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Abstract

The central topic of the paper is the learnability of the recursively enumerable subspaces of V∞/V , where V∞ is the standard
recursive vector space over the rationals with (countably) infinite dimension and V is a given recursively enumerable subspace
of V∞. It is shown that certain types of vector spaces can be characterized in terms of learnability properties: V∞/V is behav-
iourally correct learnable from text iff V is finite-dimensional, V∞/V is behaviourally correct learnable from switching the type
of information iff V is finite-dimensional, 0-thin or 1-thin. On the other hand, learnability from an informant does not correspond
to similar algebraic properties of a given space. There are 0-thin spaces W1 and W2 such that W1 is not explanatorily learnable
from an informant, and the infinite product (W1)∞ is not behaviourally correct learnable from an informant, while both W2 and
the infinite product (W2)∞ are explanatorily learnable from an informant.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In Gold’s framework of inductive inference a learner, presented with data about a recursively enumerable language
(equivalently, a recursively enumerable set), is allowed to make finitely many incorrect hypotheses before converging
to a correct one. A central theme in inductive inference is the relation between learning from all data, that is, learning
from an informant, and learning from positive data only, that is, learning from text. Learning from text is much more
restrictive than learning from an informant, as shown by Gold [7]. Gold proved that the collection consisting of an
infinite set together with all of its finite subsets can be learned from an informant, but not from text. On the other hand,
Sharma [23] established that combining learning from an informant with the restrictive convergence requirement that
the first hypothesis is already the correct one implies learnability from text.

Hence it is natural to investigate what reasonable notions might exist between these two extremes. Using a non-
recursive oracle as an additional tool cannot completely close the gap. Even the most powerful oracles do not allow
learning all computably enumerable sets from text [9], while the oracle for the halting set K does for learning from
an informant. Restrictions on texts reduce their irregularity and allow them to provide further information implicitly
[21,26]. Texts can be strengthened by permitting additional queries to retrieve information not contained in standard
texts [13]. Ascending texts allow the learner to reconstruct complete negative information in the case of infinite sets,
but might fail to do so in the case of finite sets. Thus, the class consisting of an infinite set together with all of its finite
subsets remains unlearnable even for learning from ascending text.

Motoki [16] and later Baliga, Case and Jain [3] added to the positive information on the language L to be learned
some, but not all, negative information. They considered two ways of supplying negative data: (a) there is a finite set
of negative information S ⊆ L such that the learner always succeeds in learning the set L from input S plus a text
for L; (b) there is a finite set S ⊆ L such that the learner always succeeds in learning the set L from a text for L plus
a text for a set H , disjoint from L and containing S, that is, satisfying S ⊆ H ⊆ L. Since in case (a) one can learn all
recursively enumerable sets by a single learner, the notion (b) is more interesting.

Jain and Stephan [10] treated positive and negative data symmetrically and defined notions less powerful than the
ones in [3] that we discussed. The most convenient way to introduce these notions is to use the idea of a minimum
adequate teacher as, for example, described by Angluin [2]. Among the learning concepts considered by Jain and
Stephan [10], the following one turned out to be most important. The learner requests positive or negative data from
the teacher who, whenever almost all requests are of the same type, has to eventually reveal all information of that
type.

In the present work, this type of information is applied to a natural model theoretic setting: learning recursively
enumerable subspaces of a given recursive vector space. Such a subspace is given as the quotient space of the stan-
dard recursive infinite-dimensional space over the rationals with the dependence algorithm, V∞, and its recursively
enumerable subspace V . Alternatively, this can be viewed as learning the following class of vector spaces:

L(V ) = {
W : V ⊆ W ⊆ V∞ ∧ (W is recursively enumerable)

}
.

This class forms a filter in the lattice L(V∞) of all recursively enumerable subspaces of V∞. Stephan and Ventsov
[25] have previously shown that, in the case of learning all ideals of a recursive ring, learnability from text has strong
connections to the algebraic properties of the ring. Here, it also turns out that the two notions of learnability of the
class L(V ), from positive data or from switching type of information, have corresponding algebraic characterizations.
On the other hand, we show that supplying complete information, that is, learning from an informant, no longer has
such nice algebraic characterizations. One of the reasons is that, while switching type of information provides more
learning power than giving positive information only, it is still much weaker than providing information from an
informant.

2. Preliminaries

2.1. Notions from recursion theory

Let N be the set of natural numbers. Sets are often identified with their characteristic functions, so we may write
X(n) = 1 for n ∈ X and X(n) = 0 for n ∈ X. A subset of N is recursive if its characteristic function is recursive. A set
of natural numbers is recursively enumerable if it is the domain of a partial recursive function or, equivalently, the
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range of a partial (even total) recursive function. Let ϕ0, ϕ1, ϕ2, . . . be a fixed effective enumeration of all unary partial
recursive functions on N, where ϕe is computed by the Turing program with Gödel index (code) e. We write ϕe,s(x) =
y if x, y, e < s and y is the output of ϕe(x) in up to s steps of the Turing program with code e running on input x.
For e, s ∈ N, let We be the domain of ϕe and We,s be the domain of the finite function ϕe,s . Then W0,W1,W2, . . . is
a fixed effective enumeration of all recursively enumerable subsets of N. A Turing degree is recursively enumerable
if it contains a recursively enumerable set. Let 〈·,·〉 be a fixed recursive 1-1 and onto pairing function, i.e., 〈e, x〉 is
the natural number that codes the pair (e, x). We define the set K = {〈e, x〉: e ∈ N ∧ x ∈ We}. The set K is a version
of the universal halting problem. It is a recursively enumerable and nonrecursive set; its Turing degree is 0′. A Turing
degree a � 0′ is high if its jump has the highest possible value, that is, a′ = 0′′. A set M ⊆ N is called maximal if M is
recursively enumerable and its complement M is cohesive [20, Definition III.4.13]. A set M is cohesive if it is infinite
and there is no recursively enumerable set W such that W ∩M and (N−W)∩M are both infinite. Every maximal set
has a high Turing degree. Conversely, every recursively enumerable high Turing degree contains a maximal set. This
characterization was established by Martin. For more information, see [12,22,24].

We consider only countable algebraic structures and recursive first-order languages. A countable structure for a
recursive language is recursive if its domain is recursive and its operations and relations are uniformly recursive. An
example of a recursive structure is the field (Q,+, ·) of rational numbers.

2.2. Notions from algebra

Let (F,+, ·) be a fixed recursive field. Then (V∞,+, ·) is a recursive ℵ0-dimensional vector space over (F,+, ·),
consisting of all finitely nonzero infinite sequences of elements of F , under pointwise operations. Metakides and
Nerode [14] showed that the study of recursive and other algorithmic vector spaces can be reduced to the study of
V∞ and its subspaces. A standard (default) basis for V∞ is {ε0, ε1, . . .}, where εi is the infinite sequence with the
ith term 1 and all other terms 0. For a recursively enumerable vector space, having a recursively enumerable basis
is equivalent to the existence of a dependence algorithm. A dependence algorithm decides whether any finite set of
vectors is linearly dependent. If B is a basis and v a vector, then the support of v with respect to B is defined to be the
least subset of B whose linear closure (span) contains v.

Every vector in V∞ can be identified with its Gödel code, so the set V∞ can be identified with N. A subspace
V of V∞ is recursive (recursively enumerable, respectively) if its domain is a recursive (recursively enumerable,
respectively) subset of the set V∞. In that case, we also say that the quotient space V∞/V is recursive (recursively
enumerable, respectively). Let W0,W1, . . . be an effective enumeration of all recursively enumerable subsets of V∞.
For every e, let Ve be the vector space generated by We, that is, the linear closure of We. Then V0,V1, . . . is an
effective enumeration of all recursively enumerable subspaces of V∞. The set of all recursively enumerable vector
subspaces of V∞ is denoted by L(V∞). The class L(V∞), together with the operations of intersection and sum of
vector spaces, forms a modular nondistributive lattice. Let V be a fixed recursively enumerable subspace of V∞.
By L(V ) we denote the lattice of all recursively enumerable spaces W such that V ⊆ W ⊆ V∞. These spaces can
be viewed as representatives of the corresponding classes of recursively enumerable subspaces of V∞/V . For more
information, see [19]. In the next two sections we assume that the field (F,+, ·) is infinite. Without loss of generality,
we can assume that it is (Q,+, ·).

Vector spaces are special cases of the so-called closure systems or matroids. A matroid consists of a set X equipped
with a closure operator Φ , which satisfies certain axioms. In the case of vector spaces, the closure operator is the linear
closure of sets. The full axiomatization of matroids will be given in Section 5.

2.3. Notions from learning theory

The main setting in inductive inference is that the learner receives more and more data on an object to be learned
and outputs a sequence of hypotheses that converges to a description of the object. In general, learning can be viewed
as a dialogue between the teacher and the learner, where the learner must succeed in learning, provided the teacher
satisfies a certain protocol. The formalization has two aspects: convergence criteria and teacher constraints.
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Definition 2.1. [7,10] A class L of subsets of V∞ is learnable according to the criteria specified below iff there is
a (total) recursive learner M , which alternately requests new data and outputs hypotheses, and which learns every
W ∈ L, whenever the corresponding teacher meets the following requirements.

• All models of learning have in common that the learner makes infinitely many requests that are always either of
type 0 (requesting negative data) or of type 1 (requesting positive data). The teacher answers to each request of
type y, either by giving a pause symbol or a datum x such that W(x) = y.

• Learning from Text: The learner requests only information of type 1 and the teacher eventually provides all x with
W(x) = 1.

• Learning from Negative Text: The learner requests only information of type 0 and the teacher provides eventually
all x with W(x) = 0.

• Learning from Switching Type of Information: The learner is allowed to switch the type of information requested.
However, whenever the learner almost always requests information of the same type y (y ∈ {0,1}), the teacher
eventually gives the learner all x with W(x) = y.

• Learning from an Informant: The learner alternately requests information of type 0 and type 1, and the teacher
eventually provides every x ∈ V∞ after some request of type W(x).

The hypotheses output by the learner are indices in the effective enumeration of recursively enumerable subspaces
of V∞. Following the above protocol of the dialogue with the teacher, the learner M has to converge in one of the two
models below, where e0, e1, . . . is the infinite sequence of hypotheses output by M during the learning dialogue.

• Explanatory Learning: For almost every n, the hypothesis en is the same e, which is an index for W (i.e., W = We).
This convergence is also called syntactic.

• Behaviourally Correct Learning: For almost every n, the hypothesis en is an index for W , although these indices
en are permitted to be different. This convergence is also called semantic.

The symbols Txt, Sw and Inf stand for the protocols of learning from text, from switching type of information and
from an informant, respectively. The symbols Ex and BC stand for explanatory learning and for behaviourally correct
learning, respectively. The learner is assumed to be algorithmic unless it is explicitly stated otherwise. For example,
L is SwBC-learnable iff there is a recursive learner M which for every W ∈ L and every teacher for W , respecting the
Sw-protocol for the dialogue with the learner, outputs almost always a hypothesis for W .

Jain and Stephan [10] introduced three main notions for switching protocols. Among these three notions, the one
denoted by NewSw in [10] turned out to be most appropriate to model switching types of information. Since the other
notions are not considered here, we just write SwEx and SwBC for NewSwEx and NewSwBC, respectively.

Theorem 2.2. Assume that there is W ∈ L such that for every finite set D, there are U,U ′ ∈ L such that U ⊂ W ⊂ U ′
and D ∩ U = D ∩ W = D ∩ U ′. Then L cannot be SwBC-learned.

Proof. Let M be a given SwBC-learner. Let � be the ordering induced by some fixed recursive 1-1 enumeration
of V∞, that is, x � y iff x is enumerated before y or x = y. Then there is a teacher (possibly nonalgorithmic) who can
present data to M in the following way which confuses M .

1. If the current hypothesis of M is correct for W , and there is a finite sequence of data, that is, a sequence x1, . . . , xk

of some length k, corresponding to M’s requests y1, y2, . . . , yk , such that after concatenating this sequence the
hypothesis of M is incorrect, then the teacher gives x1 from one of the shortest such sequences.

2. If the current hypothesis of M is incorrect and y ∈ {0,1} is the data type of M’s next request, then output the
least x, with respect to the ordering �, which has not yet appeared in the sequence of data given to M and such
that W(x) = y.

3. In the remaining case, all future hypotheses to requests of M for data consistent with W result in hypotheses
for W . We consider the following two subcases.



V.S. Harizanov, F. Stephan / Journal of Computer and System Sciences 73 (2007) 109–122 113
• If U and U ′ have already been chosen, then take the least x with respect to the ordering �, which has not yet
appeared in the data given by the teacher, and which satisfies x ∈ U in the case of a request of type 1 and x /∈ U ′
in the case of a request of type 0. If such x does not exist, then give the pause symbol #.

• Otherwise, the learner is given the pause symbol #, while U and U ′ are chosen as follows. Let D be the set of
positive data given to the learner so far. Now, for this D one just chooses U,U ′ according to the condition in
the theorem: U ⊂ W ⊂ U ′ and D ∩ U = D ∩ W = D ∩ U ′.

For the verification that M does not learn L, assume that M infinitely often conjectures a hypothesis that is incorrect
for W . Then the second case applies infinitely often, and the teacher gives either all elements or all nonelements of W

to the corresponding requests. Otherwise, from some point on the current hypothesis is correct for W , and the learner
ends up in the third case, and U and U ′ are eventually chosen so that U ⊂ W ⊂ U ′. If infinitely often data of type 1 are
requested, then M sees all elements of U and some nonelements of U ′. If infinitely often data of type 0 are requested,
then M sees all nonelements of U ′ and some elements of U . In the first case, M is expected to learn U , in the second
case, M is expected to learn U ′. However, in both cases, M almost always conjectures the set W , and hence does not
learn L from switching.

Note that this proof holds for both convergence criteria, that is, for SwEx and SwBC. �
The condition of the previous theorem also implies SwBC-nonlearnability with respect to general learners, the ones

that are not required to be recursive. The reason is that the proof does not require that M is recursive.

3. Learnability and types of quotient spaces

We will show that for learning from text and learning from switching type of information it is possible to charac-
terize learnability of the recursively enumerable subspaces of the quotient space V∞/V in terms of natural algebraic
properties of V∞/V .

Theorem 3.1. The following statements are equivalent for any recursively enumerable subspace V ⊆ V∞.

(a) The dimension of V∞/V is finite.
(b) The class L(V ) is TxtEx-learnable.
(c) The class L(V ) is TxtBC-learnable.
(d) The class L(V ) is SwEx-learnable.

Proof. (a) ⇒ (b) Assume that the dimension of V∞/V is finite. Then there is an algorithm that can check for every
finite set D ⊂ V∞ and every vector x ∈ V∞, whether x is in the linear closure of V ∪ D. As a consequence, the
following learner M is recursive.

• Initially set D = ∅.
• The current hypothesis of M is always the linear closure of V ∪ D; the hypothesis changes iff a new element is

put into D.
• Whenever the teacher provides a datum x, the learner M checks whether x is in the linear closure of V ∪ D:

(i) if this is the case, then M does not change D and, therefore, keeps the current hypothesis;
(ii) otherwise, M updates D to D ∪ {x} and then also updates its hypothesis.

Since the dimension of V∞/V is finite, every space in L(V ) is generated by V ∪ D for some finite set D. It is easy
to verify that the above algorithm finds the set D in the limit. Furthermore, M makes a mind change only at stages at
which the current set D properly increases. Thus, M does not make more mind changes than the dimension of V∞/V ,
and so the algorithm converges.

(b) ⇒ [(c) and (d)] This follows directly from the definitions.
(c) ⇒ (a) Assume that L(V ) is TxtBC-learnable. Furthermore, assume that V �= V∞. Let v0, v1, . . . be a recursive

enumeration of V∞, and let Un be the vector space generated by V ∪ {v0, v1, . . . , vn}. Clearly, V∞ is the ascending
union of all spaces Un. It follows from the basic results on learning from text in [7] that such a class can only be



114 V.S. Harizanov, F. Stephan / Journal of Computer and System Sciences 73 (2007) 109–122
learned if the ascending chain is finite. That is, there is m such that Un = Um for all n � m. It follows that V∞ = Um,
so the dimension of V∞/V is at most m + 1, hence finite.

(d) ⇒ (a) Assume that L(V ) is SwEx-learnable. For a contradiction, assume that V∞/V is infinite-dimensional. It
is enough to show that V is recursive, since one can find an infinite recursive basis {w0,w1, . . .} of a vector space U

with U ∩ V = {0}. Let W be the linear closure of V ∪ {wx : x ∈ K}. The space W is not recursive, and we can now
use the following argument below to show that L(W) is not SwEx-learnable. Hence L(V ) is also not SwEx-learnable.

Let M be a given recursive learner and let � be the ordering defined on V∞ as in Theorem 2.2. There is a teacher
for M who does the following.

1. If the current hypothesis of M is old and there is a finite sequence x1, x2, . . . , xk of data, corresponding to M’s
requests y1, y2, . . . , yk , such that after concatenating this sequence M changes its hypothesis, then the teacher
gives x1 from a shortest such sequence.

2. If the current hypothesis is new, then, on a request for a datum of type y, the teacher returns the least x (with
respect to �) such that x has not yet been given to the learner and V (x) = y.

Assume that the protocol continues. Then the learning process goes infinitely often through both cases. It follows that
the learner has made infinitely many hypotheses, and that the teacher has either given the learner all elements of V

on requests of type 1, or all elements of V on requests of type 0. Thus, the learner is given the required information
on V , without converging syntactically. Hence, M does not SwEx-learn L(V ).

Therefore, there is a stage after which there will be no further mind changes, while data consistent with V continue
to be fed to M . We can assume that the current hypothesis is one for V , since otherwise, M would not learn V . Let N

be the set of negative data and P the set of positive data seen so far—both sets are, of course, finite.

• Whenever the learner requests positive data, the teacher can provide some elements of V in a way that the learner
requests a negative datum after finitely many steps. Let W be a recursively enumerable and proper superspace
of V , which is disjoint with N—such a space exists since V∞/V has infinite dimension. Thus, there is an infinite
sequence of data on which the learner converges to a hypothesis for V , and the teacher gives as positive data only
elements of V , and as negative data all nonelements of W . More precisely, the learner requests infinitely often
negative data, and after receiving elements from N for some time (up to the stage described above), the learner
from that point on receives always the least element x /∈ W that the learner has not seen before. Therefore, M does
not SwEx-learn W .

• Otherwise, the teacher can give M finitely many data consistent with V in such a way that M never later requests
data of type 0. Let D be the set of data of type 0 seen so far. Now, one can enumerate V as follows: x /∈ V iff
one can either continue to feed M with data from the linear closure of V ∪ {x} until a mind change occurs, or a
datum of type 0 is requested, or some element of D is enumerated into the linear closure of V ∪ {x}. Hence V is
recursive.

This completes the proof that if the dimension of V∞/V is infinite, then L(V ) is not SwEx-learnable. �
Metakides and Nerode [14] defined a (recursively enumerable) space V ∈ L(V∞) to be maximal if the dimension

of V∞/V is infinite, and for every recursively enumerable space W such that V ⊆ W ⊆ V∞, we have that either
V∞/W is finite-dimensional or W/V is finite-dimensional. Metakides and Nerode used Friedberg’s e-state method to
construct a maximal space. In addition, Shore (see [14]) established that every maximal subset of a recursive basis of
V∞ generates a maximal subspace of V∞.

Kalantari and Retzlaff [11] defined a space V ∈ L(V∞) to be supermaximal if the dimension of V∞/V is infinite,
and for every recursively enumerable space W ⊇ V , either W = V∞ or W/V is finite-dimensional. Furthermore, for
a natural number k � 0, Kalantari and Retzlaff [11] introduced the concept of a k-thin space and showed its existence.
A space V ∈ L(V∞) is k-thin if the dimension of V∞/V is infinite, and for every recursively enumerable subspace
W ⊇ V , either the dimension of V∞/W is at most k or the dimension of W/V is finite, and there exists U ∈ L(V )

such that the dimension of V∞/U is k. Hence the supermaximal spaces are the same as 0-thin spaces.
Furthermore, Hird [8] introduced the concept of a strongly supermaximal space. A space V ∈ L(V∞) is strongly

supermaximal if the dimension of V∞/V is infinite, and for every recursively enumerable subset X ⊆ V∞ − V , there
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exists a finite subset D ⊆ V∞ such that the set X is contained in the linear closure of V ∪D. Hird showed that strongly
supermaximal spaces exist. He also established that every strongly supermaximal space is supermaximal, and that not
every supermaximal space is strongly supermaximal. Downey and Hird [4] showed that strongly supermaximal spaces
exist in every nonzero recursively enumerable Turing degree.

Theorem 3.2. The class L(V ) is SwBC-learnable iff either V∞/V is finite-dimensional or V is 0-thin or 1-thin.

Proof. First assume that V∞/V has infinite dimension and that V is neither 0-thin nor 1-thin. Then there is a recur-
sively enumerable space W such that V ⊂ W ⊂ V∞, the quotient space W/V has infinite dimension and V∞/W has
dimension at least 2. In particular, there are vectors x1, x2 such that x1, x2 /∈ W and x1, x2 are linearly independent
over W . Now, for every finite set D of vectors, one can choose a positive integer n such that none of the vectors
in D − W is in the linear closure of W ∪ {x1 + nx2}. Furthermore, the linear closure of V ∪ (W ∩ D) has finite
dimension over V , and thus is different from W . So the condition in Theorem 2.2 is satisfied, and hence L(V ) is not
SwBC-learnable.

To prove the converse, we have to consider only the cases of 0-thin and 1-thin spaces, since Theorem 3.1 deals
with the case when the dimension of V∞/V is finite. In these two cases, there is a minimal space W such that V ⊆ W

and W/V is infinite-dimensional. Furthermore, if V is 0-thin, we have that W = V∞. If V is 1-thin, we have that
W ⊂ V∞ and there is no other such recursively enumerable vector space U with the quotient space U/V having
infinite dimension. This property allows us to give the following learning algorithm.

• The learner M requests data of type 0 until one of them is enumerated into W . The learner outputs the hypothesis
for V∞ while no data of type 0 (except pause signs) have shown up, and the hypothesis for W when the first
datum of type 0 shows up.

• If some datum of type 0 has shown up in W so far, then M requests data of type 1 and M’s current hypothesis is
the linear closure of V ∪ E, where E is the set of all data of type 1 seen so far.

In the cases when the learner has to learn V∞ or W , the learner M requests only data of type 0. If no datum of type
0 is given, M’s hypothesis for V∞ is correct. If some data of type 0 are given, but they are all in the complement
of W , then M’s hypothesis for W is correct. In the remaining case, the vector space to be learned is the linear closure
of V ∪D for some finite set D. As that space cannot cover W , a datum of type 0 and in W must be given and it causes
that from that time on M requests only data of type 1. So the teacher must eventually reveal all elements of the linear
closure of V ∪ D, and after a certain stage, D is contained in the set E of current data used for M’s hypothesis. �
4. Learning vector spaces from an informant

The two notions of learning from an informant, InfEx and InfBC, do not seem to have algebraic characterizations
similar to the ones for learning from text in the previous section. In the case of 0-thin vector spaces, the class L(V )

consists just of V∞ and the vector spaces that are the linear closures of V together with finitely many other vectors.
Nevertheless, it depends on the actual choice of V whether the class L(V ) is InfEx-learnable. Furthermore, the infinite
product of 0-thin spaces (as formalized in Definition 4.2) can be InfEx-learnable. On the other hand, the infinite
product of 0-thin spaces can be non-InfBC-learnable.

For the next theorem, let us recall that K is the halting set, and its complement K is the divergence set.

Theorem 4.1. There is a strongly supermaximal vector space V such that K is uniformly enumerable relative to every
recursively enumerable vector space W with V ⊆ W ⊂ V∞. It will follow that L(V ) is InfEx-learnable.

Proof. The basic idea is to use the following property, which follows immediately from the definition of a strongly
supermaximal vector space.

• If for every recursively enumerable set W with W ∩ V = ∅, we have that W is contained in the linear closure of
V ∪ D for a finite set D, then either the dimension of V∞/V is finite or V is strongly supermaximal.
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The construction will be in stages. We will enumerate a basis A of V . We will also determine B such that A ∪ B

is a basis for the whole space V∞, and B has a recursively enumerable complement. Furthermore, there will be
uniformly recursive finite sets I〈i,j〉 such that i ∈ K iff there is j such that I〈i,j〉 ∩V has at least 〈i, j 〉+ 1 elements. In
the construction, only updated information is stated explicitly, while it is assumed that all other information remains
unchanged.

• Stage 0: Let B0 = {ε0, ε1, . . .} be the standard basis of V∞. Let A0 = ∅. Let (Ik)k∈N be a uniformly recursive
sequence of pairwise disjoint subsets of B0, where each Ik is of cardinality 3k.

• Stage s + 1 with s = 〈e,0, t〉: Assume that We,s and the linear closure of As are disjoint, and that there is an
element x ∈ We,s such that x is not in the linear closure of U = As ∪ I0 ∪ I1 ∪ · · · ∪ Ie. Assume that x is the least
such element. We choose the least basis element εk ∈ Bs − U such that εk is not in the support of x with respect
to the basis As ∪ Bs . We now update As and Bs by setting As+1 = As ∪ {x} and Bs+1 = Bs − {εk}.

• Stage s + 1 with s = 〈i, j, t〉, where j > 0: If i ∈ Ks and I〈i,j 〉 ∩ Bs �= ∅, then let As+1 = As ∪ (I〈i,j〉 ∩ Bs) and
Bs+1 = Bs − I〈i,j〉.

We note that if We and V are disjoint, then every x ∈ We is in the linear closure of V ∪ I0 ∪ I1 ∪ · · · ∪ Ie. The set
I0 ∪ I1 ∪ · · · ∪ Ie is finite and the linear closure of V ∪ We has finite dimension over V . Thus, the space V is strongly
supermaximal.

Assume that W ∈ L(V∞) is such that V ⊆ W ⊂ V∞. We will show that K is uniformly enumerable relative to W .
First we conclude that the space W/V has finite dimension, say d .

Given any i, let j be large enough that 〈i, j 〉 > d . There are at most 〈i, j 〉 members of I〈i,j〉 that might be moved
from B , but fail to be enumerated into A at some stage 〈e,0, t〉 + 1 for a suitable t . There are at least 2 · 〈i, j 〉 other
vectors in I〈i,j〉. These vectors are enumerated into A if i ∈ K , while they all remain in B if i /∈ K .

In the case when i ∈ K , at most 〈i, j 〉 members of I〈i,j〉 can be outside V . It follows that at most 〈i, j 〉 members of
I〈i,j〉 are in the complement of W .

In the case when i /∈ K , at least 2 · 〈i, j 〉 members of I〈i,j〉 permanently remain in B . Since A ∪ B is a basis of V∞,
for every F ⊆ B , the dimension of the linear closure of V ∪ F over V is the cardinality of F . Thus, there can be at
most d elements of I〈i,j〉 ∩ B in W . Since d < 〈i, j 〉, at least 〈i, j 〉 + 1 members of I〈i,j〉 are in the complement of W .

Thus, it follows that for all recursively enumerable vector spaces W with V ⊆ W ⊂ V∞, we have: i ∈ K iff there
is j such that W ∩ I〈i,j〉 has at least 〈i, j 〉 + 1 elements.

The learning algorithm for L(V ) now uses the fact that the set {(e, x): x ∈ Ve} is many-one reducible to K via
a recursive function f . Without loss of generality, we may assume that V0 = V∞. The InfEx-learner now works
according to the following protocol. The learner requests alternately positive and negative data, and always outputs
the least e such that at stage s, every already seen datum x satisfies the following conditions:

• If x is a negative datum, then x /∈ Ve,s .
• If x is a positive datum, then there is no j such that at least 〈f (e, x), j 〉 + 1 negative data from the set I〈f (e,x),j 〉

have been seen so far.

If the set to be learned is V∞ itself, then the algorithm always conjectures 0, as long as no negative datum shows up.
Otherwise, for every wrong hypothesis e, one will either find an element x ∈ We that appears as a negative datum, or
an element x /∈ We that appears as a positive datum, but it is disproved by the reduction to the set of negative data. It
follows that every false intermediate hypothesis is eventually discarded, while a correct hypothesis is never given up.
The algorithm converges syntactically to the least index of the space to be learned. Hence the learner InfEx-learns
L(V ). �
Definition 4.2. For i ∈ N, let li be the linear mapping defined by li (εj ) = ε〈i,j〉 for every j ∈ N. Let Vlp be the linear
closure of the union l0(V ) ∪ l1(V ) ∪ · · · of linear projections. As usual, let L(Vlp) be the class of all recursively
enumerable superspaces of Vlp.

Proposition 4.3. There is a strongly supermaximal vector space V such that the class L(Vlp) is InfEx-learnable.
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Proof. Let V be constructed as in Theorem 4.1. The learning algorithm conjectures the full space V∞ until an i and
an x are found such that li (x) /∈ W for the space W to be learned. Such an x exists in the case when W �= V∞, since
the linear closure of the union of all subspaces li (V∞) is V∞. The learner now knows that li (V∞) ∩ W is the image
of some space U with V ⊆ U ⊂ V∞, and so the complement K of the halting set can be enumerated by observing
which of the basis vectors are in li (V∞) − W . Therefore, one can determine the halting set K , and hence recover the
elements that are not in a given set We. Thus, the learner always conjectures the least e such that We is consistent with
the data seen so far, and abandons e whenever either some vector x is enumerated into We, although the informant
says that x /∈ We, or it is deduced from the enumeration of K that some vector x is not in We, although the informant
said that x ∈ We. It is easy to see that this algorithm finds the correct index in the limit. �
Theorem 4.4. There is a strongly supermaximal vector space V such that the class L(V ) is not InfEx-learnable.

Proof. The construction is similar to the one in the proof of Theorem 4.1 in that it makes the constructed space V

strongly supermaximal, but it does not code any information about K . Instead, it tries to diagonalize infinitely often
against every potential recursive learner Mi . We have the following requirements.

• Requirement Seti : If Wi does not intersect the linear closure of A, then Wi is contained in the linear closure of
A ∪ F for some finite set F .

• Requirement Dimensioni : The dimension of V∞/V is at least i.
• Requirement Hypothesesi,j : While learning the linear closure of A, either Mi outputs at least j hypotheses, or

Mi fails to learn the vector space generated by A ∪ F for some finite set F .

At every stage of the construction, there are restraints associated with the requirements. The restraint R〈i,0〉 is used
for the requirement Seti , the restraint R〈i,1〉 for the requirement Dimensioni and the restraint R〈i,j〉, j � 2, for the
requirement Hypothesesi,j . Each restraint is a set, and Ti,s is the union of the restraint sets Rj,s with j < i.

• Stage 0: Recall that B0 = {ε0, ε1, . . .} is the standard basis of V∞. Let A0 = ∅. Furthermore, all restraints are
empty, that is, Ri = ∅ for i ∈ N.

• Stage s + 1 with s = 〈i,0, t〉 for some t : Let Vs be the linear closure of As , and let Us be the linear closure of
As ∪T〈i,0〉,s . If We,s ∩As = ∅ and We,s is not contained in Us , then let x be the least element in We,s −Us . Hence
x is the linear combination of finitely many elements in As ∪ Bs , where some y ∈ Bs − Us is in the support of x.
We enumerate x into A and remove the least such y from Bs , that is, we set As+1 = As ∪{x} and Bs+1 = Bs −{y}.

• Stage s + 1 with s = 〈i,1, t〉 for some t : Let R〈i,1〉,s consist of the first s elements in Bs . The sets As and Bs

remain unchanged.
• Stage s + 1 with s = 〈i, j, t〉 for some t and j � 2: Select a teacher who always gives the least datum of requested

type, not yet seen by the learner, and who gives the symbol # if there is no such datum. Now search for a finite
subset F ⊆ Bs − Ti,s and the linear closure Us of As ∪ F such that Mi , when given information from Us by the
chosen teacher, outputs at least j hypotheses during the first s rounds of learning. The search is lexicographic
over all subsets of the set of first s elements of Bs − Ti,s , starting with ∅. In the case when the search succeeds
with a parameter set F , let R〈i,j〉,s+1 be the set of all negative data seen until the j th hypothesis is output. We
enumerate F into A, that is, we set As+1 = As ∪ F and Bs+1 = Bs − F .

Note that when a requirement Hypothesesi,j with j � 2 is satisfied before the corresponding stage s, then there will
be no changes. Furthermore, one can verify, as in a standard finite injury priority construction, that every requirement
is either eventually satisfied or eventually not satisfied. Hence, from infinitely many stages of the form 〈i, j, t〉 + 1,
only finitely many can make changes. It is easy to verify that the requirements Seti and Dimensioni are eventually
met. Hence, V is strongly supermaximal.

If some requirement Hypothesesi,j is eventually not satisfied, then Mi converges to the same index on V and
on the space generated by V ∪ {v} for some v /∈ V . Thus, it fails to InfEx-learn some set in L(V ). Otherwise, Mi

outputs infinitely many hypotheses on the characteristic function of V and, therefore, does not converge syntactically.
Therefore, the class L(V ) is not InfEx-learnable. �
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Theorem 4.5. There is a strongly supermaximal space V such that L(Vlp) is not InfBC-learnable.

Proof. We can construct a strongly supermaximal space V such that the Turing degree of V (although recursively
enumerable) is not high (see [4]). We now consider for every recursive function f , the set Wf generated by the
subspaces l〈i,j〉(V ) when f (i) �= j , and by the subspaces l〈i,j〉(V∞) when f (i) = j . The characteristic function of Wf

can be computed with oracle V .
If M were an InfBC-learner for L(V ), then one could BC learn all recursive functions using the oracle V as follows.

One translates every informant for f into one for Wf , and every current hypothesis e for Wf into a hypothesis e′ for f ,
which on input i, outputs the first j such that ε〈i,j〉 ∈ We. However, such a learner with recursively enumerable Turing
degree that is not high cannot BC learn all recursive functions (see [6]). This contradiction implies the nonlearnability
of L(Vlp). �
5. Generalizing the results

The previous results hold when the vector space V∞ is over any infinite recursive field F . If V∞ is over a finite
field, then one of the results changes, namely, the SwBC-learnability of classes of superspaces.

Proposition 5.1. Assume that V∞ is over a finite field F . Let V be a recursively enumerable subspace of V∞.

(a) The family L(V ) is SwEx-learnable iff V∞/V is finite-dimensional.
(b) If V∞/V is either finite-dimensional or V is k-thin, then L(V ) is SwBC-learnable.
(c) If there is an r.e. subspace W with V ⊂ W ⊂ V∞ such that the quotient spaces V∞/W and W/V are both

infinite-dimensional, then L(V ) is not SwBC-learnable.

Proof. Part (a) follows from the proof of Theorem 3.1 since the proof does not use the fact that the field is infinite.
Part (b), in the case when V∞/V is finite-dimensional, is proven using the same learning algorithm as in the case

of an infinite field. So, let V be k-thin and let W ∈ L(V ) be such that V∞ is the closure of W ∪ {w1,w2, . . . ,wk} for
some w1,w2, . . . ,wk ∈ V∞. The set U of linear combinations of w1,w2, . . . ,wk is finite. Now we have the following
learning algorithm.

• As long as no element of W shows up as a negative datum, the learner asks for negative data and considers the set
Ũ of those elements of U that have not appeared so far as negative data. Then the current hypothesis is the linear
closure of W ∪ Ũ .

• Otherwise, that is, when some element of W had been given as a negative datum, the learner starts requesting
positive data and always conjectures the linear closure of V ∪ E, where E is the set of positive data seen so far.

The extension of learning L(V ) from the case of a 1-thin space V to an arbitrary k-thin space V is based on the fact
that, due to the finiteness of U , the set Ũ can be completely determined in the limit. The subspace being learned is
generated by W ∪ Ũ , unless a negative datum belonging to W is found. Besides this fact, the verification is the same
as when V∞ is over an infinite field.

Part (c) is proven using Theorem 2.2 and the properties of the space W . Recall that V ⊂ W ⊂ V∞, and that the
quotient spaces V∞/W and W/V both have infinite dimension. Let {v0, v1, . . .} be a linearly independent set over W ,
that is, no vi is in the closure of W ∪{vj : j < i}. Then W is the lower bound of the linear closures of the sets W ∪{vk}
for k ∈ N. Moreover, W is the upper bound of the linear closures of V ∪ {u0, u1, . . . , ui}, where u0, u1, . . . is an
enumeration of W . Both sequences of spaces converge pointwise to W , from above and from below, and consist of
members of L(V ). Thus, L(V ) is not SwBC-learnable by Theorem 2.2. �

A more general approach to learning recursively enumerable substructures of a recursive structure with the depen-
dence relations is to consider, instead of V∞, recursive matroids (see [5,17,18]). A matroid consists of a set X and of
a closure operator Φ that maps the power set of X into itself and satisfies certain axioms [15]. The closure operator in
matroids corresponds to the linear closure in vector spaces. If we consider infinite recursive matroids, without loss of
generality, we can identify X with N.
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Definition 5.2. We say that an infinite set X and an operator Φ define a recursive matroid (X,Φ) if Φ maps recur-
sively enumerable subsets of X to recursively enumerable subsets of X, and the following axioms are satisfied for
Y,Z ⊆ X:

(a) If Y ⊆ Z then Φ(Y) ⊆ Φ(Z).
(b) We have that Y ⊆ Φ(Y) and Φ(Φ(Y )) = Φ(Y).
(c) For all x ∈ Φ(Y), there is a finite subset D ⊆ Y with x ∈ Φ(D).
(d) If Y = Φ(Y) and x, y /∈ Y and x ∈ Φ(Y ∪ {y}), then y ∈ Φ(Y ∪ {x}).
(e) There is a recursive function f such that Φ(We) = Wf (e) for every e ∈ N.

The axiom (e) can sometimes be strengthened by requiring that we can decide for an element x and a finite set D,
whether x ∈ Φ(D). However, this condition does not always hold for vector spaces considered here, and we are
interested in a generalization of the classes L(V ) for V ∈ L(V∞). Thus, we adopt only the weaker version (e). The
set Φ(D) generalizes the concept of the linear closure after adding V to D. So x ∈ V iff x ∈ Φ(∅). Thus the axiom
(e) corresponds to the case where V is recursively enumerable, while the discussed strengthened version corresponds
to V being decidable. Decidability of V is equivalent to the existence of a dependence algorithm over V and implies
recursiveness of V as a set (see [14]). Note that the axiom (c) given here is omitted by some authors.

The following remark shows that matroids are sufficiently similar to vector spaces. In particular, one can for
submatroids Y,Z of X with Y ⊆ Z introduce a dimension of Z over Y . Here, Y is a submatroid of X if Y ⊆ X

and Y = Φ(Y). As it is understood that the operator on the submatroid Y is the restriction of Φ to Y , the operator is
omitted from the submatroid and the submatroid Y is identified with its domain Y .

Remark 5.3. Assume that Y,Z are submatroids of a matroid (X,Φ). Furthermore, assume that Y ⊆ Z. One says
that Z/Y has dimension n if there is a set D with n elements, but not one with fewer than n elements, such that
Z = Φ(Y ∪ D). The space Z/Y has finite dimension iff there is such finite set D.

If n > 0, z ∈ Z − Y and Z/Y has dimension n, then Z/(Φ(Y ∪ {z})) has dimension n − 1. To see this, first note
that there is no set E of cardinality strictly less than n − 1 such that Z = Φ(Y ∪ E ∪ {z}), so the dimension of
Z/(Φ(Y ∪ {z})) is at least n − 1. On the other hand, there is a maximal set F ⊂ D such that z /∈ Φ(Y ∪ F). Then
d ∈ Φ(Y ∪ F ∪ {z}) for all d ∈ D − F . It follows that Z = Φ(Y ∪ F ∪ {z}) and the dimension of Z/(Φ(Y ∪ {z})) is
at most the cardinality of F , in particular, at most n − 1.

A consequence is that for every submatroid Y , where X/Y has finite dimension, and for every set U ⊆ X−Y , there
is a finite set D such that Φ(Y ∪ D) ∩ U = ∅ and Φ(Y ∪ D ∪ U) = X. Note that D is nonempty iff Φ(Y ∪ U) ⊂ X.

In the following theorem, we consider the class L of recursively enumerable submatroids of a given infinite recur-
sive matroid. Furthermore, general learners, which do not have to be recursive, are considered. Adleman and Blum
[1] proposed to measure the complexity of such learners in terms of their Turing degrees. Together with Theorem 2.2,
we have that, whenever a general SwEx-learner exists, this learner can be chosen to be recursive relative to the halting
problem, i.e., relative to the set K .

Theorem 5.4. Given a matroid (X,Φ), let L be the class of its recursively enumerable submatroids. Then the following
conditions are equivalent:

(a) The class L is SwEx-learnable relative to K .
(b) The class L is SwBC-learnable relative to K .
(c) The condition of Theorem 2.2 does not hold.

Proof. The part (a) ⇒ (b) follows directly from the definition, and (b) ⇒ (c) follows from the proof of Theorem 2.2
since the proof does not use the property that the learner M is recursive. So it also works with general learners that are
recursive in K or even in a more powerful oracle. The part (c) ⇒ (a) is shown using the following learning algorithm.
Here Φ is defined as in the statement of the theorem, Li = Φ(Wi) is the ith recursively enumerable submatroid of X,
and Dj is the j th finite subset of X. Furthermore, there are recursive functions f and g such that Φ(Wi) = Wf (i) and
Dj = Wg(j). Let Xs consist of the first s elements of X with respect to some recursive default enumeration.
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Algorithm. After having seen s input data, let P consist of the data of type 1, and N be the data of type 0 seen so far.
Find the first triple (i, j,pos) or (i, j,neg) in an enumeration of all such triples satisfying the corresponding condition
below:

(pos) i = g(j) and Φ(Dj ) = Φ(P );
(neg) N ⊆ Li and P ⊆ Li and Xs ⊆ Φ(Li ∪ Dj) and Dj ⊆ Φ(Li ∪ N).

Output the index f (i). In the case of (pos), request positive data, otherwise, request negative data.

Verification. Note that Φ(Dj ) = Φ(P ) iff Dj ⊆ Φ(P ) and P ⊆ Φ(Dj ). So the algorithm only checks whether
explicitly given finite sets are contained in some recursively enumerable sets or their complements. Thus the learner
is K-recursive. Since there is a triple (i, j,pos) such that Dj = P and i = g(j), the search always terminates and the
learner is total.

Assume that Y is the submatroid to be learned. If the dimensions of X/Y and Y/Φ(∅) are both infinite, then the
condition of Theorem 2.2 is satisfied, since for every finite set D, there is a finite set E such that Φ(Y ∩ D) ⊂ Y ⊂
Φ(Y ∪ E) and D ∩ Φ(Y ∪ E) = D ∩ Y . So Y could be approximated from below and from above by pointwise
convergent series of sets different from Y . Since this cannot happen, at least one of the dimensions X/Y and Y/Φ(∅)

is finite.
Assume that at some stage s, the algorithm takes the triple (i, j,pos). Then Li = Φ(Dj ) = Φ(P ) and the output is

consistent with the input. Since P ⊆ Y , we have that Li ⊆ Y . Furthermore, the algorithm will then continue to request
positive data until some element outside Li is seen. This happens eventually iff Y �= Li .

Assume that the algorithm takes at some stage s the triple (i, j,neg). Then the algorithm will keep this index until
it either becomes clear that X �⊆ Φ(Y ∪ Wj) or a negative datum in Y − Li shows up. In the first case, Dj does not
witness that the dimension of X/Y is finite, and in the second case, Y �= Li .

To see that the algorithm converges, let N ′ and P ′ be the sets of all negative and positive data seen by the learner
throughout the overall running time of the algorithm. If the dimension of Φ(P ′)/Φ(∅) is finite, then there is a triple
(i, j,pos) such that i = g(j) and Φ(Dj ) = Φ(P ′). From some time on, enough data have been seen so that this triple
will be used, unless one of the finitely many triples before it is used almost always. Otherwise, the dimension of
Φ(P ′)/Φ(∅) is infinite. Then the dimension of Y/Φ(∅) is infinite since P ′ ⊆ Y . It follows that the dimension of X/Y

is finite. By Remark 5.3, there is a finite set E such that N ′ ∩ Φ(Y ∪ E) = ∅ and X = Φ(Y ∪ E ∪ N ′). There is a
triple (i, j,neg) such that Li = Φ(Y ∪ E) and Dj ∩ Li = ∅ and X = Φ(Li ∪ Dj). Again, this triple will be used
almost always unless one of the finitely many triples before it is used almost always. So it follows that the algorithm
converges to one triple that is used almost always. In the paragraphs of the verification preceding this one, it has been
shown that whenever a triple is used almost always, then the learner converges to the correct hypothesis. �

Each of the SwBC-learnable classes of substructures studied so far required only one switch. First, the learner
observed negative data. If these data ruled out a fixed subspace W , then the learner switched to positive data and never
again abandoned this type of data requests. The following examples give some matroids where unboundedly many
switches are required. This situation is more analogous to the general case, for which Jain and Stephan [10] showed
that there is a real hierarchy of learnability, depending on the number of switches allowed.

Furthermore, the examples below show that there are classes witnessing both extremes. The class in Example 5.5
has a recursive SwEx-learner, while every SwBC-learner, and thus also every SwEx-learner of the class in Example 5.6
needs oracle K .

Example 5.5. There is a recursive matroid such that every recursively enumerable submatroid is either finite or cofi-
nite. The class of these submatroids can be SwEx-learned, but not with any bound on the number of switches.

Proof. Let X = N. Let A be a maximal subset of X. For any given set Y , let

Φ(Y) = {
x: (∃y ∈ Y)

[
y = x ∨ (

y < x ∧ {y, y + 1, . . . , x − 1} ⊆ A
) ∨ (

y > x ∧ {x, x + 1, . . . , y − 1} ⊆ A
)]}

.

Clearly, Φ(Y) is recursively enumerable whenever Y is.
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Let a0, a1, . . . be the ascending (and nonrecursive) enumeration of all elements of A. Let A0 = {0,1, . . . , a0} and
An = {an−1 + 1, an−1 + 2, . . . , an} for any n > 0. Then Φ(Y) is the union of all sets An that meet Y . If Y is finite,
so is Φ(Y). If Y is infinite, then Y meets infinitely many sets An; hence, Φ(Y) − A is infinite. If Y is in addition
recursively enumerable, then the maximality of A implies that Φ(Y) contains almost all numbers an. For these n, the
corresponding sets An are subsets of Φ(Y). In particular, Φ(Y) is cofinite. So whenever Y is recursively enumerable,
Φ(Y) is either finite or cofinite.

Thus, one can SwEx-learn all recursively enumerable submatroids. The algorithm is simply to SwEx-learn all finite
and cofinite sets, as it is done in [10]. �
Example 5.6. There is a recursive matroid whose class of all recursively enumerable submatroids can be SwBC-
learned with the help of oracle K , but not with any oracle A such that K �T A.

Proof. Let X = N. There is a maximal set A such that the ascending sequence of nonelements a0, a1, . . . of A has the
property that for all n ∈ K , the element an is larger than the least stage at which n is enumerated into K (see [27]).
Let Φ(Y) = Y ∪ A. Since A is maximal, the class L of the recursively enumerable submatroids of (X,Φ) consists of
the sets Y such that A ⊆ Y ⊆ X, and Y is either a finite variant of A or a finite variant of X.

It is easy to adapt the SwEx-learner for finite and cofinite sets from [10] to a SwEx-learner using oracle A for L,
which, roughly speaking, ignores the elements of A and works as the original learner with respect to the nonelements
of A.

Assume now that M is a general SwBC-learner for L. Similarly as in Theorem 2.2, one can show the existence of
a string σ and a sequence τ0, τ1, . . . of strings of answers to requests of M such that:

• the answers in σ are consistent with A, and after receiving them, M will request only positive data unless a
nonelement of A is given after some request for a positive datum;

• the mapping n → τn is recursive in M and for every n, the elements in τn contain only elements of A ∪
{n,n + 1, . . .}, and after receiving the answers to its queries in the order occurring in the string στn, the learner
M requests a negative datum.

The reason for the existence of these strings is that the dimension of X/Φ(∅) is infinite, the dimension of A/Φ(∅) is
0, and the dimension of X/Φ(A ∪ {n,n + 1, . . .}) is finite. Now consider the following function f , which is recursive
relative to M : f (0) is the maximum of a0 and all elements in στ0; f (n + 1) is the maximum of all elements in the
string στf (n)+1. By the choice of σ and τf (n)+1, some element in {f (n) + 1, f (n) + 2, . . .} − A occurs in τf (n)+1.
So one can verify inductively that a0, a1, . . . , an � f (n): a0 � f (0); between f (n) + 1 and f (n + 1) there is at least
another element of A. It follows that n ∈ K iff n is enumerated into K within f (n) computational steps, and so K is
recursive relative to M . That is, the Turing degree of M is greater or equal than the Turing degree of K . �
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