(R)}(a) \downarrow \neq q(a)\right]$.

We will now use a finite extension argument to construct the characteristic function of a set $C \subseteq \omega$ which satisfies the following requirement for every $\langle e, i\rangle$:

$$
R_{\langle e, i\rangle}: \varphi_{e}^{C} \in \mathcal{I}(\mathcal{A}, \mathcal{B}) \Rightarrow \varphi_{i}^{\varphi_{e}^{C}(R)} \neq C
$$

Construction

Let $p_{-1}={ }_{\text {def }} \emptyset$.
Stage s. Let $s=\langle e, i\rangle$. We have already constructed $p_{s-1} \in 2^{<\omega}$. Let q be the least binary sequence such that $q \supseteq p_{s-1}$ and one of the conditions $(i)-(i v)$ is satisfied. Let $p_{s}=\operatorname{def} q$. End of construction.

Let $C \subseteq \omega$ be such that $\chi_{C}=\bigcup_{s \geq-1} p_{s}$. Hence, for $f \in \mathcal{I}(\mathcal{A}, \mathcal{B})$, if $f \leq_{T} C$, that is, if $f=\varphi_{e}^{C}$ for some $e \in \omega$, then $\neg\left(C \leq_{T} f(R)\right)$. Let $\mathbf{c}=\operatorname{deg}(C)$. Thus, \mathbf{c} can not be realized in $D g_{\mathcal{A}, \mathcal{B}}(R)$ via an isomorphism of degree \mathbf{c}.
$(2) \Rightarrow(3)$ Fix the corresponding e and p. By assumption, $\mathbb{S}_{e, p} \subseteq \mathcal{I}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ and (A) is satisfied for $\mathbb{S}=\mathbb{S}_{e, p}$. Let us show that (B) is also satisfied for $\mathbb{S}=\mathbb{S}_{e, p}$. Fix the corresponding $i \in \omega$. Let $p_{1} \in 2^{<\omega}$ be such that $p_{1} \supseteq p$. Now, choose binary sequences q and r such that $q \supseteq p_{1}, r \supseteq p_{1}$, and

$$
(\exists a \in \operatorname{dom}(q) \cap \operatorname{dom}(r))[q(a) \neq r(a)] .
$$

Then

$$
\varphi_{i}^{\varphi_{e}^{q}(R)}(a) \downarrow \neq \varphi_{i}^{\varphi_{e}^{r}(R)}(a) \downarrow .
$$

Hence

$$
\exists b\left[b \in \varphi_{e}^{q}(R) \Leftrightarrow b \notin \varphi_{e}^{r}(R)\right]
$$

Thus, $\neg\left(\varphi_{k}^{q} \sim_{R} \varphi_{k}^{r}\right)$.
$(3) \Rightarrow(1)$ This is already proven in [8] (see (ii) of Theorem 2.1).

The equivalence of (1) and (3) in Theorem 2.2 has also been established independently by Ash, Cholak and Knight in [2]. Their proof uses the forcing method.

Remark 2.1. In the proof of $\neg(2) \Rightarrow \neg(1)$ for Theorem 2.2, the construction of C can be done computably in $\emptyset^{\prime \prime}$. Hence $C \in \Delta_{3}^{0}$. Thus, if not every Turing degree is obtained in a degree spectrum $D g_{\mathcal{A}, \mathcal{B}}(R)$ via an isomorphism of the same Turing degree, then there is such a Δ_{3}^{0} degree. This conclusion also follows from the proof in [2] since there is a generic Δ_{3}^{0} set.

3. Realizing Δ_{2}^{0} Degrees in a degree spectrum

In [9] we have given a general condition for \mathcal{A} and R which is sufficient for every c.e. degree to be realized in $D g_{\mathcal{A}}(R)$ via a c.e. set of the same Turing degree as the corresponding isomorphism. This condition is satisfied by the following model \mathcal{A}_{0} and relation R_{0}.

Let $\mathcal{A}_{0}=(\omega, \prec)$ be the following computable linear order of order type $\omega+\omega^{*}$:

$$
0 \prec 2 \prec 4 \prec \ldots \prec 5 \prec 3 \prec 1 .
$$

A computable relation R_{0} is the initial segment of type ω; that is, $R_{0}=2 \omega$.
Hence every c.e. degree can be realized in $D g_{\mathcal{A}_{0}}\left(R_{0}\right)$ via a c.e. set of the same Turing degree as the corresponding isomorphism. It is easy to see that R_{0} is intrinsically Δ_{2}^{0} on \mathcal{A}, because it satisfies the syntactic condition in [6]. Namely,

$$
\begin{aligned}
x & \in R_{0} \Leftrightarrow \bigvee_{n \in \omega} \exists x_{0} \ldots \exists x_{n}\left[x_{0} \prec x_{1} \prec \ldots \prec x_{n} \wedge x=x_{n} \wedge\right. \\
\forall y[\neg(y & \left.\left.\prec \quad x_{0}\right) \wedge \neg\left(x_{0} \prec y \prec x_{1}\right) \wedge \ldots \wedge \neg\left(x_{n-1} \prec y \prec x_{n}\right)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& x \notin \quad R_{0} \Leftrightarrow \bigvee_{n \in \omega} \exists x_{0} \ldots \exists x_{n}\left[x_{0} \succ x_{1} \succ \ldots \succ x_{n} \wedge x=x_{n} \wedge\right. \\
& \forall y\left[\neg\left(y \quad \succ \quad x_{0}\right) \wedge \neg\left(x_{0} \succ y \succ x_{1}\right) \wedge \ldots \wedge \neg\left(x_{n-1} \succ y \succ x_{n}\right)\right] .
\end{aligned}
$$

Ash, Cholak and Knight [2] have extended the sufficient condition in [9] to the α-th level in Ershov's classification of Δ_{2}^{0} degrees, where α is any fixed computable ordinal. A Turing degree is α-c.e. if it contains an α-c.e. set. A set $C \subseteq \omega$ is α-c.e. if there is a computable function $f: \omega^{2} \rightarrow\{0,1\}$ and a computable function o : $\omega^{2} \rightarrow\{\beta: \beta$ is an ordinal $\wedge \beta \leq \alpha\}$ with the following properties:

$$
\begin{gathered}
(\forall x)\left[\lim _{s \rightarrow \infty} f(x, s)=C(x) \wedge f(x, 0)=0\right], \\
(\forall x)(\forall s)[o(x, s+1) \leq o(x, s) \wedge o(x, 0)=\alpha], \text { and } \\
(\forall x)(\forall s)[f(x, s+1) \neq f(x, s) \Rightarrow o(x, s+1)<o(x, s)]
\end{gathered}
$$

In particular, 1-c.e. sets are c.e. sets, and 2-c.e. sets are d-c.e. sets. For other equivalent definitions of α-c.e. sets, see [7] and [4]. Epstein, Haas and Kramer [7] have shown that some levels in Ershov's hierarchy are notation-dependent, and that for every Δ_{2}^{0} set X, there is an ordinal notation in which X is ω^{2} - c.e. Ash and Knight [4] have given a syntactic condition which is, under appropriate decidability conditions, sufficient and necessary for R to be intrinsically α-c.e. on \mathcal{A}. As a corollary, they have shown that for every computable ordinal α, R_{0} is not intrinsically
α-c.e. on \mathcal{A}_{0}. This result also follows from the following proposition because for a fixed ordinal notation, the α-c.e. degrees form a proper hierarchy (see Theorem 9 in [7]).

Proposition 3.1. $D g_{\mathcal{A}_{0}}\left(R_{0}\right)$ consists of all Δ_{2}^{0} degrees.
Proof. (1) Jockusch (Theorem 5.2 in [11]), has established that every nonzero Turing degree computable in $\mathbf{0}^{\prime}$ contains a semirecursive set which is both immune and coimmune. However, a set of natural numbers is semirecursive if and only if it is an initial segment of a computable linear ordering on ω (see Theorem 4.1 in [11]). Let \mathbf{c} be an arbitrary nonzero Δ_{2}^{0} degree. Hence there is a computable linear ordering $\mathcal{B}=\left(\omega, \prec_{\mathcal{B}}\right)$ and an initial segment X on \mathcal{B} such that $\operatorname{deg}(X)=\mathbf{c}$ and X is immune and coimmune. Since X is immune, no element of X can have infinitely many predecessors. Similarly, no element of $\omega-X$ can have infinitely many successors. Thus, the order type of \mathcal{B} is $\omega+\omega^{*}$, and X is the ω-part of \mathcal{B}. In other words, there is an isomorphism f from \mathcal{A}_{0} to \mathcal{B} such that $f\left(R_{0}\right)=X$. Therefore, we conclude that $D g S p_{\mathcal{A}_{0}}\left(R_{0}\right)$ is the set of all Δ_{2}^{0} degrees.

We will also give a direct proof by constructing a computable model \mathcal{B} isomorphic to \mathcal{A}_{0} and a corresponding isomorphism. In the proof, we will consider binary trees. Such trees can be viewed as growing downward from the top node \emptyset. Let $\nu, \mu \in 2^{<\omega}$. As usual, we say that ν is to the left of μ, in symbols $\nu<_{L} \mu$, if

$$
\exists \gamma \in 2^{<\omega}\left[\gamma^{\wedge} 0 \subseteq \nu \wedge \gamma^{\wedge} 1 \subseteq \mu\right]
$$

We have the following partial ordering on $2^{<\omega}$:

$$
\nu<\mu \Leftrightarrow_{\text {def }}\left(\nu<_{L} \mu \vee \nu \subsetneq \mu\right)
$$

Let $C \subseteq \omega$. We write $\nu<_{L} C$ if for $\gamma=C(0)^{\wedge} C(1)^{\wedge} \ldots{ }^{\wedge} C(\operatorname{lh}(\nu)-1)$, we have $\nu<_{L} \gamma$. We similarly define $C<_{L} \nu$ and $\nu<C$. Let r_{C} be defined as in Example 2.1. Notice that if C is infinite and coinfinite then $(\forall x \in \omega)\left[\sum_{n \in D_{x}} \frac{1}{2^{n}} \neq r_{C}\right]$. Jockusch
[11] has defined an infinite and coinfinite set $C \subseteq \omega$ to be strongly non-c.e. if neither the set $\left\{x \in \omega: \sum_{n \in D_{x}} \frac{1}{2^{n}}<r_{C}\right\}$ is c.e. nor the set $\left\{x \in \omega: \sum_{n \in D_{x}} \frac{1}{2^{n}}>r_{C}\right\}$ is c.e. Jockusch [11] has established that every nonzero Turing degree contains a strongly non-c.e. set.

Let $p \in A^{m}$ for some $m \in \omega$, and let $\alpha=\alpha\left(x_{0}, \ldots, x_{m-1}\right)$ be a formula. We say that p satisfies α in \mathcal{A} if

$$
\mathcal{A}=\alpha\left(x_{0}, \ldots, x_{m-1}\right)[p(0), \ldots, p(m-1)]
$$

Proof. (2) We will construct a computable model \mathcal{B} isomorphic to \mathcal{A}_{0}. Let the domain B be ω. Let \mathbf{c} be a nonzero Δ_{2}^{0} degree. We choose a strongly non-c.e. set $C \subseteq \omega$ such that $\operatorname{deg}(C)=\mathbf{c}$. Let $h: \omega^{2} \rightarrow\{0,1\}$ be a computable function which approximates C, that is,

$$
(\forall n \in \omega)\left[C(n)=\lim _{s \rightarrow \infty} h(n, s)\right]
$$

Now we define the following computable binary tree

$$
T=\left\{h(0, s)^{\wedge} h(1, s)^{\wedge} \ldots^{\wedge} h(n, s): n \leq s \wedge s \in \omega\right\} \cup\{\emptyset\} .
$$

For every $s \in \omega, T$ has exactly one maximal branch of length $s+1$:

$$
\nu_{s}=h(0, s)^{\wedge} h(1, s)^{\wedge} \ldots \wedge h(s, s) .
$$

At every stage s of the construction, we define a finite isomorphism $p_{s}:\{0,1, \ldots, s\}$
$\rightarrow A_{0}$. The function p_{s} has the following properties $\left({ }^{*}\right):$

$$
\begin{gathered}
(\forall n \in \omega)\left[\left(2 n+2 \in \operatorname{ran}\left(p_{s}\right) \Rightarrow 2 n \in \operatorname{ran}\left(p_{s}\right)\right) \wedge\right. \\
\left.\left(2 n+1 \in \operatorname{ran}\left(p_{s}\right) \Rightarrow 2 n-1 \in \operatorname{ran}\left(p_{s}\right)\right)\right]
\end{gathered}
$$

$$
(\forall n, m \in\{0,1, \ldots, s-1\})\left[\nu_{n}<\nu_{m} \Rightarrow p_{s}(n) \prec p_{s}(m)\right], \text { and }
$$

$$
(\forall n \in\{0,1, \ldots, s-1\})\left[\left(\nu_{n}<\nu_{s} \Rightarrow p_{s}(n) \in R_{0}\right) \wedge\left(\nu_{s}<_{L} \nu_{n} \Rightarrow p_{s}(n) \in \bar{R}_{0}\right)\right]
$$

Construction
Stage 0. Let $p_{0}=_{\text {def }}\{(0, a)\}$, where a is the least element in R_{0} if $\nu_{0}<\nu_{1}$, and the least element in \bar{R}_{0} if $\nu_{1}<_{L} \nu_{0}$.

Stage $s>0$. We have $p_{s-1}:\{0,1, \ldots, s-1\} \rightarrow A_{0}$, satisfying the above properties $\left(^{*}\right)$, and a finite part \mathcal{B}_{s-1} of the atomic diagram of \mathcal{B}, which involves constants $0,1, \ldots, s-1$ and is determined by p_{s-1} and \mathcal{A}_{0}.

Let $n<s-1$ be the least number (if it exists, otherwise let $q={ }_{\text {def }} p_{s-1}$) such that $\nu_{s}<_{L} \nu_{n}<\nu_{s-1}$ or $\nu_{s-1}<_{L} \nu_{n}<\nu_{s}$. We change p_{s-1} into the corresponding q with the same domain as p_{s-1} such that $(\forall m<n)\left[q(m)=p_{s-1}(m)\right], q$ preserves \mathcal{B}_{s-1}, and satisfies conditions (*). Let

$$
p_{s}=q \cup\{(s, a)\}
$$

where a is the least element in $R_{0}-\operatorname{ran}(q)$ if $\nu_{s-1}<\nu_{s}$, and a the least element in $\bar{R}_{0}-\operatorname{ran}(q)$ if $\nu_{s}<_{L} \nu_{s-1}$.

Let \mathcal{B}_{s} be the set of all basic sentences with Gödel number $\leq s$, involving constants $0,1, \ldots, s$, which is satisfied by p_{s} in \mathcal{A}_{0}. Note that $\mathcal{B}_{s-1} \subseteq \mathcal{B}_{s}$. End of the construction.

Let the atomic diagram of \mathcal{B} be $\bigcup_{s \geq 0} \mathcal{B}_{s}$. Thus, \mathcal{B} is a computable model. Fix $n \in \omega$. Let s_{n} be the least number such that $s_{n} \geq n$ and

$$
(\forall m \leq n)\left(\forall s \geq s_{n}\right)\left[h(m, s)=h\left(m, s_{n}\right)=C(m)\right]
$$

Hence

$$
\left(\forall s \geq s_{n}\right)\left[p_{s}(n)=p_{s_{n}}(n)\right]
$$

We define

$$
f(n)=p_{s_{n}}(n)
$$

f is a 1-1 function from B to A_{0}.
Lemma 3.2. f is onto A_{0}.
Proof. Assume inductively that $0,1, \ldots, j-1 \in \operatorname{ran}(f)$. We will prove that $j \in$ $\operatorname{ran}(f)$. Let $f\left(n_{i}\right)=i$ for $i<j$. Let $n=\max \left\{n_{0}, n_{1}, \ldots, n_{j-1}\right\}$ and let $t_{0}=s_{n}$. Hence for every $s \geq t_{0}, \nu_{s}$ extends $C(0)^{\wedge} C(1)^{\wedge} \ldots{ }^{\wedge} C(n)$.

Case: $j \in R$.
We claim that there exists $s^{\prime} \geq t_{0}$ such that $\left(\forall s>s^{\prime}\right)\left[\nu_{s^{\prime}}<\nu_{s}\right]$. Otherwise, we can effectively enumerate an infinite sequence of stages $t_{0}<t_{1}<t_{2}<\ldots$ such that for every $i \in \omega, \nu_{t_{i+1}}<_{L} \nu_{t_{i}}$. Since h approximates C, we conclude that $(\forall i \in \omega)\left[C<_{L} \nu_{t_{i}}\right]$. Hence for every $x \in \omega$,

$$
\left(\sum_{n \in D_{x}} \frac{1}{2^{n}}>r_{C}\right) \Leftrightarrow(\exists i \in \omega)\left[\chi_{D_{x}} \geq \nu_{t_{i}}\right]
$$

Thus, the set $\left\{x \in \omega: \sum_{n \in D_{x}} \frac{1}{2^{n}}>r_{C}\right\}$ is c.e., contradicting the fact that C is strongly non-c.e.

We now choose the least stage s^{\prime} with the property described above. It follows from the construction that $j \in \operatorname{ran}\left(p_{s^{\prime}+1}\right)$ and that

$$
\left(\forall s>s^{\prime}+1\right)\left[p_{s}^{-1}(j)=p_{s^{\prime}+1}^{-1}(j)\right] .
$$

Hence $a_{j} \in \operatorname{ran}(f)$.
Case: $a_{j} \in \bar{R}_{0}$.
As in the previous case, we prove that there exists $s^{\prime} \geq t_{0}$ such that ($\forall s \geq$ $\left.s^{\prime}\right)\left[\nu_{s}<_{L} \nu_{s^{\prime}}\right]$. For the least such s^{\prime}, it follows from the construction that

$$
\left(\forall s>s^{\prime}+1\right)\left[p_{s}^{-1}(j)=p_{s^{\prime}+1}^{-1}(j)\right] .
$$

Hence $j \in \operatorname{ran}(f)$.
Lemma 3.3. $f^{-1}\left(R_{0}\right) \equiv_{T} C$
Proof. Let $X=f^{-1}\left(R_{0}\right)$. It follows by construction that

$$
X=\left\{n \in \omega: \nu_{n}<C\right\}
$$

Hence

$$
X \leq_{T} C
$$

We now prove, by induction, that $C \leq_{T} X$. To determine whether $k \in C$, we assume that we can find σ using oracle X, where

$$
\sigma=C(0)^{\wedge} C(1)^{\wedge} \ldots \wedge C(k-1)
$$

Then

$$
k \in C \Leftrightarrow(\exists n \in X)\left[\sigma^{\wedge}(1) \subseteq \nu_{n}\right] .
$$

Equivalently,

$$
k \notin C \Leftrightarrow(\exists n \in \bar{X})\left[\sigma^{\wedge}(0) \subseteq \nu_{n}\right] .
$$

Hird [10] has shown that there is a computable copy of \mathcal{A}_{0} in which the initial segment of type ω is h-simple. However, Jim Owings (unpublished) has observed that every deficiency set of a non-computable c.e. set for a 1-1 computable enumeration is the initial segment of type ω of some computable linear order isomorphic to \mathcal{A}_{0}. That is because every such deficiency set is semirecursive, immune and coimmune. Hence for every c.e. non-computable set C, there is a computable copy of \mathcal{A}_{0} in which the initial segment of type ω is h-simple and Turing equivalent to C. This conclusion has also been obtained for simple initial segments by Ash, Knight and Remmel in [3], as an example of their general result for the so-called quasi-simple relations on computable models. These simple sets are automatically h-simple because semirecursive immune sets are h-immune. On the other hand, such sets cannot be $h h$-simple because no semirecursive set can be $h h$-immune (see [11]). Hird [10] has also established that no interval of a computable linear order is $h h$-immune.

References

[1] C. J. Ash, Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees, Transactions of the American Mathematical Society 298 (1996), 497-514.
[2] C. J. Ash, P. Cholak and J. F. Knight, Permitting, forcing, and copies of a given recursive relation, to appear in Annals of Pure and Applied Logic.
[3] C. J. Ash, J. F. Knight and J. B. Remmel, Quasi-simple relations in copies of a given recursive structure, to appear in Annals of Pure and Applied Logic.
[4] C. J. Ash and J. F. Knight, Recursive structures and Ershov's hierarchy, Logic Paper No. 82 (1995), Monash University.
[5] C. J. Ash and A. Nerode, Intrinsically recursive relations, in: J. N. Crossley, editor, Aspects of Effective Algebra (U.D.A. Book Co., Steel's Creek, Australia, 1981), 26-41.
[6] E. Barker, Intrinsically Σ_{α}^{0} relations, Annals of Pure and Applied Logic 39 (1988), 105-130.
[7] R. L. Epstein, R. Haas and R. L. Kramer, Hierarchies of sets and degrees below $\mathbf{0}^{\prime}$, in: J. H. Schmerl, M. Lerman and R. I. Soare, editors, Logic Year 1979-1980: University of Connecticut (Lecture Notes in Mathematics 859, Springer-Verlag, Berlin-Heidelberg-New York, 1987), 3248.
[8] V. S. Harizanov, Uncountable degree spectra, Annals of Pure and Applied Logic 54 (1991), 255-263.
[9] V. S. Harizanov, Some effects of Ash-Nerode and other decidability conditions on degree spectra, Annals of Pure and Applied Logic 55 (1991), 51-65.
[10] G. Hird, Recursive properties of intervals of recursive linear orders, in: J. N. Crossley, J. B. Remmel, R. A. Shore, and M. E. Sweedler, editors, Logical Methods (Birkhāuser Boston, 1993), 422-437.
[11] C. G. Jockusch, Jr., Semirecursive sets and positive reducibility, Transactions of the American Mathematical Society 131 (1968), 420-536.
[12] R. I. Soare, Recursively Enumerable Sets and Degrees (Springer-Verlag, Berlin, 1987).
Department of Mathematics, The George Washington University, Washington, D. C. 20052

E-mail address: val@@math.gwu.edu

[^0]: This paper has been supported by the George Washington University Facilitating Fund. I thank Doug Cenzer for very useful discussions.

