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Abstract

We consider embeddings of structures which preserve spectra: if g :
M→ S with S computable, then M should have the same Turing degree
spectrum (as a structure) that g(M) has (as a relation on S). We show
that the computable dense linear order L is universal for all countable
linear orders under this notion of embedding, and we establish a similar
result for the computable random graph G. Such structures are said to be
spectrally universal. We use our results to answer a question of Goncharov,
and also to characterize the possible spectra of structures as precisely the
spectra of unary relations on G. Finally, we consider the extent to which
all spectra of unary relations on the structure L may be realized by such
embeddings, offering partial results and building the first known example
of a structure whose spectrum contains precisely those degrees c with
c′ ≥T 0′′.

1 Introduction

In model theory, a model S of a theory T is said to be universal for T if every
model M of T of cardinality ≤ |S| embeds into S. Common examples are
the countable dense linear order without end points (for the theory of linear
orders) and the countable atomless Boolean algebra (for the theory of Boolean
algebras).

From the standpoint of computability theory, we wish to define a more re-
strictive notion of universality, requiring not just the existence of embeddings
g from each M into S, but also that these embeddings preserve computability-
theoretic properties of the structures. In particular, we are interested in the
spectrum of the structure M, and the degree spectrum of its image g(M) as a
subset of S.
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The Turing degree of a countable structure M with domain ω is the Turing
degree of its atomic diagram. If the language is finite, this is the join of the
degrees of the different functions fM and relations RM, where f and R range
over all function and relation symbols in the language of M. (We will assume
in this paper that the language is finite, unless otherwise stated.) By definition,
the spectrum of (the isomorphism type of) M is the set of all Turing degrees of
isomorphic copies of M:

Spec(M) = {deg(N ) : N ∼= M}.

Intuitively, this measures the intrinsic difficulty of computing a copy of M: each
degree d in Spec(M) is smart enough to build a structure isomorphic to M.
Conversely, for d to lie in Spec(M), M must be complicated enough to allow
some way of coding d into a copy of M. As seen in Theorem 1.4 below, the
requirement of being “smart enough” is usually the difficult one when we ask
whether d lies in Spec(M); coding is possible in all but certain trivial cases.

On the other hand, the degree spectrum of a relation R on a computable
structure A is defined as:

DgSpA(R) = {deg(S) : (∃B ≤T ∅)(B, S) ∼= (A, R)}.

(By convention, for relations one speaks of the “degree spectrum” rather than
the “spectrum.” There seems to be no good reason for this distinction in ter-
minology, but we will not attempt here to unify the terms.) The symbol R
generally is not in the language of the structure A; indeed, if it were, then
DgSpA(R) would contain only 0.

Again, the intuition we wish to capture by defining the degree spectrum of
R is the question of how complicated we can make the relation R. Of course, if
the definition allowed B to be any isomorphic copy of A, then we would have
much more freedom to increase the complexity of the image S of R under the
isomorphism from A to B. Restricting the definition to computable structures
B is our way of ruling out such tricks: for a degree d to lie in DgSpA(R), we
must be able to make the image of R have degree d while keeping the underlying
structure computable.

Our goal in considering the notion of universality is to preserve and relate
these two notions of the spectrum:

Definition 1.1 We say that a computable model S of a theory T is spectrally
universal if for every countable nontrivial model M of T , there exists an em-
bedding g : M→ S such that

DgSpS(g(M)) = Spec(M).

(Trivial models are defined on p. 4 below, where we will see the reasons for
excluding them.) Thus, the embeddings we seek must preserve the spectrum of
each M, mapping it into S in such a way that its image has precisely the same
complexity (as measured by our notions of spectra) as the original structure M.
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In this paper we prove that the computable dense linear order L (without
end points) is spectrally universal for the theory of linear orders, and that the
computable random graph G is spectrally universal for the theory of (symmetric
irreflexive) graphs. We will build specific computable copies L and G of these
structures to help simplify our proofs, but by computable categoricity (as de-
scribed below), every computable copy of L and G will be spectrally universal
for the respective theory.

The two models L and G actually satisfy a stronger version of spectral uni-
versality, in that for each of them one can give a computable function f with
the following property: if M = (ω, ΦC

e ) is a model of the relevant theory with
deg(M) = deg(C), then the oracle function ΦC

f(e) serves as the embedding g

described above. (Since each of the two relevant languages contains a single
binary relation symbol, the oracle and one index e are all that is required to de-
scribe M.) This is a uniform version of spectral universality, in that aside from
an M-oracle and the indices for the functions and relations of M, we need no
special information about M. Indeed, for every A = (ω, ΦD

i ) isomorphic to M,
with D ≡T A, we will have (S,ΦC

f(e)(M)) ∼= (S,ΦD
f(i)(A)) and ΦD

f(i)(A) ≡T A.
These two properties together are essentially all that is needed to prove spec-
tral universality of S. It remains an open question whether there are spectrally
universal structures for which this uniform version fails.

The following lemma is immediate from Definition 1.1.

Lemma 1.2 If S is spectrally universal for a theory T , then for every model
M of T , there is a unary relation R on S such that DgSpS(R) = Spec(M).

Thus, a spectrally universal model S of T can use results about the possible
spectra of models of T to help classify the possible degree spectra of relations
on S, or vice versa. Indeed, the genesis of this paper was a question asked by
Goncharov:

Question 1.3 (Goncharov) Does there exist a relation R on a computable
linear order A such that

DgSpA(R) ∩∆0
2 = {d ≤T 0′ : d 6= 0}?

In Corollary 2.3, we give a positive answer, using the construction in [17] of a
linear order whose spectrum has the desired property.

We note that ordinarily the spectra of structures and the degree spectra
of relations need not be related in such ways. Degree spectra can easily have
upper bounds under Turing reducibility; for instance, if R is Σ0

n-definable in
A, then clearly every degree in DgSpA(R) will be Σ0

n, and similarly for Π0
n-

definable relations. In fact, Downey had already proven the existence of a
computable linear order B and a relation R such that DgSpB(R) contained all
non-computable c.e. degrees but not 0. He applied Lemma 1.2 from [6] to the
linear order A built in [17], yielding a computable linear order B, and proved
that the degree spectrum of the adjacency relation on B contains precisely those
c.e. degrees which lie in Spec(A), that is, all c.e. degrees except 0. However, since
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the adjacency relation is Π0
1-definable, its degree spectrum clearly cannot contain

any degrees that are not c.e. Many results are known about the relationship
between definability of a relation and upper bounds on its degree spectrum; we
refer the reader to [9] for details.

In contrast, if the spectrum of a structure has an upper bound under Turing
reducibility, then that spectrum can only contain a single degree. For this result,
we remind the reader of the following theorem of Knight from [16].

Theorem 1.4 (Knight) In any computable language, let A be a structure
whose domain is an initial segment of ω. Then exactly one of the following
two statements holds:

• For any two Turing degrees c ≤T d, if c ∈ Spec(A), then also d ∈ Spec(A).
(That is, the spectrum of A is upward-closed under ≤T .)

• There exists a finite set {a1, . . . , an} in the domain of A such that every
permutation f of ω with f(ai) = ai for i ≤ n is an automorphism of A.

In computable model thory, structures satisfying the second of these state-
ments are called trivial ; they include all finite structures, of course, and also
some infinite structures, such as the complete graph on countably many vertices.
The following corollary of Theorem 1.4 is quickly seen.

Corollary 1.5 In a finite language, let A be a structure with domain ω. Then
A is trivial if and only if its spectrum is {0}.

The spectrum of a trivial structure always contains exactly one Turing degree,
but if the language is infinite, that degree can be noncomputable. In this paper
we use only finite languages, and so the exclusion of trivial structures in Defi-
nition 1.1 removes only one very simple possible spectrum from consideration.
For finite structures, every embedding preserves the spectrum, of course, but for
infinite trivial structures it can be difficult to preserve the spectrum, even when
it is possible for all nontrivial structures. Since we regard trivial structures as
anomalies anyway, we excluded them when defining spectral universality.

Proof of Corollary 1.5. The backwards implication is immediate from Theo-
rem 1.4. For the forwards implication, let A be trivial, and choose a set
S = {a1, . . . , an} from its domain to satisfy the definition of triviality. We
will show that A is computable.

If R1 is a unary relation symbol in the language, fix any x /∈ S. For each
y /∈ S, let gy be the permutation of ω which permutes x and y and fixes all
other points. Then we have

RA1 (y) ⇐⇒ RA1 (gy(x)) ⇐⇒ RA1 (x)

since gy must be an automorphism of A. Thus RA1 is computable. Similarly,
for a binary R2, we fix distinct x1, x2 /∈ S, and note that for every distinct pair
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y1, y2 /∈ S and every i ≤ n we have

RA2 (y1, y2) ⇐⇒ RA2 (x1, x2),

RA2 (y1, y1) ⇐⇒ RA2 (x1, x1),

RA2 (y1, ai) ⇐⇒ RA2 (x1, ai),

RA2 (ai, y2) ⇐⇒ RA2 (ai, x2),

by applying automorphisms which permute x1 with y1 and x2 with y2. (A
moment’s thought is required when x1 = y2 or x2 = y1, but the result still
holds.) So RA2 is computable, and it is clear how to extend this argument to
any k-ary relation.

If f is a unary function symbol, x /∈ S is fixed, and y /∈ S ∪ {x, fA(x)} is
arbitrary, let gy be as above. Then

fA(y) = fA(gy(x)) = gy(fA(x)).

If fA(x) = x, then fA is the identity on S; otherwise it is constant there.
Either way fA is computable. The argument for k-ary functions is left to the
reader; they are always finite unions of projections and constant functions on
computable disjoint subsets of ωk.

At certain points we will use the concept of computable categoricity to sim-
plify our arguments. A computable structure A is computably categorical if for
every computable structure B isomorphic to A, there exists a computable iso-
morphism from B onto A. We have a similar (but strictly stronger) notion for
structures that need not be computable: A is relatively computably categorical if
for every B isomorphic to A, there exists an isomorphism from B onto A which
is computable in the join of deg(A) and deg(B). (In some of the literature, this
notion is defined only for computable structures A, but it makes sense for any
countable structure.)

The subjects of the remaining sections are the countable dense linear order
L, the random graph G, and (to a lesser extent) the countable atomless Boolean
algebra B, all of which are relatively computably categorical, hence computably
categorical. Indeed, the classical model-theoretic arguments for ω-categoricity
of their theories are effective, and therefore build isomorphisms computable in
the degrees of the structures. These concepts are useful here for the following
reason.

Lemma 1.6 Let A be computably categorical, and R a relation on A. Then
for every degree d in DgSpA(R), there exists a relation S on A itself such that
(A, R) ∼= (A, S) and S ∈ d.

Thus we need not consider other computable copies of A when dealing with the
degree spectrum of R.

Proof. Since d lies in DgSpA(R), we have a computable B isomorphic to A, and
a relation T of degree d such that (A, R) ∼= (B, T ). By computable categoricity,
there is a computable isomorphism f taking B onto A. Let S = f(T ).
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A good reference for computable categoricity is [1]. For questions about
notation, we refer the reader to [20], the standard source.

2 Linear Orders

Let ≺ be a computable linear order on ω such that (ω,≺) ∼= η, the countable
dense linear order without end points, and let θ : (ω,≺) → (Q, <) be a com-
putable isomorphism onto the rational numbers. (Formally, this θ consists of
two computable functions g(n) and h(n) giving the numerator and denominator
of θ(n), with h(n) > 0 and g(n) ∈ Z.) We write L = (ω,≺).

We will use standard notation (a, b) and [a, b] for open and closed intervals.
Sometimes we will adjoin a subscript to remind the reader which structure the
interval lies in, e.g., (a, b)L for an open ≺-interval in L, or [θ(a), θ(b)]Q for a
closed <-interval in Q.

Theorem 2.1 This structure L is spectrally universal for the theory of linear
orders.

Corollary 2.2 Let A be any countable linear order. Then there exists a unary
relation R on L such that

DgSpL(R) = Spec(A).

In [17], Miller constructed a linear order A such that Spec(A) ∩ ∆0
2 =

∆0
2 − {0}. Using Corollary 2.2, this yields a positive answer to Question 1.3

of Goncharov:

Corollary 2.3 There exists a computable linear order L with a relation R such
that

DgSpL(R) ∩∆0
2 = ∆0

2 − {0}.

Proof of Theorem 2.1. As part of the proof, we will need to work with a specific
subset of the digits of our rationals. Define dn = 3n and

cn =
{

1, if (∃k)n = k(k+1)
2

0, otherwise

for all n. Thus 〈cn〉 is the sequence 1101001000100001 . . .. Also, we define

Jn = {q ∈ Q ∩ [0, 1] : (∀ representations h of q) h(dn) = cn}
In = ∩m≤nJm.

(A binary sequence h ∈ 2ω represents a real r ∈ [0, 1] if
∑

n
h(n)
2n+1 = r.) Since

the (3n)-th digit is fixed, each Jn comprises 2(3n) = 8n distinct open intervals
in Q, exactly 4n of which lie in In. These 4n intervals are the components of In.
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We will arrange that for every n, all but finitely many elements of the image
R of the embedding g lie in In. Therefore, if a sequence of rationals in R
converges to a real h, then for each n, cofinitely many rationals in the sequence
must belong to In (and hence cofinitely many lie in some single component of
In, by convergence). Hence h(dn) = cn for all n, so that h cannot be rational.
(Since cm = 1 for some m > n, h cannot be the left end point of its component
in In; similarly for the right end point.)

Construction: The trivial linear orders are precisely the finite ones, so fix
any countable infinite linear order A, and let B be any copy of A with domain
ω. Set c = deg(B), so c ∈ Spec(A). Pick a set C ∈ c to serve as an oracle for
B. We will build an embedding g : B → L as required by Definition 1.1.

Let Bs be the restriction of B to the elements {0, . . . , s − 1}. We begin by
fixing the elements p and p′ in ω such that θ(p) = 0 and θ(p′) = 1 (using the
θ from p. 6), and we define l(p) = 0 and l(p′) = 1. The embedding g will map
B into the interval (p, p′) in L. We now build R ≤T C, the image of g in L,
starting with R0 = ∅, so that (R,≺�(R×R)) ∼= B.

At stage s+1, Bs contains exactly s elements, mapped by g to corresponding
elements qi ∈ Rs, say with p ≺ q1 ≺ · · · ≺ qs ≺ p′. Set q0 = p and qs+1 = p′ for
convenience, and suppose that the element s added to B at stage s+1 becomes
the (i + 1)-st element of Bs+1, so that we wish to define g(s) to be an element
from (qi, qi+1)L. (Here we use the oracle C to compute the order on B.) We
define the target set I as follows.

If l(qi) > l(qi+1), let l = 1 + l(qi). By induction, θ(qi) will lie in some
particular component J within Il−1. Moreover, of the four components of Il

within this J , θ(qi) will lie within one of the two central ones. Now the rightmost
component of Il within J contains in turn four components of Il+1, and we define
the target set I to be the union of the two central of these four components.
Thus I ⊂ Il+1. Below we will enumerate into R an x such that θ(x) ∈ I. This
will ensure that θ(x) and θ(qi) lie in distinct components of Il, though in the
same component of Il−1, allowing us to prove Lemma 2.5 by induction.

If l(qi) < l(qi+1), let l = 1+l(qi+1). Analogously to the preceding paragraph,
we let J be the component of Il−1 containing θ(qi+1), and consider the leftmost
component of Il within J . The target set I is now defined as the union of
the central two components of Il+1 within this leftmost component of Il in J .
Again I ⊂ Il, therefore, and θ(x) and θ(qi+1) will lie in distinct components of
Il within the same component of Il−1.

The following diagram illustrates the situation when l(qi) > l(qi+1).

� -
θ(qi+1)s

θ(qi)s
θ(x)s

Il−2

Il−1

Il

Il+1
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We search for the least x ∈ ω such that θ(x) ∈ I and x > s. Clearly such an x
must exist, and we define g(s) = x, enumerate x ∈ Rs+1 (so R is still the image
of g), and set l(x) = 1 + max(l(qi), l(qi+1)). This completes the construction.

Notice that choosing x in the target set I guarantees that qi ≺ x ≺ qi+1.
If l(qi) > l(qi+1), for instance, then qi ≺ x because I is contained within a
component of Il to the right of the component of Il in which θ(qi) lies. Moreover,
by induction, θ(qi) and θ(qi+1) cannot lie in the same component of Il−1; instead
θ(qi+1) will lie to the right of θ(qi)’s component, because qi ≺ qi+1. Since I is
contained in the same component of Il−1 as θ(qi), I must be completely to the
left of θ(qi+1), so x ≺ qi+1. A similar argument applies when l(qi+1) > l(qi), so
the map g which we have built is an order-isomorphism of B onto (R,≺�(R×R)).

The next two lemmas describe two useful properties of R.

Lemma 2.4 For every n, all but finitely many r ∈ R satisfy θ(r) ∈ In.

Proof. We have l(p) = 0 and l(p′) = 1, with every r ∈ R satisfying p ≺ r ≺ p′.
By induction, whenever an x enters R with qi ≺ x ≺ qi+1 (using the notation
of the construction), we have l(x) = 1 + max(l(qi), l(qi+1)). Hence the first
element x to enter R is the only one with l(x) = 2, and if there are only k
elements x with l(x) ≤ n, then there can be at most k + 1 many more y ∈ R
with l(y) = n+1, for once one such y is placed in the interval between two such
x, every subsequent element z from that interval to enter R will have l(z) > l(y).
Now it is clear from the construction that if l(x) ≥ n, then θ(x) ∈ In+1. The
lemma follows.

Lemma 2.5 Let 〈ri〉i≥0 and 〈ti〉i≥0 be sequences of elements of R, strictly
increasing and strictly decreasing (respectively). Then neither supi θ(ri) nor
infi θ(ti) is a rational number.

Corollary 2.6 Under the order topology, R is a discrete subset of L. That is,
no limit point of R (in L) lies in R.

Recall that a limit point of a set S ⊂ R is a point u such that every open interval
containing u intersects (S − {u}).

Proof of Lemma 2.5. We give the details for the increasing sequence r0 ≺ r1 ≺
· · · . Since all ri ≺ p′, the completeness of the reals yields a number u =
supi θ(ri) ∈ R. Since ri ≺ ri+1, we know that u 6= θ(ri) for all i. But by Lemma
2.4, for each n, cofinitely many θ(ri) must lie in In. Indeed, since In consists
of finitely many open components, one of these components J must contain
cofinitely many θ(ri). Therefore u must lie in the closure of J .

Keeping this n fixed, we pick m > n such that cm = 0. Now cofinitely many
θ(ri) must lie in Im as well, so cofinitely many lie in Im ∩ J . However, the
rightmost component of Im within J has its right end point within J , because
cm = 0. Hence u cannot be the right end point of J , and certainly u cannot
be the left end point of J , because all θ(ri) ≺ u and most θ(ri) lie in J . So we
have u ∈ J ⊂ In.
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Since this holds for every n, every binary expansion of u has cn as its dn-th
digit for every n. But since dn = 3n and the sequence of cn’s is nonrepeating,
u cannot be rational.

With these two lemmas we can proceed to the heart of our proof.

Lemma 2.7 Let B and B̃ be two copies of A, of Turing degrees c and c̃, respec-
tively. Pick any sets C ∈ c and C̃ ∈ c̃, and run the preceding construction to
produce embeddings g and g̃ with images R and R̃. Then (ω,≺, R) ∼= (ω,≺, R̃).

Proof. Since g is an embedding, the restriction of ≺ to R gives a linear order
isomorphic to A, and similarly for R̃. So there exists a ≺-isomorphism ρ :
R → R̃. We will extend this (non-computably, of course!) to the required
isomorphism from (ω,≺, R) to (ω,≺, R̃). Immediately we may define ρ to be
the identity on the closed intervals (−∞, p] and [p′,+∞).

Next, for each successivity of A, the corresponding elements q ≺ r of R
bound an open interval (q, r) under ≺ which is entirely contained in R, and is
itself a dense order without end points. We extend ρ to map (q, r) isomorphically
onto the interval (ρ(q), ρ(r)), for which the same properties must hold.

If q ∈ R has no immediate R-successor, then we let r0 = p′ and let ri+1 be
the first element of the interval (q, ri) to appear in R. If u = infi θ(ri) in R,
then clearly θ(q) ≤ u, and by Lemma 2.5 we know that u /∈ Q, so θ(q) < u.
Thus {x ∈ ω : (∀i)[q ≺ x ≺ ri]} is a non-empty open interval, and so must
be a dense order without end points. The same arguments apply to ρ(q) ∈ R̃,
yielding another dense open interval of L with left end point ρ(q) and irrational
right end point, and we extend ρ to map the open interval (q, θ−1(u)) of R

isomorphically onto the corresponding interval in R̃.
For those q ∈ R with no immediate R-predecessor, we apply the analogous

process to extend ρ to the open interval {x ≺ q : (∀r ∈ R)[r ≺ q =⇒ r ≺ x]},
mapping it onto the corresponding interval of R̃. Again, Lemma 2.5 ensures
that both these open intervals are non-empty, hence dense without end points.

We apply this same process with q = p. If R has a left end point r, it must be
� p, and we extend ρ to map the interval (p, r) isomorphically onto the interval
(p, ρ(r)). If R has no left end point, then by the same argument as above,
u = inf θ(R) is irrational, as is ũ = inf θ(R̃). So θ(p) < u and θ(p) < ũ, and we
extend ρ to map {x � p : θ(x) < u} isomorphically onto {x � p : θ(x) < ũ}. A
similar argument extends ρ to the interval with right end point p′.

Now we claim that we have extended ρ to all of ω, and that ρ is a ≺-
isomorphism onto ω. (Also, our extensions so far clearly guarantee that ρ(R) =
R̃.) Pick any x ∈ R. If x has either an immediate R-predecessor or an imme-
diate R-successor (or both), then ρ(x) has been defined using that information.
Suppose, therefore, that x has neither. We use the same process as above to
build sequences p = r0 ≺ r1 ≺ · · · and p′ = t0 � t1 � · · · such that ri ≺ x ≺ ti
for all i and for every r ∈ R, either r ≺ ri or r � ti for some i. (It is important
that these sequences be chosen as above: ri+1 is the first element of the inter-
val (ri, x) to appear in R, and similarly for ti+1.) We let u = supi θ(ri) and
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v = infi θ(ti). By Lemma 2.5, both u and v must be irrational, and we claim
that in fact u = v. This will prove that there was no such x, since we would
have to have u ≤ θ(x) ≤ v.

We fix any positive integer l and show that v− u < 8−l. Now l(ti+1) > l(ti)
for every i, by our choice of the sequence 〈ti〉, so we fix some j with l(tj) ≥ l
such that some ri enters R at a stage s with tj ∈ Rs and tj+1 /∈ Rs. At stage
s, therefore, our construction picked ri between ri−1 and tj . If l(ri−1) < l(tj),
then ri was chosen so that θ(ri) and θ(tj) lie in the same component of Il(tj).
These components each have length 8−l(tj)−1, so θ(tj) − θ(ri) < 8−l. On the
other hand, if l(ri−1) > l(tj), then we wait for a stage t > s at which tj+1

enters R. Suppose rk ∈ Rt but rk+1 /∈ Rt. Then l(rk) > l(ri−1) > l(tj), so the
construction picks tj+1 so that θ(tj+1) lies in the same component of Il(rk) as
θ(rk). Thus θ(tj+1)− θ(rk) < 8−l(rk)−1 < 8−l. As promised, therefore, we must
have v − u < 8−l for every l, and so v = u.

The same holds in the construction of R̃, of course, so the ρ we have built is
total and onto, and is indeed an isomorphism from (ω,≺, R) onto (ω,≺, R̃).

Now we claim that our construction of R ensured R ≤T C. To determine
whether n ∈ R, use the C-oracle to run this construction through stage n,
since only elements > n were allowed to enter R after stage n. Thus R(n) =
Rn(n), and so R ≤T C. Theorem 2.10 below will allow us to conclude that
c ∈ DgSpL(R). (Corollary 2.6 shows that the infinite set R is not a finite union
of intervals in L, so R satisfies (2) of Theorem 2.10.) In fact, it is not difficult
to modify the foregoing construction to code the oracle set C ∈ c into R, so
that we could actually build R ≡T C. Alternatively, one can continue with the
construction from the proof of Theorem 2.10 to get R ≡T C uniformly in the
C-oracle. This justifies the claims of uniformity made on page 3.

Similarly, for any set C̃ in any other degree c̃ ∈ Spec(A), we have built
R̃ ≡T C̃ with (ω,≺, R) ∼= (ω,≺, R̃), by Lemma 2.7. Thus Spec(A) ⊆ DgSpL(R).

To see that Spec(A) ⊇ DgSpL(R), we suppose that S is a unary relation
such that (ω,≺, R) ∼= (ω,≺, S). (By Lemma 1.6, we need not consider other
computable copies of L.) Then the structure (S,≺� (S × S)) is a copy of A.
Say S = {x0 < x1 < · · · }, and let f(n) = xn. Then f ≤T S, and the structure
(ω, L), with L(m,n) just if f(m) ≺ f(n), is a copy of A of degree ≤T S. Since
A is nontrivial, Theorem 1.4 shows that Spec(A) is closed upward under ≤T ,
so deg(S) ∈ Spec(A). (If A were trivial, then A and S would both be finite,
and so deg(S) = 0 ∈ Spec(A) in this case as well.) Thus DgSpL(R) ⊆ Spec(A),
proving the theorem.

We now consider the converse of Corollary 2.2. Our two main results, Theo-
rem 2.10 and Proposition 2.16, show that spectra of unary relations on L satisfy
the two principal known criteria for spectra of linear orders. Theorem 2.10 is
also required to complete the proof of Theorem 2.1, of course.

Definition 2.8 Let R be a unary relation on L, and x a real number. We say
that R defines a lower cut at x if there exist a ≺ b in L with θ(a) < x < θ(b),

10



such that for all n ∈ (a, b)L, R(n) holds if and only if θ(n) < x. Also, R defines
an upper cut at x if R defines a lower cut at x.

In the case where x is rational, it would be advisable to adjust this definition
to allow θ−1(x) to be in either R or R. However, we are only interested in the
case of an irrational x.

Lemma 2.9 If R is a unary relation on L which defines either a lower or
an upper cut at an irrational number, then DgSpL(R) is upward-closed under
Turing reducibility.

Proof. Suppose R defines a lower cut. Pick degrees d <T c with d ∈ DgSpL(R),
and fix a set C ∈ c. By Lemma 1.6, (L, R) ∼= (L, S) for some relation S of degree
d. By the isomorphism, we see that S also defines a lower cut at some irrational
number x. Pick a, b ∈ L as in Definition 2.8 for the lower cut defined by S.
We know there exists a real y ∈ (θ(a), θ(b)) whose binary expansion differs from
C in only finitely many places, and this y is irrational since C >T ∅. Using a
C-oracle (since S ≤T C), we define a relation Q on L by:

1. On (−∞, a]L and on [b, +∞)L, Q = S;

2. For all n ∈ (a, b)L with θ(n) < y, n ∈ Q; and

3. For all n ∈ (a, b)L with y < θ(n), n /∈ Q.

Then (L, S) ∼= (L, Q). Clearly Q ≤T C, and from Q we can compute the real
y, so C ≤T Q. Therefore c ∈ DgSpL(R).

If R defines an upper cut, then R defines a lower cut, so again DgSpL(R) =
DgSpL(R) is upward-closed.

Theorem 2.10 For any unary relation R on L, the following are equivalent.

1. R is not intrinsically computable.

2. R cannot be defined by a quantifier-free formula with parameters from L.

3. DgSpL(R) is upward-closed under Turing reducibility.

Recall that R is intrinsically computable if DgSpL(R) contains only the degree
0. More generally, for any property P of sets, R is intrinsically P if P holds of
all images of R in isomorphic computable copies of L (see [10]). For a property
P which is invariant under Turing equivalence, therefore, R is intrinsically P iff
P holds of all Turing degrees in DgSpL(R).

Proof. The implications 1 =⇒ 2 and 3 =⇒ 1 are immediate. In fact, Moses
proved in [18] that 1 ⇐⇒ 2. To prove that 2 =⇒ 3, fix any degrees d ≤T c,
and suppose (using Lemma 1.6) that S ∈ d and (L, R) ∼= (L, S). Let M be
another computable copy of L, and fix a set C ∈ c to be our oracle. We will
build a C-computable isomorphism g from L onto M, such that g(S) ≡T C.
This will prove the upward-closure of DgSpL(R).
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In fact, it is fine for M to be L itself, but we give the two copies different
names in order to distinguish them. We write ≺L and ≺M for the orders on
the two structures. Elements of L will be named a, b, and c, while elements of
M will be named x, y, and z.

The function g will be extended to a larger domain Ds+1 ⊂ L and range
Ws+1 ⊂ M at each stage s + 1. This extension will involve two steps. During
the first, we will extend g to a domain D′

s+1 and range W ′
s+1; then we extend

g from these to Ds+1 and Ws+1 during the second step.
Start with g as the empty function, so D0 = W0 = ∅. At stage s+1, we first

perform Step 1. Let Ws = {z1, . . . , zn}, with each zj ≺M zj+1. Set aj = g−1(zj)
for each j. For convenience, we will think of z0 and a0 as being −∞, i.e., to
the left of all elements of M and L respectively, and zn+1 and an+1 as being
+∞. For each j ≤ n +1, let xj < yj be the two least elements (under <) in the
≺M-interval (zj , zj+1)M. Enumerate all these xj and yj (and all of Ws) into
W ′

s+1 immediately.
Now use a C-oracle (which can compute S, since S ≤T C) to search for the

least pair 〈b, c〉 of elements in L −Ds satisfying:

• b and c lie in the same interval (ai, ai+1), for some i ≤ n; and

• for this i, b ≺L c ⇐⇒ xi ≺M yi; and

• b ∈ S ⇐⇒ c /∈ S; and

• b ∈ S ⇐⇒ s ∈ C.

Let ci be this c, and let bi be the least corresponding b; these must exist, as we
prove below. Define g(bi) = xi and g(ci) = yi, thus enumerating bi and ci into
D′

s+1. By the conditions given, g is still a partial isomorphism.
For each j 6= i, search for the least pair 〈bj , cj〉 of distinct elements in L

satisfying:

• bj and cj both lie in the interval (aj , aj+1); and

• bj ≺L cj ⇐⇒ xj ≺M yj ; and

• bj ∈ S ⇐⇒ cj ∈ S.

Again, define g(bj) = xj and g(cj) = yj , thus enumerating bj and cj into D′
s+1.

The conditions ensure that g is still a partial isomorphism. D′
s+1 now contains

Ds and all xj and yj (including xi and yi).
To see that such elements bi and ci must exist, consider the case when s ∈ C.

Then we require bi ≺ ci and bi ∈ S and ci ∈ S. If no interval (ai, ai+1)L with
i ≤ n contains such elements, then for each of these intervals there is a real
number ti ∈ [θ(ai), θ(ai+1)]R such that for all b ∈ (ai, ai+1)L,

b ∈ S ⇐⇒ θ(b) > ti.

If all these ti were rational, then S (and hence R) would be definable by a
quantifier-free formula using parameters a1, . . . , an and θ−1(t0), . . . , θ−1(tn+1).
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So some ti must be irrational. But then ti must lie strictly between ai and ai+1

in L, so S defines an upper cut at ti, and by Lemma 2.9, DgSpL(S) is upward-
closed and we are finished. Therefore, we may assume that some interval has
no corresponding ti at all, and within this interval there exist elements bi and
ci satisfying the given conditions. A similar analysis applies for the case where
s /∈ C. Moreover, no matter which i ≤ n we finally choose, for each j 6= i there
clearly exist bj and cj satisfying the second set of conditions, simply because
(aj , aj+1)L contains infinitely many elements. So we find the elements we need,
which completes Step 1.

In Step 2, let z1 ≺M · · · ≺M zn be the elements of W ′
s+1. As before, set

ai = g−1(zi) for each i ≤ n, and define a0, z0, an+1, and zn+1 as in Step 1. For
each j ≤ n, let xj be the least element (under <) of the interval (zj , zj+1)M,
and let Ws+1 = W ′

s+1 ∪ {x0, . . . , xn}. For each j ≤ n, find the least element bj

(under <) in (aj , aj+1)L, and define g(bj) = xj . Thus all these bj enter Ds+1.
This completes Step 2, and stage s + 1.

We now claim that the map g built by this process is the isomorphism
we required. First, the entire construction is C-computable, and g is never
redefined on any domain element, so g ≤T C. Next, g is total (by Step 2, which
ensures that the least element not in Ds must enter Ds+1) and onto (since
Step 1 enumerates into Ws+1 the least element not in Ws). At every step we
ensure that g respects ≺L and ≺M, by choosing domain elements only from the
appropriate intervals in L. So g is a C-computable isomorphism.

That g(S) ≤T C is immediate, since both g and S are C-computable. To
compute from g(S) whether s ∈ C, we need only consider the elements z1 ≺M
· · · ≺M zn of Ws, along with z0 and zn+1 as above, and find the unique interval
(zi, zi+1)M such that of the two <-least elements xi ≺M yi of that interval, one
lies in g(S) and the other does not. The choice of bi and ci in the construction
guarantees that

s ∈ C ⇐⇒ bi ∈ S ⇐⇒ xi ∈ g(S),

so our g(S)-oracle determines whether s ∈ C. The key to this coding is the
fact that the sets Ws (or more specifically, canonical indices for these sets,
as described in [20], p. 33) are computable uniformly in s. The construction
ensured this, by defining W ′

s+1 in Step 1 using only Ws (i.e., without any C-
oracle, and without knowing Ds or g), and then by defining Ws+1 similarly from
W ′

s+1 in Step 2. Thus C ≡T g(S), and so c lies in DgSpL(S) = DgSpL(R).

The proof of Theorem 2.10 is based on the fact that in L, given a finite
set of parameters (such as Ws, in Step 1), there are only finitely many 1-types
over those parameters. In Step 1, for each of these types over Ws (except those
realized by the parameters themselves), we added to W ′

s+1 two new elements
realizing that type. Then in Step 2, we added to Ws+1 one new element realizing
each 1-type over W ′

s+1 (again excepting those types realized by the parameters
themselves). By induction, therefore, each Ws is finite, allowing this process to
continue.

The same process could be used with n-types, for any n ≥ 1. In Step 1 we
would enumerate elements x1, . . . xn, y1, . . . , yn into W ′

s+1 for each n-type over
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Ws, so that the two n-tuples ~x and ~y both realize that n-type. (We would not
include n-types realized by n-tuples of parameters.) Again, given that R is not
definable without quantifiers, there is at least one of these types for which we
can find a pre-image in R for ~x and a preimage in R for ~y, and define f so as
to code C into f(R). We repeat Step 2 similarly with n-tuples for the finitely
many n-types over W ′

s+1. This yields the analogue of Theorem 2.10 for n-ary
relations:

Corollary 2.11 A finitary relation R on L is not intrinsically computable ⇐⇒
R is not definable by a quantifier-free formula with parameters ⇐⇒ DgSpL(R)
is upward-closed under Turing reducibility.

Corollary 2.12 Let P be any collection of Turing degrees which is bounded
above under ≤T . (For instance, P could be the Σ0

1 degrees, or the ∆0
ω degrees,

or the hyperarithmetical degrees.) Then every finitary relation on L which is
intrinsically P must be intrinsically computable.

Corollary 2.13 For every finitary relation R on L, there exists a structure S
such that Spec(S) = DgSpL(R).

Proof. If R is intrinsically computable, let S be any trivial structure in a finite
language. Otherwise, the corollary follows from Corollary 2.11 and Sublemma
2.14 below.

Sublemma 2.14 Let R be any finitary relation on any computable, relatively
computably categorical structure A (as defined on p. 5) in any finite language. If
DgSpA(R) is upward-closed, then there exists a structure S such that Spec(S) =
DgSpA(R).

Proof. Let S = (A, R), a structure in the language of A with one additional
predicate R. Clearly DgSpA(R) ⊆ Spec(S). For the reverse inclusion, take
any structure M ∼= S, and let M′ be the reduct of M to the language of
A. By relative computable categoricity, there is an M′-computable (hence M-
computable) isomorphism f taking M′ onto A. Let S = f(RM); then S ≤T M
and deg(S) ∈ DgSpA(R), so by upward-closure deg(M) ∈ DgSpA(R) as well.

We note one more theorem about spectra of linear orders, and show that the
same result holds for unary relations on L. The theorem is from Richter in [19]:

Theorem 2.15 (Richter) If A is a linear order such that the degree 0 does
not lie in Spec(A), then Spec(A) does not contain a least degree. Indeed Spec(A)
contains a minimal pair of degrees.

This result also applies to other structures, such as trees, which satisfy a
condition given by Richter on effective extendability of embeddings.

Proposition 2.16 If R is a unary relation on L such that the degree 0 does
not lie in DgSpL(R), then DgSpL(R) does not contain a least degree. Indeed
DgSpL(R) contains a minimal pair of degrees.
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Proof. Our proof simply adapts Richter’s proof of Theorem 2.15 in [19] to spec-
tra of relations on L, building a unary relation S ⊂ ω and an isomorphism
h : (L, S) → (L, R) such that the infimum deg(R) ∧ deg(S) of the degrees of
R and S under Turing reducibility is the degree 0. (That is, R and S form a
minimal pair.) We define one-to-one functions hs from finite sets Bs into L,
respecting ≺ and with hs ⊆ hs+1, such that ∪sBs = ω(= |L|) and h = ∪shs is
a bijection. We write Ss = h−1

s (R) ⊆ Bs. At stage 0, let B0 be the empty set
and h0 the empty map.

At stage s + 1, we attempt first to satisfy a minimal-pair requirement for R
and S. Pick i and j such that s = 〈i, j〉, and ask whether there exist σ ∈ 2<ω,
x ∈ ω, and an embedding α : (dom(σ),≺, σ−1(1)) → (|L|,≺, R) such that
lh(σ) > max Bs and σ�Bs = Ss and Φσ

i (x) 6= ΦR
j (x). If not, we let h′s+1 = hs

and S′s+1 = Ss. If so, we pick the shortest such σ and the corresponding α and
let S′s+1 = σ−1(1) and h′s+1 = α.

Next, to make h a bijection, we pick the least number z /∈ range(h′s+1) and
the least y /∈ dom(h′s+1) such that y lies in the appropriate interval under ≺,
and let Bs+1 = dom(h′s+1) ∪ {y} and hs+1 = h′s+1 ∪ {〈y, z〉}. This completes
the construction.

Clearly this construction builds an automorphism h = ∪shs of L. (To see
that h has domain |L|, notice that at infinitely many stages we will find the σ,
x, and α for which we search, and dom(hs) will be extended to a longer initial
segment of ω at each such stage.) We define S = h−1(R) = ∪sSs, yielding
deg(S) ∈ DgSpL(R). To see that deg(R) ∧ deg(S) = 0, suppose that g = ΦS

i =
ΦR

j is any total function. To compute g(x), we consider the situation of the
construction at stage s+1, where s = 〈i, j〉. The set Bs and the function hs are
finite, so we may use them and search for a string σ ∈ 2<ω with lh(σ) > max Bs

and an embedding α : (dom(σ),≺, σ−1(1)) → (|L|,≺, R) such that σ�Bs = Ss

and Φσ
i (x)↓. Such σ and α must exist, since any sufficiently long initial segment

of S could serve as σ, with α = h�dom(σ). So eventually we find such a σ. It
may not in fact be an initial segment of S, but we know from our construction
that for every such σ and α and for every x, Φσ

i (x) = ΦR
j (x). (If not, we would

have chosen h′s+1 and S′s+1 to violate this equality.) Therefore g(x) = Φσ
i (x),

and g is indeed computable. Hence the least degree of DgSpL(R), if it existed,
would have to be 0, but 0 /∈ DgSpL(R).

Corollary 2.17 If R is a unary relation on L which is not intrinsically com-
putable, then there is an infinite subset D ⊆ DgSpL(R) such that every pair of
distinct degrees in D is a minimal pair.

Proof. If DgSpL(R) contains the degree 0, then Theorem 2.10 gives the re-
sult. Otherwise, for any finite k with (L, R) ∼= (L, Ri) for all i ≤ k, an easy
modification of the proof of Proposition 2.16 allows us to build S such that
(L, S) ∼= (L, R) and deg(R1) ∧ deg(S) = · · · = deg(Rk) ∧ deg(S) = 0. Setting
Rk+1 = S, we build {deg(Rk)}k∈ω by induction as our D.

Theorem 2.10 and Proposition 2.16 suggest the possibility of strengthening
Corollary 2.13 by requiring S to be a linear order, since spectra of unary relations
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on L must satisfy the main theorems on spectra of linear orders. Indeed, a
partial result in this direction is immediate: given an infinite relation R, restrict
the computable order ≺ from L to R to get a linear order A. By pulling R back
to ω via an R-computable bijection, we get an R-computable copy of A with
domain ω. Thus Spec(A) contains some degree ≤T deg(R), and Theorem 1.4
shows that deg(R) ∈ Spec(A), so DgSpL(R) ⊆ Spec(A).

However, without the reverse inclusion this result is trivial (just set A = L,
since Spec(L) contains every Turing degree), and the reverse inclusion need
not hold for the A built by this process. For intrinsically computable infinite
relations R, this is immediate; for instance, let R be a closed interval of L. To
emphasize the difficulties, however, we provide a more interesting example.

Let R be a relation on L such that θ(R) is the following union of intervals
in (Q, <):

θ(R) =
(
−1,−1

2

) ⋃ [ ⋃
n/∈∅′′′

(
n− 1

π
, n +

1
2

) ] ⋃ [ ⋃
n∈∅′′′

[
n, n +

1
2

) ]
.

Thus, the leftmost interval of θ(R) is (−1,− 1
2 ). The next is either (− 1

π , 1
2 ) if

0 /∈ ∅′′′, or [0, 1
2 ) if 0 ∈ ∅′′′. The next is either (1− 1

π , 3
2 ) or [1, 3

2 ) depending on
whether 1 ∈ ∅′′′, and so on. ( 1

π is used simply because we need a convenient
computable irrational number less than 1

2 .) Now the restriction of ≺ to R gives
a copy of the countable dense linear order. This is the A built from R by
the process described above, and its spectrum contains every Turing degree.
However, DgSpL(R) cannot contain 0, as seen by the following result.

Proposition 2.18 For the relation R on L described above, DgSpL(R) is the
set of all those degrees whose jump computes 0′′.

A degree c is high if c′ = 0′′. (Some definitions require c ≤T 0′ as well.)
So DgSpL(R) might be said to contain those degrees which are high-or-above.
This set is certainly upward-closed under ≤T , but it is not known whether there
exists a linear order with this spectrum. Indeed, this proposition and Corollary
2.13 constitute the first proof of the following:

Corollary 2.19 There exists a structure S whose spectrum contains precisely
those degrees c with c′ ≥T 0′′.

This complements a recent result in [7], which proves the existence, for each
n ∈ ω, of a structure whose spectrum contains exactly the non-lown degrees, i.e.,
those degrees c with c(n) >T 0(n). Moreover, we can use an arbitrary degree d
in place of 0′′ in the following proof, thereby building structures with spectrum
{c : c′ ≥T d}.

Proof of Proposition 2.18. We will show that c is in DgSpL(R) iff ∅′′′ ≤1 FinS

for some set S ∈ c. This latter condition is equivalent to ∅′′ ≤T S′. (See
Theorem III.2.3(v) and Section IV.4 of [20] for this result. By definition FinS =
{e : WS

e is finite}, where WS
e is the e-th set c.e. in the oracle S under a standard

enumeration.)
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For the forward inclusion, let (L, R) ∼= (L, S), with ≺ being the computable
order of L as always. (By Lemma 1.6, we need only consider L.). We will define
a 1-reduction h of ∅′′′ to FinS .

Fix an ordering of ω<ω in order type ω. A string σ ∈ ω2n+1 is ≺-increasing
if σ(0) ≺ σ(1) ≺ · · · ≺ σ(2n), and σ is S-alternating if for all i ≤ 2n:

σ(i) ∈ S ⇐⇒ i is even.

(In the above, “even” may not be replaced by “odd.”)
The number h(n) will be the index of an oracle Turing functional Φ which

performs the following algorithm on input x and oracle X. First it searches for
the least σ0 ∈ ω2n+1 (according to our ordering of ω<ω) which is ≺-increasing
and X-alternating. Then, by induction, having found σy, it searches for the least
σy+1 ∈ ω2n+1 which is ≺-increasing and X-alternating and satisfies σy+1(2n) ≺
σy(2n). If it ever finds σx in this process, it terminates and outputs 0; otherwise
it diverges. (Thus the domain of ΦX will always be an initial segment of ω.)

Now if n ∈ ∅′′′, then the (n + 1)-st interval of S in L includes its left end
point l. Hence there exist ≺-increasing S-alternating strings σ ∈ ω2n+1 with
σ(2n) = l, and for some x, σx will be the least such string. Then ΦS

h(n) will
diverge on all inputs > x, since no σx+1 satisfying our demands will ever be
found. Hence h(n) ∈ FinS .

On the other hand, if n /∈ ∅′′′, then the (n+1)-st interval of S has no left end
point. In this case, for every σx we find, there will be another sequence σx+1

found subsequently. (Just consider 〈σ(0), . . . , σ(2n − 1), l′〉, for any l′ ≺ σ(2n)
in the (n + 1)-st interval of S.) Hence for this n we will have h(n) /∈ FinS ;
indeed h(n) ∈ TotS . Thus h is a computable 1-reduction of ∅′′′ to FinS .

For the reverse inclusion, let C be any set with ∅′′′ ≤1 FinC via some function
h. We build a unary relation S on (Q, <) with S ≡T C and (L, θ−1(S)) ∼= (L, R).

The right end point of the n-th interval of S will be rn = n− 1
2 . The leftmost

interval of S is (−1, r0). We show here how to construct the next interval of
S, which will have a (possibly irrational) left end point l1 = lims l1,s; all other
intervals are analogous. At stage 0 we enumerate [0, r1) into S and set l1,0 = 0.
At stage s+1, we use our C-oracle to check whether any elements entered WC

h(0)

at stage s+1. If not, we do nothing. If so, let l1,s+1 be the first rational number
l we find such that:

(1) − 1
4 < l < l1,s; and

(2) {θ(0), . . . θ(s)} ∩ [l, le,s) = ∅; and

(3) The binary expansion of l is the same as that of l1,s up through the first
repetition of the repeating part of l1,s (where, if l1,s is dyadic, we use the
binary expansion with infinitely many 1’s); and

(4) Let 〈i, j〉 = |WC
h(0),s|, so 〈i, j〉 is the number of times we have already

moved l1,s. Consider the i-th element σ in some fixed enumeration of the
nonempty strings in 2<ω. This σ must not be the repeating part of any
binary expansion of l.
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(The last two items will ensure that if WC
h(0) is infinite, then lims l1,s will be

irrational.) Such an l1,s+1 must exist, and we enumerate all of [l1,s+1, l1,s) into
S. This completes the construction.

We let ln = infs ln,s for each n > 0, with l0 = −1. These are the left end
points of the intervals of S. For each n, if n ∈ ∅′′′, then h(n) ∈ FinC , so ln,s is
only redefined finitely many times, and the (n + 1)-st interval of S is [ln, rn),
with ln = ln,s for some s.

On the other hand, if n /∈ ∅′′′, then h(n) /∈ FinC , so ln,s was redefined in-
finitely many times. In this case ln never entered S (and indeed will be shown
below to be irrational), so the (n+1)-st interval of S is the open interval (ln, rn).
To see that in this case the real number ln must be irrational, suppose it were
rational. Then some binary string σ would repeat forever beyond a certain
digit in a fixed binary expansion of ln. Choose an s such that ln agrees with
ln,s through the first appearance of σ in the repeating part of ln. Then every
subsequent ln,t also agrees with that much of ln, by requirement (3). However,
eventually we reach another stage t′ at which requirement (4) ensures that σ
does not appear in the repeating part of ln,t′ , and requirement (3) subsequently
ensures that the repeating part of ln,t′ appears in the same place in every subse-
quent ln,t′′ . Hence σ cannot repeat forever in ln, contradicting our assumption.
Thus ln is irrational whenever n /∈ ∅′′′. This proves that (L, θ−1(S)) ∼= (L, R).

This enumeration of S was C-computable, and no element x entered S at
any stage after stage θ−1(x), because of requirement (2). Hence S ≤T C. But
S is not a finite union of intervals in L, so by Theorem 2.10, c lies in DgSpL(R)
as required.

3 Graphs

An (undirected) graph consists of a set of elements, called vertices or nodes, and
an irreflexive symmetric binary relation (the adjacency or edge relation) on the
vertices. For this class, the natural countably universal structure to use is the
random graph, which by definition is the Fräıssé limit of the class of all finite
graphs. (Fräıssé limits are discussed in moderate detail in the next section.)
The random graph is well described in ([12], 6.4), and is characterized there as
follows.

Theorem 3.1 ([12], p. 177) Let G be a countable graph. The following are
equivalent.

(a) G is (isomorphic to) the random graph.

(b) For every pair (X, Y ) of disjoint finite sets of vertices of G, there is an
element /∈ X ∪ Y which is adjacent to all vertices in X but to no vertices
in Y .

(c) For every pair (X, Y ) of disjoint finite sets of vertices of G, there are
infinitely many elements /∈ X ∪ Y which are adjacent to all vertices in X
but to no vertices in Y .
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Part (c) does not appear in [12], but is clearly equivalent to part (b).
It follows from this result that every countable graph B embeds into the

random graph, simply by mapping the vertices b1, b2, b3, . . . of B one at a time
to appropriate nodes of the random graph. Our specific computable copy G of
the random graph is easily constructed. The domain of G is ω, as usual. We
fix a computable listing (Xi, Yi)i∈ω of all pairs of finite disjoint subsets Xi and
Yi of ω, with the properties that every number in Xi ∪ Yi is < i. The edge
relation EG simply contains all pairs (i, x) and (x, i) such that x ∈ Xi. This is
computable and symmetric and clearly satisfies condition (2) of Theorem 3.1,
so G is isomorphic to the random graph. We define

Zi = {a ∈ G : a /∈ Xi ∪ Yi & (∀x ∈ Xi)(a, x) ∈ E & (∀y ∈ Yi)(a, y) /∈ E}.

Thus each Zi is the infinite computable set of nodes used to ensure that Xi and
Yi satisfy Theorem 3.1. Also, the Boolean combinations of sets Zi are precisely
the subsets of G which are definable by quantifier-free formulas with parameters.

Theorem 3.2 The computable random graph G built above is spectrally univer-
sal.

Since trivial graphs have spectrum {0}, we immediately get:

Corollary 3.3 Let B be any countable graph. Then there exists a unary relation
R on the random graph G constructed above, such that

DgSpG(R) = Spec(B).

In concert with results by Hirschfeldt, Khoussainov, Shore, and Slinko in
[11], this yields a far stronger theorem.

Theorem 3.4 (Hirschfeldt, Khoussainov, Shore, Slinko) For each non-
trivial countable structure S (in any computable language, finite or infinite),
there exists a symmetric irreflexive graph with the same spectrum as S.

If the language is finite, this holds for trivial structures as well. Moreover, in [11]
the authors prove the same result for directed graphs, partial orders, lattices,
rings, integral domains of arbitrary characteristic, commutative semigroups, and
two-step nilpotent groups.

Corollary 3.5 Let S be any nontrivial countable structure in any computable
language, or any countable structure in any finite language. Then there exists
a unary relation R on the random graph G constructed above, such that

DgSpG(R) = Spec(S).

Proof of Corollary 3.5. By Theorem 3.4, there exists a countable graph B such
that Spec(B) = Spec(S). Applying Corollary 3.3 gives the result.
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Proof of Theorem 3.2. Let A be any nontrivial countable graph, and suppose
the degree c lies in Spec(A). Fix a set C in c and a countable graph B ∼= A
with domain ω and edge relation F ≡T C.

Construction. Let Bs be the substructure with domain {0, . . . , s− 1} ⊆ B
under the restriction of F . We build a (C-computable) embedding g of B into
G, starting with R0 = S0 = ∅. (The relation R will be the image of g, and S
will be the complement of R.)

Having defined g on Bs, we consider the vertex s of Bs+1. Using a C-oracle,
we let g(s) be the least node we find in G which is adjacent to all nodes of
{g(x) : x ∈ Bs & F (x, s)} but not adjacent to any nodes of Ss ∪ {g(x) : x ∈
Bs & ¬F (x, s)}. These two sets are finite and disjoint, so such a node g(s) must
exist.

Next we extend Ss to Ss+1, a set of vertices which will not be allowed into
R at any future stage. For each subset P of Rs+1 ∪ Ss in turn, we choose j
such that P = Xj and (Rs+1 ∪ Ss)− P = Yj , and search for the least aP ∈ Zj .
Since G is the random graph, we eventually find such an aP , and (for each P )
we enumerate aP into Ss+1.

It is clear that this process constructs an embedding g of B into G, with
image R = ∪sRs. Moreover, S = ∪sSs is precisely the complement of R, since
any vertex x which never enters R must eventually be chosen as aP for some P ,
at or before the stage s + 1 when all vertices < x have entered Rs+1 ∪ Ss. We
also note that R 6= Zi for every i, since once we reach a stage s + 1 > i we have
Xi∪Yi ⊆ Rs∪Ss, so an element of Zi will be enumerated into Ss+1. This shows
that R cannot be defined in G by any quantifier-free formula with parameters.

Since R and S(= R) are both computably enumerable in C, we have R ≤T C.
We have not bothered to code C into R in this construction; one could do so,
but instead we cite Proposition 3.6 and Lemma 3.8 below to see that c lies in
DgSpG(R). As in the proof of Theorem 2.1, we note that Proposition 3.6 can be
applied uniformly. That is, with a C-oracle, one could build R ≡T C uniformly
in an index e such that F = ΦC

e gives the edge relation on B.
As always, in order to demonstrate that Spec(A) ⊆ DgSpG(R), we must

now show that if B and B̃ are isomorphic undirected graphs of degree c and c̃
respectively, then the relations R and R̃ built by this process satisfy (G, R) ∼=
(G, R̃). Since the maps g and g̃ embed B and B̃ into G with images R and R̃, we
immediately have an isomorphism ρ : R → R̃. We extend ρ to an automorphism
of G by a back-and-forth process, one node at a time, as follows.

Assume that ρ is already defined on all of R and on finitely many nodes
s1, . . . , sm of S = R. Take the least node x ∈ S not yet in the domain of ρ, and
choose s such that x entered S at stage s + 1 in the construction of g above.
Now, by the construction, no node adjacent to x could have entered R at any
stage after s + 1, so x is adjacent to only finitely many vertices r1, . . . , rn in R.
Choose a stage t such that ρ(r1), . . . , ρ(rn) ∈ R̃t+1 and ρ(s1), . . . , ρ(sm) ∈ S̃t.
Let

P = {ρ(ri) : i ≤ n} ∪ {ρ(si) : i ≤ m & x is adjacent to si}.

The construction of g̃ chose a node aP /∈ S̃t at stage t + 1 and enumerated
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aP ∈ S̃t+1, and we define ρ(x) = aP . This extension of ρ is still a partial
automorphism of G. (Since ρ(x) = aP ∈ S̃t+1, we know that no node of R̃−R̃t+1

can be adjacent to ρ(x); and for nodes in R̃t+1 ∪ S̃t, the choice of P gives the
result.) Moreover, the extension maps x ∈ S to ρ(x) ∈ S̃, as required.

Iterating this process by the standard back-and-forth approach yields an
automorphism of G mapping R onto R̃, so indeed deg(R̃) ∈ DgSpG(R), and
Spec(A) ⊆ DgSpG(R). Conversely, let (G̃, R̃) ∼= (G, R) with G̃ computable.
Then the edge relation on G̃ is computable, and its restriction to R̃ yields a
copy of A with domain R̃. To get an R̃-computable copy of A with domain ω,
we simply pull this copy back to ω via an R̃-computable bijection. Thus Spec(A)
contains a degree ≤T R̃, and hence must contain deg(R̃) itself, by Theorem 1.4,
since A is nontrivial. So DgSpG(R) ⊆ Spec(A), and the two spectra are equal.

In the case of graphs, we can prove the converse of Corollary 3.3 as well.
Again, Theorem 3.4 is of use; we simply pass to the language of graphs with
an additional unary relation. Given a unary relation R on G, we immediately
have a structure H = (G, R) in this language, whose spectrum will be precisely
DgSpG(R), by Propositions 3.6 and 3.9 below. We then appeal to Theorem 3.4
to show that there is a graph with the same spectrum. The actual converse
is Proposition 3.9; everything before that leads up to its proof. We note that
Proposition 3.9 becomes an open question when stated for linear orders instead
of graphs.

Also, unlike for linear orders, the restriction to nontrivial structures in Def-
inition 1.1 is necessary for graphs. There do exist infinite trivial graphs, such
as the complete graph on countably many vertices, and using Lemma 3.8, one
sees that it is impossible for any image of such a graph to have degree spectrum
{0} as a relation on G.

Proposition 3.6 Let R be a relation on our computable copy G of the random
graph. If R is not intrinsically computable, then DgSpG(R) is upward-closed
under Turing reducibility.

Proof. We give the full proof for a unary relation R. The proof is substantially
analogous to that of Theorem 2.10. Fix any degrees d ≤T c, and suppose (using
Lemma 1.6) that S ∈ d and (G, R) ∼= (G, S). Also, fix a set C ∈ c to be our
oracle.

Let H be another computable copy of the random graph. We will build
an isomorphism g from G to H such that C ≤T g(S). Moreover, g will be
C-computable, forcing g(S) ≤T C. This will prove the proposition. (One can
just take H = G, but we will give the two copies different names, to distinguish
the domain of g from the range. For clarity, a, b, and c will represent nodes in
G, while x, y, and z represent nodes in H. EG and EH will denote the edge
relations on the two graphs.)

For any finite partial binary function σ : H → 2, we define the computable
set Zσ ⊂ H (by analogy to Zi, from p. 19):

Zσ = {x ∈ H : (∀y ∈ dom(σ))[σ(y) = 1 ⇐⇒ (x, y) ∈ EH]}.
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Also, we define the computable subset Bσ of G:

Bσ = {a ∈ G : (∀y ∈ dom(σ))[σ(y) = 1 ⇐⇒ (a, g−1(y)) ∈ EG ]}.

So, if x ∈ Zσ and we are searching for an element to be its preimage g−1(x),
we need to choose that element from Bσ (assuming that dom(σ) is already
contained in the range of g).

The strategy is as follows. At the start of each stage, g is a partial isomor-
phism from G into H, with some finite domain Ds and range Ws. We partition
H into computable subsets Zσ, with σ ranging over all binary functions with
domain Ws, and build Ws+1 ⊃ Ws containing exactly two new elements from
each Zσ. For all but one such σ, those two elements will lie either both in S,
or both in S. The two elements for the unique remaining σ will be used for
our coding of C into g(S), as we extend g to a partial isomorphism with range
Ws+1.

We start with g as the empty function, with domain D0 and range W0 both
empty. For every s, stage s+1 consists of two steps. In Step 1, we will extend g
to a partial isomorphism with domain D′

s+1 and range W ′
s+1, and then in Step

2 we extend g further, to domain Ds+1, and range Ws+1.
To begin Step 1, let σ1, . . . , σk be all binary functions (in lexicographic order)

whose domain is precisely the range Ws of g. For every j ≤ k, starting with
j = 1, choose xj < yj to be the two least elements of Zσj −Ws such that neither
xj nor yj is adjacent to any xm or ym with 1 ≤ m < j. All of these elements xj

and yj are immediately enumerated into W ′
s+1, since they will enter the range

of g. We also enumerate all of Ws into W ′
s+1 and all of Ds into D′

s+1.
We show below that there exists a pair 〈b, c〉 of elements of G and an i ≤ k

such that:

• b and c both lie in Bσi
; and

• neither b nor c lies in Ds; and

• EG(b, c) ⇐⇒ EH(xi, yi); and

• b ∈ S ⇐⇒ c /∈ S. (Here we use our C-oracle, since S ≤T C.)

We find the least such pair 〈b, c〉, fix the corresponding i, and denote c as ci and
b as bi. Both of these now enter D′

s+1, and we use bi and ci to help code C into
g(S). If s ∈ C and bi ∈ S, or if s /∈ C and bi /∈ S, then define g(bi) = xi and
g(ci) = yi. Otherwise, define g(bi) = yi and g(ci) = xi. Thus we have

s ∈ C ⇐⇒ xi ∈ g(S),

which will be the coding of C(s) into g(S). The conditions on bi and ci ensure
that this extension of g is still a partial isomorphism.

We then act for each j ≤ k with j 6= i, starting with j = 1. We find the
least pair of elements bj and cj in G such that

• neither bj nor cj lies in Ds; and
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• all a already enumerated into D′
s+1 satisfy E(a, bj) ⇐⇒ E(g(a), xj) and

also E(a, cj) ⇐⇒ E(g(a), yj); and

• E(bj , cj) ⇐⇒ E(xj , yj); and

• bj ∈ S ⇐⇒ cj ∈ S.

Define g(bj) = xj and g(cj) = yj , thus enumerating bj and cj into D′
s+1.

The conditions ensure that bj , cj ∈ Bσj
and that the new g is still a partial

isomorphism.
To see that the desired elements all exist, note first that at least one Bσi

must have infinite intersection with both S and S. If there were no such i, then
S (and hence R) would be intrinsically computable, contrary to hypothesis.
(In particular, aside from finitely many elements, S would be definable by a
quantifier-free formula using parameters from Ds.)

Fix such an i. It remains to show that there exist bi and ci in Bσi
−Ds, one

in S and the other not, such that

EG(bi, ci) ⇐⇒ EH(xi, yi).

Suppose xi and yi are adjacent in H. Let a and a be the least elements of
S∩ (Bσi

−Ds) and S∩ (Bσi
−Ds) respectively. If a and a are not adjacent in G,

then let a′ be an element of Bσi
−Ds adjacent to both a and a. (By Theorem

3.1, such an a′ must exist.) If a′ ∈ S, then a′ and a are the desired elements;
if a′ ∈ S, take a′ and a instead. The proof when xi and yi are not adjacent is
completely analogous.

The existence of bj and cj for each j 6= i is a similar use of Theorem 3.1,
noting that every Bσ, being infinite, must have infinite intersection with either
S or S. (We also use here the fact that no xj or yj is adjacent to any xm or ym

with m 6= j, by the choice of xj and yj above.) This completes Step 1.
In Step 2, let ρ1, . . . , ρn be all binary functions whose domain is precisely

W ′
s+1. For every j ≤ n, choose the least element zj of Zρj−W ′

s+1 and enumerate
zj into Ws+1. Now find the least element a of G −D′

s+1, and fix the i ≤ k such
that a ∈ Bρi

. Set ai = a and define g(ai) = zi, thus putting ai into Ds+1. (This
will ensure that g has domain ω.)

Then, for every j 6= i in order, starting with j = 1, find the least aj ∈
G −D′

s+1 which lies in Bρj and satisfies

EG(aj , am) ⇐⇒ EH(zj , zm)

for every m < j and for m = i. (By Theorem 3.1, G contains such an aj .) Add
aj to Ds+1 and set g(aj) = zj . The condition above guarantees that this g is
still a partial isomorphism. Continue until j = n. This completes Step 2 and
stage s + 1.

Sublemma 3.7 The finite sets Ws are computable uniformly in s. (Specifically,
canonical indices for these sets are computable uniformly in s.)
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Proof. We use induction on s, starting with the empty set W0. Let Ws =
{y1, . . . , yn}, from which we can compute the list σ1, . . . , σk of all binary func-
tions with domain Ws. (So k = 2n.) During Step 1 of stage s + 1, we define
W ′

s+1 to contain Ws and the two smallest elements of each Zσj
−Ws satisfying

computable conditions. Similarly, during Step 2, we define Ws+1 to contain all
of W ′

s+1 and the least element of each Zρj − W ′
s+1. Thus the choice of each

element added to Ws+1 is entirely computable, with no use of g or any S- or
C-oracle, so we have an algorithm, uniform in s, for computing the canonical
index for Ws+1.

The entire construction is C-computable, and for all a ∈ G, once a appears
in Ds, g(a) is never redefined. Thus g is C-computable. The construction
makes clear that g respects the edge relation on the graphs G and H. To see
that dom(g) = ω, suppose that a is the least element of G − dom(g). Then at
some stage s, all smaller elements will lie in Ds, and at stage s + 1, a will be
chosen as ai in Step 2 and will enter Ds+1. Also, every x ∈ H will eventually
be chosen as either aj or bj or cj for some j, since in Step 2 we always choose
the least available element. Thus g is bijective, hence an isomorphism from G
to H. Moreover, since g and S are both C-computable, the bijectivity makes
g(S) ≤T C.

To see that C ≤T g(S), fix any s. By Sublemma 3.7, we can compute Ws

uniformly in s, so we can compute the list σ1, . . . , σk of all binary functions
whose domain is Ws. Also, Zσj

is computable uniformly in j. For each j ≤ k,
find the two least elements xj < yj of Zσj

− Ws satisfying the (computable)
conditions for inclusion in Ws+1. By our construction, there will be exactly one
i ≤ k such that {xi, yi} intersects both g(S) and g(S), and our coding at the
end of Step 1 ensures that

s ∈ C ⇐⇒ xi ∈ g(S).

Thus C ≤T g(S), proving Proposition 3.6 for unary relations R.
For relations of arbitrary (finite) arity, the proof is essentially the same. At

each stage, we consider n-types instead of 1-types, with the finite set Ws as
parameters. Once again, there are only finitely many such types. We ignore
those types realized by an n-tuple of parameters; all others are realized by
infinitely many n-tuples from H. Since R is not intrinsically computable, we
can find one of these types which is realized both by an element of R and by
an element of R. This allows us to do the coding, and the rest of the proof
proceeds exactly as for unary relations.

For the record, we add the following lemma.

Lemma 3.8 Let R be a relation on the random graph G. The following are
equivalent:

(1) R is intrinsically computable.

(2) There are only finitely many strings σ ∈ 2<ω such that both Zσ ∩ R and
Zσ ∩R are infinite.
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(3) R is definable with parameters in G.

(4) R is definable by a quantifier-free formula with parameters in G.

The equivalence of (1) and (4) for Boolean algebras was proven by Downey,
Goncharov, and Hirschfeldt in [4], and the same result for linear orders was
proven by Moses in [18].

Proof. (1) implies (2) because, if there were infinitely many such strings, then
the proof of Proposition 3.6 would go through, precluding intrinsic computabil-
ity. Next, assume (2), and pick an n such that no σ of length ≥ n has infinite
intersection with both R and R. Then, except for finitely many nodes in G,
membership of x in R is determined by which set Zσ (with σ ∈ 2n) contains x.
Thus R is definable (by a quantifier-free formula) with parameters for the nodes
0, . . . , n−1 and the finitely many exceptions, so (2) implies (4). (3) is equivalent
to (4) because G has quantifier elimination, and (4) immediately implies (1).

Proposition 3.9 Let R be any finitary relation on any computable copy G̃ of the
random graph. Then there is a structure (and indeed a graph) whose spectrum
is precisely DgSpG̃(R).

Proof. If R is intrinsically computable, then any finite graph can serve as the
required structure. Otherwise DgSpG̃(R) is upward-closed, by Proposition 3.6,
and Sublemma 2.14 yields the desired structure S. This S is a structure in the
language of graphs with an additional relation symbol, but by Theorem 3.4,
there exists a graph with the same spectrum as S. This proves the proposition.

Theorem 3.10 Let D be any collection of Turing degrees. The following are
equivalent:

(1) D is the spectrum of some countable structure in some finite language.

(2) D is the spectrum of some countable graph.

(3) D is the degree spectrum of some unary relation R on the random graph
G.

(4) For every n ≥ 1, D is the degree spectrum of some n-ary relation on the
random graph G.

(5) For some n ≥ 1, D is the degree spectrum of some n-ary relation on the
random graph G.

Proof. (1) implies (2) by Theorem 3.4, (2) implies (3) by Corollary 3.3, (3)
implies (4) by taking the n-ary relation to be R×ωn−1, (4) implies (5) trivially,
and (5) implies (1) by Proposition 3.9.

For infinite languages, almost the same statement is possible; we need only
worry about singleton spectra, which correspond to trivial structures, by The-
orem 1.4. Apart from these, the proof is identical to that of Theorem 3.10.
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Theorem 3.11 Let D be any collection of Turing degrees. The following are
equivalent:

(1) D is the spectrum of some nontrivial countable structure in some com-
putable language.

(2) D is the spectrum of some nontrivial countable graph.

(3) D is the degree spectrum of some unary relation R on the random graph
G, such that R is not intrinsically computable. (Recall that Lemma 3.8
characterizes intrinsic computability for such R.)

(4) For every n ≥ 1, D is the degree spectrum of some n-ary relation on the
random graph G which is not intrinsically computable.

(5) For some n ≥ 1, D is the degree spectrum of some n-ary relation on the
random graph G which is not intrinsically computable.

4 Further Questions

It is natural to ask whether there are spectrally universal structures for theories
besides the theory of linear orders and the theory of graphs. The most obvious
candidate is the theory of Boolean algebras, for which the computable atomless
Boolean algebra B would presumably be the spectrally universal structure, if one
exists. This structure is the subject of current work by Csima, Harizanov, Miller,
and Montalbán in [3], who conjecture that it is indeed spectrally universal.

The random graph and the countable dense linear order are both Fräıssé
limits for the theories in question. Both of these theories are ∀-axiomatizable,
and both exist in relational languages. By definition, the Fräıssé limit of the
class C of all finite models of such a theory T is a countable or finite structure
S such that every model in C is isomorphic to a finite substructure of S, and
such that every isomorphism between finite substructures of S extends to an
automorphism of S. (S is sometimes also called the universal homogeneous
structure for C.) S is unique up to isomorphism; its existence requires that
the class C satisfy certain properties. The definition can be extended to non-
relational languages as well; see [12] for details.

Building on Sections 2 and 3, we ask whether in other theories T , the Fräıssé
limit of the class of finite models of T might also be spectrally universal (with the
possibly-necessary additional assumption that the Fräıssé limit be computably
presentable). Such Fräıssé limits seem like a natural topic for computable model
theory in and of themselves, since they lend themselves to finite approximation
very easily, yet we are not aware of consideration of computability and Fräıssé
limits anywhere in the literature up until the current work [3].

Boolean algebras differ from graphs and linear orders in that the latter two
exist in purely relational languages and are ∀-axiomatizable. Hence any subset of
a graph is itself a graph, under the restriction of the edge relation, and similarly
for linear orders. For Boolean algebras this is false, and making the language
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relational would require the use of ∀∃-axioms. However, Boolean algebras are
uniformly locally finite, meaning that every subset of size n generates a Boolean
subalgebra of size computably bounded in n, specifically of size ≤ 22n

. This
means that B really is the Fräıssé limit of the class of finite Boolean algebras,
and makes B the natural next subject in the study of spectral universality.

Lemma 1.2 states an obvious corollary of spectral universality of a structure
S for a theory T : that all spectra of models of T can be realized as spectra of
unary relations on S. We remind the reader that for distinct theories T , the
set of spectra of models of T may well be different. For example, the upper
cone above any noncomputable degree is the spectrum of some graph, but not
of any linear order, nor of any Boolean algebra, by results of Richter in [19].
Moreover, Downey and Jockusch showed in [5] that every low Boolean algebra
is isomorphic to a computable one, whereas a low linear order need not have a
computable copy, by results of Jockusch and Soare ([13]) and Miller ([17]). Thus
the sets of possible spectra are distinct for these two theories as well. Other
more trivial differences for distinct theories are easily found: for instance, the
theory of infinite linear orders excludes the spectrum {0}, by Theorem 1.4.

For the random graph, Section 3 answers the converse as well: all unary
relations on the random graph have spectra which are realized as the spectrum
of some countable graph. For the computable dense linear order L, however,
this question remains open: must the degree spectrum of a unary relation on L
be realizable as the spectrum of a linear order? Corollary 2.13 shows that some
countable structure S (indeed in a finite language) realizes the spectrum of any
given unary relation on L, and Theorem 2.10 and Proposition 2.16 rule out the
obvious approaches for trying to build a relation whose degree spectrum is not
the spectrum of any linear order.

We do note, using our results from Section 2, that the converse of Lemma
1.2 fails for B. The proof uses the following lemma.

Lemma 4.1 For every countable linear order A, there exists a unary relation
R on the Boolean algebra B such that DgSpB(R) = Spec(A).

Proof. Theorem 2.1 yields a subset M ⊂ Q whose spectrum (as a relation on
(Q, <)) is precisely Spec(A). We view B as the Boolean algebra of finite unions
of left-closed, right-open intervals of rational numbers. Define

R = {x ∈ B : x is of the form (−∞, a) with a ∈ M}.

Clearly R ≡T M . Moreover, if (Q, <, N) ∼= (Q, <, M), then the analogous set
S will satisfy (B, S) ∼= (B, R) and S ≡T N . Thus Spec(A) ⊆ DgSpB(R).

On the other hand, for any set S with (B, S) ∼= (B, R), we have (S,⊂) ∼=
(R,⊂) ∼= A, where ⊂ is the standard proper containment relation on B, hence
computable:

x ⊂ y ⇐⇒ x 6= (x ∨ y) = y.

Then Spec(A) must contain deg(S), exactly as argued in the proof of Theorem
2.1, so DgSpB(R) ⊆ Spec(A). (Here we have again used Lemma 1.6.)
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Corollary 4.2 There exists a unary relation R on the Boolean algebra B such
that DgSpB(R) is not the spectrum of any Boolean algebra.

Proof. Pick a linear order A whose spectrum contains a low degree but does
not contain 0. (By a result of Jockusch and Soare in [13], such orderings exist.)
Apply Lemma 4.1 to A to yield a relation R on B. Then DgSpB(R) contains
a low degree but not 0. However, in [5] Downey and Jockusch showed that no
Boolean algebra can have such a spectrum. This proves the corollary.

The relation built in Corollary 4.2 is not a Boolean subalgebra of B, and
Antonio Montalbán has asked whether there exists a Boolean subalgebra of B
whose spectrum (as a relation on B) is not that of any Boolean algebra.
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