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Introduction

Exploiting the fundamental concepts of computability theory, computable
model theory introduces effective analogues of model-theoretic notions. By
combining methods from both fields, it has enabled the development of ma-
chinery for investigating the effective content of model-theoretic construc-
tions. While some model-theoretic constructions can be replaced by effective
ones, for others such replacement is impossible. Thus, another important
objective for computable model theory is the discovery of effective coun-
terexamples to model-theoretic results. For instance, Vaught’s theorem (no
complete theory has exactly two non-isomorphic countable models) cannot
be effectivized.

The article begins with the foundations of computable model theory: the
definitions and examples of decidable theories, and computable and decid-
able models. It then presents the effective completeness theorem and the
effective omitting types theorem; and characterizations of decidable theo-
ries with decidable prime models, and then with decidable saturated mod-
els. The next sections characterize decidable homogeneous models, and give
examples of decidable theories with exactly two non-isomorphic decidable
models. The following sections present the results on decidable theories with
only finitely many, and on decidable theories with only countably many,
non-isomorphic countable models, and investigate the model-theoretic na-
ture and the computability-theoretic complexity of models of such theories.
Later sections study indiscernibles from the computability-theoretic point
of view, and the degrees of models. Finally, we consider the isomorphisms
of effective models and related subtopics, such as intrinsically c.e. relations,
computably stable models, and computably categorical models.

Computable model theory was developed simultaneously and for the most
part independently in the West, mainly in the United States and Australia,
and in Russia. Because of poor communication between the two groups,
many results were independently discovered by both groups. This article
looks at computable model theory from the Western perspective. (There
are articles in this volume on the Russian approach.) However, the article
also presents some results of the Russian group, and often emphasizes the
connections with and gives references to their results.

Almost every section contains a detailed proof with a survey of the
computability-theoretic and model-theoretic background needed. The bib-
liography contains both Western and Russian papers in pure computable
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model theory, but not papers in computable algebra nor in computable com-
binatorics. Another survey article on this subject has been recently and
independently written by Millar [148].

1 History

The goal of computable mathematics is to find the extent to which certain
classical results of mathematics are effectively true. Although many consider
the modern study of computability of algebraic constructions to have started
with Frohlich and Shepherdson in 1955-56 and Rabin in 1958-60, even van
der Waerden in his book [210] from 1930, see also [211], discussed the problem
of carrying out certain field-theoretic procedures effectively. He also defined
an explicitly given field as one whose elements are uniquely represented by
distinguishable symbols with which one can perform the field operations ef-
fectively. In a pioneering paper from 1930, van der Waerden [209] proved that
there does not exist a splitting algorithm applicable to every explicit field.
Frohlich and Shepherdson [62, 63] used the precise notion of a computable
function to obtain a collection of results and examples about explicit fields.

Rabin [176, 177] did a systematic study of computable groups and com-
putable fields. In Russia, a systematic study of constructive algebraic systems
and their enumerations was initiated by Mal’cev [124] in the 1960’s, and con-
tinued by Ershov and his collaborators, see [56, 57].

In the 1970’s, Nerode and his collaborators revived the study of com-
putability of algebraic constructions. At the 1974 Recursive Model Theory
Symposium at Monash University (Melbourne, Australia), Metakides and
Nerode announced that, in addition to other computability-theoretic tools,
they started using the priority method as an important tool in the algo-
rithmic part of computable mathematics, see [128]. Thus, they founded in
the West the field of the post-Friedberg-Muchnik computable mathematics.
Metakides and Nerode used the priority method in their systematic study of
the effective content of specific structures, such as vector spaces [129], fields
[130], and structures with a dependence relation [131]. For more information
on the development of computable mathematics see [38, 132, 183]. In Rus-
sia, the post-Friedberg-Muchnik constructive mathematics was founded by
Nurtazin and Goncharov in the 1970’s [79, 159].

In the West, the computability of ordered sets has also been studied by
Ash, Case, Chen, Crossley, Downey, Feiner, Feldman, Fellner, Hay, Hingston,
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Hird, Jockusch, Kierstead, Knight, Lerman, Manaster, Metakides, McNulty,
Moses, Remmel, Richter, Rosenstein, Roy, Schmerl, Schwarz, Soare, Ten-
nenbaum, Trotter and Watnick; the computability of vector spaces by Ash,
Guhl, Guichard, Dekker, Downey, Hamilton, Kalantari, Remmel, Retzlaff,
Shore, Smith and Welch; the computability of rings and fields by Ash,
Hodges, Jockusch, MacIntyre, Madison, Marker, Mines, Rosenthal, Seiden-
berg, Shlapentokh, Smith, Staples, Tucker and van den Dries; the com-
putability of the structures with a dependence relation by Baldwin, Downey
and Remmel. The computability in other mathematical structures is also ex-
tensively studied: in groups by Ash, Barker, Ge, Kent, Knight, Lin, Oates,
Richards, Richman and Smith; in graphs by Aharoni, Bean, Beigel, Burr,
Carstens, Gasarch, Golze, Kierstead, Lockwood, Manaster, Magidor, Pappin-
ghaus, Remmel, Rosenstein, Schmerl and Shore; in Boolean algebras by Car-
roll, Feiner, LaRoche, Remmel and Thurber; in topological spaces by Kalan-
tari, Legett, Remmel, Retzlaff and Weitkamp. Computable Ramsey’s theory
has been studied by Clote, Hummel, Jockusch, Seetapun, Simpson, Solovay
and Specker. Computability in analysis and physics has also been studied,
see [175].

The generalization of the definition of a particular computable algebraic
structure to an arbitrary model yields one of the basic concepts of pure com-
putable model theory, an area of logic developed in the last twenty-five years.
That is, the notion of a computable model, and a stronger notion of a de-
cidable model. Lerman and Schmerl have given examples of theories with
computable models. The first general results in computable model theory
have been obtained by following the fundamental notions and results of clas-
sical model theory. For example, Millar has obtained the effective version of
the omitting types theorem, and Harrington, Goncharov and Nurtazin have
found when a complete decidable theory with a prime model has a decidable
prime model. Millar and Morley have characterized decidable theories with
decidable saturated models, and Goncharov and Peretyat’kin have charac-
terized decidable homogeneous models. Barwise, Schlipf and Ressayre have
introduced the notion of a computably saturated model. Although developed
in the context of admissible sets and admissible fragments of infinitary logic,
computably saturated models have also provided a useful tool for research
and exposition in classical model theory.

In the West, Millar has further produced an extensive body of work on
topics including effective Vaught’s theorem, the structure of types in decid-
able models, decidability and prime, saturated and homogeneous models,
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decidable theories with finitely many and decidable theories with countably
many non-isomorphic countable models. Reed has also studied decidable
theories with finitely many non-isomorphic countable models. Kierstead and
Remmel have investigated the degrees of sets of indiscernibles in decidable
models. Ash, Knight, Macintyre, Marker, Nadel, Nies, Richter, Jockusch,
Lachlan, Scott, Shoenfield, Shore, Soare and Tennenbaum have studied the
degrees of models of various theories, including the theory of linear orders,
Peano arithmetic, true arithmetic, and the theory of Boolean algebras.

The whole spectrum of questions involving the isomorphisms of abstract
computable models has been investigated by Ash, Barker, Chisholm, Cholak,
Crossley, Downey, Eisenberg, Guichard, Harizanov, Hird, Khoussainov, Kni-
ght, Manasse, Manaster, Millar, Moses, Nerode, Remmel, Shore, Slaman and
Wehner. The lattices of computably enumerable submodels have been stud-
ied by Ash, Guichard, Carroll, Downey, Metakides, Nerode, Remmel and
Smith. More recently, Nerode, Remmel and Cenzer [31, 157] have been de-
veloping feasible model theory (as a part of feasible mathematics), the theory
of models with bounded space and time resources. They have investigated
how feasible models differ from computable models. The feasible models
studied include Boolean algebras, abelian groups, linear orders, models of
arithmetic, and graphs.

2 Notation and Basic Definitions

The set {0, 1,2, ...} of all natural numbers is denoted by w. Unless explicitly
stated otherwise, it is assumed that all languages considered are first-order
and computable (hence at most countable), and that the domains of the
considered models are subsets of w. For a set of sentences T', by L(T) we
denote its language. A set of sentences T is deductively closed if T contains
every sentence o of L(T) such that T+ o. A consistent deductively closed
set of sentences is called a theory.

Models are denoted by script letters, and their domains by the corre-
sponding capital Latin letters. By A C B we denote that A is a submodel of
B, and by A < B that A is an elementary submodel of B. By A = B we de-
note that A and B are elementarily equivalent, and by A =2 B that A and B
are isomorphic. A model is prime if it can be elementarily embedded in every
model of its theory. Hence a prime model for a countable language must be
countable. Two prime models of the same complete theory are isomorphic.
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Let A be a model (with domain A) for L. By Th(A) we denote the
theory of A. For X C A, let Ly be the language LU {a : a € X}, L
expanded by adding a constant a for every a € X. Let Ax = (A, a)eex
be the expansion of A to the language Lx such that for every a € X, a is
interpreted by a. The atomic diagram of A is the set of all atomic and
negated atomic sentences of L4 which are true in A,4. It is denoted by A 4.
The complete diagram of A is the set of all sentences of L4 which are true in
A4. The complete diagram of A is often called an elementary diagram of A.

A sequence of variables displayed after a formula or after a set of formulae
includes all the free variables occurring in any of the formulae. For two
sequences T and 7 of the same length k, by writing /7 after a formula or a
set of formulae, we denote the result of replacing every occurrence of (i) by
Z(i) for ¢ < k. To simplify the notation, instead of 6(y)(x/y) we often write
only 6(z). For a set of formulae ©, AO is the conjunction of all formulae in
©. For a formula 8, let ' =4¢¢ 0 and 0° =g —0.

A formula is in a X) = IIj form if it contains no quantifiers. For n > 0,
a formula is in a ¥0 (T19, respectively) form if it is logically equivalent to a
formula in a prenex normal form which begins with an existential (universal)
quantifier and has n — 1 alternations of quantifiers. ¢ (I, respectively)
sentences are also called existential (universal, respectively). T3 (Ty, respec-
tively) denotes the set of all existential (universal, respectively) sentences in
T. For infinite cardinals x and A, L, denotes the infinitary logic which
has x individual variables, allows conjunction and disjunction of a set of < k
formulae, and allows universal and existential quantification over a set of < A
individual variables. In particular, L, is classical first-order logic, and L,
allows countable conjunctions and disjunctions but only finite quantification.
For more information on infinitary logic see [98].

A type of a theory T in variables xg,...,x, 1 is a maximal consistent
set of formulae containing 7', with free variables among xg,... ,z, 1. To
emphasize its maximality, it is often called a complete type in the literature.
An n—type is a type in n variables, and a (finite) type is an n—type for some

n€w. Ifl(xg,...,o,-1)1s atype and x;y,... ,x;_, € {To,...,2Tpn_1}, then
I [ {ziy,...,2i_,} is the subtype of I in variables z;,,... ,z;,_,. A formula
O(zo, ..., o, 1) is complete in T if for every formula ¢ (zo, ..., z, 1), exactly
one of

T (Vag) ... (Vo_1)[0(xo, ..., 2no1) = U(x0, ... ;20 1)],
TH (Ve ... Vo, 1)[0(x, ... y2n 1) = (20, .. ,Tp 1)]
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holds. That is, there is exactly one (complete) type of T"in xy, . .. , x, 1 which
contains #. A type which contains a complete formula is called principal.
The set of all (complete finite) types realized in a model A is called the type
spectrum of A. A type spectrum of a theory is the type spectrum of one of
its models.

Let X be a set. |X| denotes the cardinality of X. X is countable if
| X| = w. X is at most countable if | X| < w. Let x be an infinite cardinal,
and let T" be a complete theory in a countable language. T is called stable
in power k, or k—stable, if for an arbitrary model U of T', for every subset
X of U with |X| = &, the model Uy realizes exactly x many 1-types. T is
called stable if it is stable in some power. If T' is Ry—stable, then T is stable
in every infinite power (see Chapter VII of [32]). T is called superstable if it
is k-stable for every x > 2%°. For more information on stability theory see
22, 120, 174].

The quantifier !z abbreviates “there exists a unique z”. The empty set
is denoted by @. For a set X, P(X) is its power set. If f is a partial function,
then dom(f) is the domain of f, rng(f) is the range of f, and f(a) | denotes
that @ € dom(f). The length of a sequence T is denoted by 1h(z). If T =
(%0,...,%y_1) and f is a unary function, then f(T) =ger (f(z0),-- -, f(Tn_1))-
The concatenation of sequences is denoted by ~. A set T of sequences of
numbers is a tree if it is closed under subsequences. The empty sequence
is the root of 7. Elements of 7 are also called nodes. A branch of T is a
maximal linearly ordered subset of 7. The terminal node of a finite branch
of T is a leaf.

Let 908”), QOSn)a 905”), ... be a fixed effective enumeration of all n—ary partial
computable functions. If X C w, let % o™ oMY he a fixed

effective enumeration of all n—ary X—computable functions. The superscripts
are usually omitted for n = 1 or when it is clear from the context. ¢, (¢X)
is also denoted by {e} ({e}*), and e is called the Godel number or index
of ¢.. We write p.4(n) = m if e,n,m < s and m is the output of p.(n)
after < s steps in the corresponding computation. Let W, =4¢f dom(¢,) and
We,s =der dom(¢e5). Thus, Wy, Wi, Ws, ... is a computable enumeration of
all c.e. sets. We fix (-, - ) to be a computable bijection from w? onto w,
which is strictly increasing with respect to both arguments. For X C w and
i € w, we define XU = {k: (ki) € X}.
Let X Cwand Y Cw. The join X @Y is

{2n:neX}Uu{2n+1:neY}.
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By X <7 Y we denote that X is Turing reducible to Y. X <7 Y denotes
X< YbutY £ X X = YifX <o YVandY <r X. deg(X)
denotes the Turing degree of X. Let 0 =g deg(@). If x = deg(X) and
n > 1, then x™ =4 deg(X ™), where X is the n-th jump of X. Define
X@ = Lkn) : k€ XM Ak n € w)and x® = deg(X®). A degree x
is low if x' = 0'. Turing degrees x and y form a minimal pair if they are
nonzero and for every Turing degree z,

(z<xANz<y)=z=0.

The set of all Turing degrees is denoted by D. For more information on
classical computability theory see [108, 160, 187, 196]. An ordinal is com-
putable if it is finite or is the order type of a computable well-ordering on
w. The computable ordinals form a countable initial segment of the ordi-
nals. Kleene’s O is the set of notations for computable ordinals, with the
corresponding partial ordering <o, see [187, 189]. The least non-computable
ordinal is denoted by w{*, where cK stands for Church-Kleene. To obtain
hyperarithmetic sets, we define the representative sets in the hyperarithmetic
hierarchy, H, for a € O. The definition is recursive, and is based on iterating
the Turing jump:
H, =g,

HZ“ = (Ha)la
Hs s = {296 3" ix e H{e}(n)}.

A set of natural numbers X is hyperarithmetic if (a € O)[X <7 H,|. The
hyperarithmetic sets coincide with the Al sets.

3 Decidable Theories, and Computable and
Decidable Models

Computable model theory explores the effectiveness of constructions and
theorems in model theory, see [32, 44, 92, 188], and in universal algebra, see
(37, 80, 125]. It begins by defining effective analogues of classical concepts
of algebra and model theory. Three of its fundamental concepts are: decid-
able theories, computable models and decidable models. One of the basic
problems is determining whether computable or decidable models satisfying
certain conditions exist.
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Definition 3.1
(i) A theory T is decidable if T is a computable set of sentences.

(ii) A model A is computable if its domain A is computable and its relations
and functions are uniformly computable. That is, A is computable if
A is computable and there is a computable enumeration (a;);c, of A
such that the atomic diagram of A is decidable.

(iii) A model A is decidable if A is computable and there is a computable
enumeration (a;);e, of A such that the complete diagram of A (that is,
Th((A, a;)icw)) is decidable.

We assume that a formula is identified with its Godel number, so a set
of formulae is thought of as a subset of w. Thus, a theory is decidable (resp.
belongs to P, where P is a complexity class) if the set of Gddel numbers of its
sentences is computable (resp. belongs to P). Hence, if Az is a set of axioms
of a theory T, then T is decidable if there is an algorithm which determines
for every sentence o of L, whether Ax - o. Clearly, a computably axiom-
atizable theory is computably enumerable. Hence a complete computably
axiomatizable theory is decidable. In particular, a complete finitely axioma-
tizable theory is decidable. An example of such a theory is the theory of dense
linear order. Peretyat’kin [167, 168, 170, 169, 171, 172, 173] has developed
intricate methods for constructing finitely axiomatizable theories satisfying
various additional properties. In [167], he constructed a complete, finitely ax-
iomatizable, N;—categorical theory which is not Ny—categorical. Well-known
and important examples of decidable theories in mathematics include the
theory of equality, the theory of unary predicates, the additive number the-
ory, the theory of the field of real numbers, the theory of the field of complex
numbers, the theory of algebraically closed fields, the theory of real-closed
fields, the theory of p-adic fields, the theory of Boolean algebras, the theory
of linear order, the theory of abelian groups, and the theory of free commu-
tative algebras. Well-known and important examples of undecidable theories
in mathematics include number theory, the theory of simple groups, the the-
ory of semigroups, the theory of rings, the theory of fields, the theory of
distributive lattices, and the theory of partial order. For more information
on decidable and undecidable theories see [58] and Part III in [149]. For
computability-theoretic complexity of various sets of sentences satisfied in
certain classes of models see [201].
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A model A is computable if A is computable, and if there is a comput-
able enumeration (a;);c, of A and an algorithm which determines, for every
quantifier-free formula 6(zo, ... ,z,_1) and every sequence (a;,,...,a; ,) €
A" whether Ay = 0(ay,,...,a;, ,). A model A is decidable if A is com-
putable and there is a computable enumeration (a;);c, of A and an algo-
rithm which determines for every formula 0(xy, ... ,z, 1) and every sequence
(@i - .- ,ai,_,) € A", whether Ay = 0(a;,,...,a;,_,). Clearly, every decid-
able model is computable. The converse is not true. For example, (w, +, X) is
a computable model which is not decidable (by Gdel’s incompleteness theo-
rem [64]). Peretyat’kin [162] has constructed a decidable linear order without
a computable proper elementary extension. In [159], Nurtazin characterized
decidable models which are isomorphic to computable non-decidable mod-
els. Peretyat’kin [165] has shown that there is a complete decidable theory
T which is neither Ny-categorical nor N;-categorical, and which has, up to
isomorphism, a unique decidable model. Moreover, all computable models of
T are decidable.

A model is computably presentable if it is isomorphic to a computable
model. Goncharov [67] has constructed an X;—categorical theory which is not
Np—categorical and whose only computably presentable model is the prime
model. On the other hand, Khoussainov, Nies and Shore [104] have shown
that there is an N;—categorical theory which is not Ny—categorical and whose
only countable non-computably presentable model is the prime model. It is
sometimes convenient to call a model computable (decidable, etc.) even if it
is only computably (decidably, etc.) presentable.

Morozov [151, 152, 153] has extensively studied the automorphisms of
computable models. He constructed a decidable model [151] whose theory
is Np—categorical and which does not have non-trivial computable automor-
phisms. He also constructed a computable model [152] with 2% many auto-
morphisms and without a non-trivial hyperarithmetic automorphism.

The notion of a computable (resp. decidable) model corresponds to the
notion of a constructive (resp. strongly constructive) model used by the
group in Novosibirsk. A constructive (resp. strongly constructive) model
is a pair (A,v), where A is a countable model, and v is a function from w
onto the domain of A, such that the model “induced on w by A via v=1" is
computable (resp. decidable). v is called a constructivization (resp. strong
constructivization) of A. For example, the field of rational numbers has a
constructivization, while the group of all computable permutations of w does
not.
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In general, the Turing degree of a model A with finite language is the
least upper bound of the Turing degrees of its universe, and its relations
and functions. Hence a model is computable if its Turing degree is zero.
Isomorphic models may have different Turing degrees. Tennenbaum [199] has
proved that there is no computable nonstandard model of Peano arithmetic.
Scott and Tennenbaum [193] have established that every degree d such that
d > 0" is a degree of a complete extension of Peano arithmetic, and that
no computably enumerable degree d such that d < 0’ can be a degree of
a complete extension of Peano arithmetic. Jockusch and Soare [95] have
shown that there is a nonstandard model of Peano arithmetic of low degree.
Jockusch and Soare [96] have proved that for every non-zero c.e. degree d,
there is a linear order of degree d which is not isomorphic to any computable
linear order. Lerman and Schmerl [121] have given a number of examples of
important theories with computable models.

By a theory of linear order we mean a theory whose language consists
of a binary relation symbol, and which contains the axioms of linear order.
Lerman and Schmerl [121] have extended Peretyat’kin’s [164] result that
every c.e. (X9) theory of linear order has a computable model, by showing
that every X9 theory of linear order has a computable model. They have
also constructed a AY theory of linear order without a computable model.
Lerman and Schmerl have further shown that if x is a Turing degree such
that x £ 0", then there is a theory of linear order of degree x without a
computable model.

Definition 3.2 (Millar [143]) Let P be a class of theories. A theory T is
persistently P if for every n € w, for every complete n—type I'(xg, ... , Zn_1)
of T" and a sequence c¢y, ... , ¢, 1 of new constants, the theory I'(co, ..., ¢, 1)
belongs to P.

In [55], Ershov has studied persistently V—finitely aziomatizable theories.
A theory T is V-finitely axiomatizable if for every theory S extending 7', Sy is
finitely axiomatizable. For examples of persistently V—finitely axiomatizable
theories see [55, 100]. Ershov [55] has established that every c.e. theory
extending a persistently V-finitely axiomatizable theory has a computable
model. This result implies the previously mentioned result that every c.e.
theory of linear order has a computable model. It also implies that every
c.e. (XY) theory of trees has a computable model. By a theory of trees we
mean a theory whose language consists of a binary relation symbol, and
which contains the axioms of a partially ordered set such that the set of all
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predecessors of any element is linearly ordered. Lerman and Schmerl [121]
have constructed a A theory of trees without a computable model. Lerman
and Schmerl have further shown that for every Turing degree x such that
x ¢ 0', there is a complete theory of trees of degree x without a computable
model.

Lerman and Schmerl [121] have proved that if 7" is an arithmetic Ny—
categorical theory such that for every n € w, the set of all E%H sentences
in T is a X0, set, then T has a computable model. They have also shown

that for every n € w, and a Turing degree x such that x £ O(n), there is an
Ny—categorical theory T' of degree x such that the set of all X9, sentences
in T" is computable and 7" does not have a computable model. In particular,
for every Turing degree x, there is an Ny—categorical theory of degree x such
that the set of all existential sentences in 7" is computable and every model
of T" has the degree > x.

Feldman [60, 61] has constructed a complete decidable Ry—categorical
theory T of a partial order with the greatest lower bound operator. T has a
decidable model in which every countable lower semilattice can be embedded.
Knight [109] has constructed a complete, decidable, superstable theory T
with 2% many types, such that no independent sequence of formulae (with
respect to T') is computable in a type of T'. A sequence (0, (T))new of formulae
in L(T) is independent with respect to T if for every o € 2<%,

Tk (37) (/)\ on(T) A (/)\ =0, (T)].
a(n)=1 a(n)=0
Hurlburt [93] has given some general conditions which are sufficient to con-
struct computable models for highly non-decidable theories.

According to the Ryll-Nardzewski theorem, a complete theory T is Ny—
categorical if and only if for every n € w, the set of all n—types of T is finite.
For such a theory T, the function which assigns to every n the number of all
n-types of T is called Ryll-Nardzewski function. Schmerl [191], Herrmann [90]
and Venning [202] have proved independently that a complete decidable Ro—
categorical theory does not necessarily have a computable Ryll-Nardzewski
function. More generally, the following relativized result holds.

Theorem 3.1 (Schmerl [191]) For every Turing degree x, there is a function
f i w — w of degree x such that for every Turing degree y with the property
that x is c.e. in'y, there is a complete Ro—categorical theory of degree y (in
a language consisting of one binary relation symbol) whose Ryll-Nardzewski
function is f.
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We can assume that the characteristic function of a consistent set I'(T)
of formulae in L is a function x : w — {0, 1}, defined by:

B {1 if 0,(z) € ['(7),
Xrm 0 if 6,(7) ¢ I'(T),

where 60y(7), 01(T), 02(T), . .. is an effective enumeration of all formulae in L
whose free variables are among those in Z. The set I'(Z) is computable if
its characteristic function is computable. Equivalently, I'(Z) is computable if
the set {n : 6,(Z) € T'(Z)} is computable.

Proposition 3.2 Fvery type realized in o decidable model is computable.

Proof. Let A be a decidable model such that a type I'(xg,...,x, 1) of
Th(.A) is realized in A by some ay, ... ,a, 1 € A. Since A is decidable and

/Y(x(]a s 7:Un71) el < AA ): 7(a07 s 7an71)7

[' must be computable. O

A set of codes of a set of computable (complete) types of a theory T is a
set of Godel numbers of characteristic functions (which are computable) of
these types, containing at least one index for each type. We say that a set of
computable types belongs to P, where P is a complexity class, if it has a set
of codes which belongs to P. The following proposition follows from a more
general proposition in the theory of enumerations (see Chapter VI of [57]).

Proposition 3.3 Every X0, set of codes of a set of computable types of a
theory T is a TI° set of codes.

Hence, every c.e. set of codes of a set of computable types is a computable
set of codes. To determine the complexity of the set of types realized in a
decidable model, we need from computability theory the s-m-n theorem:.

Theorem 3.4

(i) (s-m-n theorem) For everym,n > 1, there is an (m+1)—ary computable

function, denoted by s)', such that

U (I, k) = @ (R ),

where e, l1,... Ly, k1,... ,k, €w.
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(ii) (Relativized s-m-n theorem) For every m,n > 1 and every oracle X C

w, there is an (m + 1)—ary computable function, denoted by s7, such
that
m—+n n),X
9053 + )’X(l17 e ,lm, kl; N ,kn) = (pgw)(e,ll,...,lm)(kl’ e ,kn),
where e, l1,... Ly, k1,... ,k, €w.

Proposition 3.5 The set of all types of T realized in a decidable model of
T is computable.

Proof. Let A be a decidable model of T" and let ag, ay, as, ... be an effective
enumeration of A. Choose g : A<“ — w to be a computable bijection. Define
a computable function h : w? — {0,1} by:

{1 if A 6k[a),

h(n,k) =

0 if AF 6[al,
where g(@) = n, and 6,0y, 0,,... is an effective enumeration of all formulae
of L(T') whose free variables are among T = (x;,,...,%;_,), corresponding
to @ = (as,...,a;_,). By the s-m-n theorem, h(n, k) = @s@n) (k) for some
computable function f. Clearly, {f(n): n € w} is a c.e. set which is a set of
codes of all (computable) types of T realized in A. O

Proposition 3.6 Let T be a decidable theory.
(i) The set of all Godel numbers of all computable types of T is a 13 set.

(ii) Every principal type of T is a computable type, and the set of all prin-
cipal types of T is a 119 set.

Proof. For a given sequence T of variables, let 64(%),0:(%),05(T),... be
a computable enumeration of all formulae of L(7T) with all free variables
contained in ran(7).

(i) For e € w, . is the characteristic function of a computable type of T
in variables T if and only if

Vn3sVj < n3k; € {0,1}pes(j) b= k; AT F IZ(AY (@) - 5 < n}))-
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(ii) Every principal type of T is computable because it is generated by a
complete formula. For every i € w, use ¢’ to determine whether 6;(T)
is a complete formula. That is, 6;(Z) is a complete formula if and only
if

Vj3k € {0, 1}[T + vz (6;(Z) = 0%(T))].
Hence by the relativized s-m-n theorem, we can enumerate with oracle

@'

The principal type that 6;(%) generates, if §;(Z) is a complete
formula;

Any fixed principal type of T, if §;(%) is not a complete formula.

Thus, since the sets which are computably enumerable in @' are ¥9, it
follows that the set of all principal types is ¥9. O

Proposition 3.7 (Millar [134]) Every 39 set of computable types of a decid-
able theory T is contained in a computable set of computable types of T.

Nerode and his collaborators have also initiated the study of the lattice
of all computably enumerable submodels of a computable model. Models
whose computably enumerable submodels have been investigated include vec-
tor spaces, fields, Boolean algebras, and linear orders. For more information
see [6, 30, 45, 47, 48, 81, 82, 156, 158|.

Moses [154] has generalized the concepts of computable and decidable
models to “I'-computably enumerable models”, where I' is a computably
enumerable set of formulae. For such a set ', a model A for L(T") is I'—
computably enumerable if the universe of A is computable, and its satisfac-
tion predicate restricted to I' is computably enumerable. For other notions
of an “effective model” and of an “effective isomorphism”, see [180] and [50].

4 Effective Completeness Theorem

One of the major tasks of computable model theory is to obtain effective
versions of or effective counterexamples to various classical model-theoretic
results. To obtain an effective version of the completeness theorem, we use
from model theory, Henkin’s method of constructing models; and from com-
putability theory, the notion of a computable set and Church’s thesis.
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Theorem 4.1 (Effective Completeness Theorem) A decidable theory has a
decidable model.

Proof. Let T be a decidable theory. A corresponding model of T will be
obtained in an effective way by Henkin’s method. Let ¢y, cq,co,... be an
effective one-to-one enumeration of an infinite set C' of new constants. Let
00,01, 09, ... be an effective enumeration of all sentences in L(7T) U C. We
will construct effectively, by induction, a complete theory ¥ in L(7T)UC such
that U O T. W will be the complete diagram of a model A4, where A is
a desired model for 7. As usual, the domain A consists of the equivalence
classes of the constants in C', where two constants c¢,d € C' are equivalent if
and only if (¢ = d) € U. We will arrange that U = {dp, 1, da, ... }, where s
is defined at stage s. For s > 0, let ©¥® =g 0g A 01 A ... Ads 1.

Construction

STAGE 0:
Let (50 =def (CU = C()).

STAGE s = 2e + 1 for e € w (Henkin’s witnesses requirement):
If . is of the form §, = xf(x), we effectively find the least i such that
¢; does not occur in ¥° and let §; =ger 0(c;). Otherwise, let §5 =ger (co = o).

STAGE s = 2e + 2 for e € w (Completeness of the diagram requirement):

Let ¢ be a sequence of all constants in C' which occur in (¢* = o). Let
T be the first sequence of variables of the same length as ¢ (in some fixed
effective enumeration of the finite sequences of all variables) which do not
occur in (¢° = o.). We effectively check whether

T =Vz[(v* = 0.)(T/¢)]. (*)

If this is true, let 65, =qer 0. Otherwise, let 05 =ger 70.. End of the construc-
tion.

Condition (%) can be verified effectively because T is a decidable theory.
We describe the action at stage 2e 4+ 1 as effectively providing a Henkin’s
witness for d., and the action at stage 2e+ 2 as effectively satisfying the e-th
completeness requirement. O

Proposition 4.2 (Millar [134]) Every computable type of a theory T is re-
alized in some decidable model of T.
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Proof. Assume that I' = I'(zy,... ,z, 1) is a computable type of a theory
T. Let ¢, ..., ¢, 1 be constants which do not occur in I'. TUT (co, ..., ¢y 1)
is a complete decidable theory in L(T)U{cy,...,¢, 1}, so it has a decidable
model A. The reduct of A to L(T) is a decidable model of T realizing I'. O

5 Model Completeness and Decidability

Many examples of decidable theories constructed to illustrate certain model-
theoretic or computability-theoretic properties are obtained as model com-
pletions of universal theories, which allow the elimination of quantifiers.

Definition 5.1 A theory T is model complete if for any two models A and
Bof T,
ACB=A=<B.

Neither one of completeness and model completeness implies the other.

Theorem 5.1 A theory T in a language L is model complete

For every A =T, the theory T U A 4 is complete in L.

If A and B are models of T and A C B, then every existential
sentence of L true in By is also true in Aj,.

11

!

For every formula 6(T), there is a universal formula ¢ (T) such
that
T =VZ[0(T) < ¢(T))].

Definition 5.2 T is a model completion of a theory T" if
VAET)(ARET),
VAETY3B ET)[AC B], and
VD ET)VABET)[(DCAANDCB)= Ap = Bp].
A model completion of a theory is a model complete theory.

Theorem 5.2 (Robinson) If Ty and Ty are model completions of T', then
T1 - TQ.
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A theory T™* is a model companion of a theory T if T is model complete
and Ty = 1. For example, the theory of atomless Boolean algebras is
a model companion of the theory of Boolean algebras, and the theory of
algebraically closed fields is a model companion of the theory of fields. Both
the theory of atomless Boolean algebras and the theory of algebraically closed
fields are decidable. Burris [29] has established some general criteria for a
model companion to be decidable.

Definition 5.3 T is submodel complete if for every model B of T" and every
A C B, the theory T'U A 4 is complete in L 4.

Hence a submodel complete theory is both complete and model complete.

Theorem 5.3 (Robinson) A model completion of a universal theory is sub-
model complete.

We say that T admits the elimination of quantifiers if for every formula
O(zo, ..., o, 1), there is a quantifier-free formula ¢ (zo, ... ,z, 1) such that

T "VZL‘U, TN ,xn,1[9($0,. .. ,xn,l) = 'Q/)(l’(), TN ,xn,l)].

If there is an algorithm which for every formula (%) finds the correspond-
ing quantifier-free formula (), then we say that T effectively admits the
elimination of quantifiers.

Proposition 5.4

(1) Let T be a theory which effectively admits the elimination of quantifiers.
Then every computable model of T is a decidable model of T.

(ii) Let T be a computably enumerable theory which admits the elimination

of quantifiers. Then every computable model of T is a decidable model
of T.

Proof.

(i) The statement follows immediately from the definitions of a computable
and of a decidable model.

(ii) The statement follows from (i) because if T' is a computably enumerable
theory which admits the elimination of quantifiers, then T effectively
admits the elimination of quantifiers. O
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Theorem 5.5 A theory T is submodel complete

— (VA,B ET)(VD C A,B) [A and B satisfy the same ezistential
sentences in L(T) with parameters from D]

<= T admits the elimination of quantifiers.

Millar has characterized universal theories which have decidable model
completions, thus providing a uniform approach for producing specific exam-
ples of decidable theories.

To state this characterization, we fix a language L and let 60,6, 0, ...
be an effective enumeration of all quantifier-free formulae of L in variables
o, X1, T, ...} Yo, Y1, Y2, ... . T'he convention will be that if the free variables
of a formula are displayed, then the free z—variables (if any) are displayed
before the free y—variables (if any).

Theorem 5.6 (Millar [137]) Assume that T' is a universal theory in L. T’
has a (complete) decidable model completion if and only if there is a unary
computable function f such that for every i € w, 0u) does not contain any
y-variable and for all i,j € w :

(i) (0; is inconsistent with T") < O = —=(x0 = 20),
(if) "+ VZ[3y6i(7,7) = 05 (T)],

(iii) If 0; does not contain any x—variable and is consistent with T', then
Or6) = (20 = x0),

(iv) (T"U {0y (Z),0;(T,7%)} is consistent)
= (T"U{6;(7,7),0,(Z,y*)} is consistent),

where rng(y) N rng(yx) = @.

Notice that, by (ii), the implication in (iv) can be replaced by the equiv-
alence. Property (iv) is often called the amalgamation property.

Proof. Assume that T is a decidable model completion of 7’. By The-
orem 5.3, T admits the elimination of quantifiers. Thus, there is a unary
computable function f which has the following properties:

(a) (0; is inconsistent with T") < O = =(x0 = T);
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(b) If 6; is consistent with 7" and does not contain an z-variable, then
Or) = (20 = 20);

(c) If 6; is consistent with 7', then 1" VZ[Iyb;(Z,7) < 054)(T)].
Clearly, (i) and (iii) are satisfied.
Let us prove (ii). Assume otherwise. If follows that
T' U {373Y(0: (%, 7) A 010 ()]}

is consistent. Hence it has a model A. Since T is a model completion of 7",
there is a model B of T such that A C B. Hence B is a model of

T U {3z39[0:(Z,9) A ~05) (T)]}-
Since T is complete, we have
T+ HEE@[GZ (T,g) N _‘Hf(i) (f)]

That is,
T = =VZ[Vy—0;(T,7) V 040 (T)]

or, equivalently,
TF ﬁVf[E@gi (f, y) = Gf(z-) (f)],

thus contradicting (c). Hence (ii) holds.
Finally, let us prove (iv). Assume that rng(y) N rng(yx) = @. Let

T'U {373y * [05)(T) A 0;(T, 7%) ]}

be consistent. By the same argument as in the proof of (ii), we conclude that
T+ 3z * [0y (T) A 0;(Z,7*)]. Hence, by (c),

That is, T'U {0;(7,7),0;(T,yx)} is consistent. Thus, since T is a model
completion of T, T" U {6;(%,7), 0;(Z,yx)} is consistent.

To prove the converse, we assume that a universal theory 77 and a unary
computable function f satisfy (i)-(iv). Let 7" be obtained by adding to 7"
the following two sets of axioms:

Ax T Vavy—0;(Z,7) for all i € w such that O, = =(zo = 9);
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Ax IT VZ[0s4 (Z) = F90:(Z,7)] for all i € w such that Oy # —(zo = x0).
Clearly T'2 T". We will show that 7" is a decidable model completion of 7".
Lemma 5.7 T is consistent.

Proof. We will prove that the union of 7" and the two sets of axioms is
consistent. If o is an axiom in Ax I, then 7" o by (i). Therefore, by the
compactness argument, it is enough to prove that for every finite set S of
axioms in Ax II, 77U S is consistent. Let

S = {VzIsu)(T) = 0;,(T,7)] : 0 <k <n—1}

for some n > 1. We will construct a model A for 7" U .S by Henkin’s method.

We choose an infinite set C' of new constants. For each k € {0,... ,n—1},
let C), be an enumeration of all sequences of elements in C' of the same
length as the length of 7 in 6, (T, 7), such that every such sequence appears
in C} infinitely often. Let oy, 01,09,... be an enumeration of all sentences
in L(T") U C. We will construct the complete diagram ¥ of 4,4, where A
will consist of the equivalence classes of the constants in C'. We will arrange
that U = {0y, 01,09,...}, where d is defined at stage s. For s > 0, let
Us = {0y, 01,...,0s_1} and let 1)° be AW®,

Construction

STAGE 0:
Let (50 =def (C() = Co).
STAGE s = (n + 2)e for e > 1:
Satisfy the (e — 1)-st completeness of the diagram requirement.

STAGE s = (n +2)e+ 1 for e € w:
Provide a Henkin’s witness for ..

STAGE s = (n+2)e+k forecwand k€ {2,... ,n+1}:

Let Ci_o be €, C1,Co,.... If 05, ,)(Cc) & U?, then 0, =aer (co = o). If
O, ,)(Ce) € U, then §; =qe b;, ,(Ce, ), where € is a sequence of constants
in C' which do not occur in ¥® such that ¢ is of the same length as ¥ in
0;,_,(7,7). End of the construction.

We can prove inductively that for every s € w, T" U ¥* is consistent.
In the proof, we use property (iv) at stages of the form (n+2)e + k for
k€ {2,...,n+ 1}. Hence ¥ is consistent. The corresponding model A4
satisfies T U S. O
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Lemma 5.8 FEvery model of T' can be isomorphically embedded in a model
of T.

Proof. Assume that B is a model of 7”. Let Q be the atomic diagram of B.
To prove that there is a model for 2 U T, we use the same argument as in
the proof of Lemma 5.7 to construct a model for Q2 U S, where S is a finite
set of axioms in Ax II. O

Lemma 5.9 (VA,B =T)(VD C A, B) [A and B satisfy the same existential
sentences in L(T) with parameters from D]

Proof. If follows from (ii) and Ax II that 7" admits the elimination of
quantifiers, which is equivalent to this statement. O

Although the following lemma follows from Theorem 5.3, we also give an
easy direct proof.

Lemma 5.10 T is complete.

Proof. Let o be a sentence in L such that T"U {0} is consistent. Since
T admits the elimination of quantifiers, the formula o A (yo = o) is T—
equivalent to 0; = 0;(yo) for some ¢ € w. By (iii), 0y = (20 = x9). By the
definition of axioms in Ax II, T+ Vay[zo = 2o = Jyo(o A (yo = yo))]. Hence
TkEo. a

T is decidable because it is complete and the given sets of axioms are
computable. T is a model completion of 7" by Lemma 5.7, Lemma 5.8 and
Lemma 5.9. O

6 Omitting Types and Decidability

Let I be a nonprincipal type of a complete theory 7. Then there is a count-
able model A of T" which omits I'. However, A does not have to be com-
putable even if I' is. The following theorem shows that if 7" is decidable and
[' is computable, then I' is omitted in some decidable model of T'.

Theorem 6.1 Let I" be a computable nonprincipal type of a complete decid-
able theory T'. There is a decidable model of T which omits T".



Chapter 1 Pure Computable Model Theory 25

Proof. Without loss of generality, we assume that I" is a 1-type, I'(z). Let
C, (0i)icw » ¥ = {09, 01, 02, ... }, ¥* and A be as in the proof of Theorem 4.1.

Construction

STAGE 0:
Let (50 =def (C() = Co).

STAGE s = 3e+ 1 for e € w:
We effectively provide a Henkin’s witness for d..

STAGE s = 3e + 2 for e € w (Omitting the types requirement):
Let v* be of the form 1°(c,, €), where ¢, does not occur in ¢. We effectively
find the first formula v(x) € ' such that

(o) T ¥ VzTyy*(z,7) = 7(2)],

where (z,7) is an appropriate effectively chosen sequence of new variables.
Let 05 =der —Y(cCe).

STAGE s = 3e+ 3 for e € w:

We effectively satisfy the e-th completeness of the diagram requirement.
End of the construction.

At stage 3e + 2, the corresponding formula v exists because I' is a non-
principal type and, by the construction, T"U {3235¢*(z,7)} is a consistent
set. Condition (o) can be verified effectively because T is a decidable theory.

Stage 3e 4+ 2 guarantees that the interpretation of ¢, in A does not realize
[. Since every element in the domain of A is the interpretation of some
constant in C', A omits T

Clearly, for an arbitrary n—type I', stage 3e 4+ 2 should be modified so
that instead of (¢;);c,, some effective enumeration of all n—tuples of elements
of C' is considered. O

A partial type of T is a subset of a (complete) type of 7. Millar has
established the following general result.

Theorem 6.2 (Effective Omitting Types Theorem, Millar [140]) Let T be
a complete decidable theory. If @, is a X3 set of computable nonprincipal
partial types of T, and @y is a X9 set of computable types of T, then there is
a decidable model of T which omits all types in 1 and all nonprincipal types
n ®y.
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The completeness of types in @, plays an important role in Theorem 6.2,
as demonstrated by the next theorem.

Theorem 6.3 (Millar [140]) There is a complete decidable theory T and a
computable set ® of computable partial types of T such that no decidable
model of T omits all nonprincipal types in ®.

The following two theorems can be obtained using the Effective Omitting
Types Theorem.

Theorem 6.4 (Millar [140]) Let T' be a complete decidable theory without
a decidable prime model. There are infinitely many distinct decidable mod-
els of T' such that the set of all types realized in any two of these models
simultaneously is exactly the set of all principal types of T.

Theorem 6.5 (Millar [140]) Let T be a complete decidable theory and let ®
be a X9 set of computable nonprincipal types of T. Assume that for every
decidable model A of T which omits @, for every finite X C A, Ax is not a

prime model. Then there are 2%° distinct type spectra of decidable models of
T which omit .

7 Decidable Prime Models

Definition 7.1 Let U be an arbitrary (possibly uncountable) model. U is
atomic if every n—tuple of elements of U satisfies a complete formula in the
theory of U.

Proposition 7.1 Let T be a complete theory in at most countable language.
(i) A countable model A of T is prime if and only if A is atomic.

(ii) T has a prime model if and only if every formula consistent with T is
a member of a principal type of T.

Definition 7.2 An arbitrary model U is Ny—homogeneous if for every two
sequences of elements of U of the same length,

(a,[),... ,an,l) and (bo,... ,bnfl),
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with the property
U a0, yan1) = U, by, ... by 1),
for every a € U, there is b € U such that
U, a0,... ,an_1,0) = (U, by, ... by_1,b).

A countable model A which is Ry—homogeneous is also called a homoge-
neous model.

Proposition 7.2
(i) Every atomic model is Ro—homogeneous.

(ii) Two countable homogeneous models which realize exactly the same types
are isomorphic.

Proposition 7.3 Let T be a complete theory in at most countable language.

(i) If T has > g types, then T has 2%° non-isomorphic countable homo-
geneous models.

(ii) If all countable models of T are homogeneous, then the number of non-
isomorphic countable models of T is either 1, or Xy, or 2%,

The following theorem, obtained independently by Harrington, and Gon-
charov and Nurtazin, is an effective version of Proposition 7.1 (ii). It estab-
lishes that a complete decidable theory 7" has a decidable prime model if there
is an algorithm which for a given formula 0(Z) consistent with 7', outputs
Go6del number of the characteristic function of a computable principal type
['(Z) containing §(T). In the proof of this result we use from model theory,
Henkin’s method of constructing models; and from computability theory, the
finite injury priority method.

Theorem 7.4 (Goncharov-Nurtazin [79], Harrington [88]) Let T' be a com-
plete decidable theory. The following are equivalent.

(i) T has a decidable prime model.

(ii) T has a prime model and the set of all principal types of T is com-
putable.
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Proof. (=): The conclusion follows from Proposition 3.5, since the set of
all types realized in a decidable prime model of T is the set of all principal
types of T.

(<=): Let f be a computable function such that {f(n) : n € w} is a set
of codes of the set of all principal types {I'y, : n € w} of T', where vy = xr,-
We will use Henkin’s method to construct a decidable prime model of T'. Let
C = {cg,c1,¢2,...} be a set of new constants, and let 0y, 01,09,... be an
effective enumeration of all sentences in L(7) UC. As usual, the domain of
the resulting model A will be {[c], [c1], ...}, where [c] is the corresponding
equivalence class of c. We will ensure that in A, for every e > 0, ([co], . .. , [ce])
realizes a principal type of T, that is, a type from {I', : n € w}. This
is sufficient since, for example, if a (complete) formula &(zo,z1) generates
a principal 2-type, then Jz¢&(xo, 1) generates a principal 1-type. That is
because T' + &(zg, 1) = ((z1) implies T' F 3xo&(xo, 1) = ((x1). Hence
every finite sequence of elements in the domain of A will satisfy a principal
type.

We will construct the complete diagram ¥ of A. At every stage s (s > 0)
of the construction, we will have a finite set U® of sentences such that

WVew cvic... and W= J V¥

5>0

Let ¥ = AWS. If ¢* = ¢*(cy, ... , ¢y, ), then for every e € {0,... ,n,}, we set

1/)2 —def 3?Je+1---3yn51/)s(00,--- yCey Yet1s - - - ,yns)-

For every e > 0, at almost every stage s of the construction, we have a
type Q5 € {I', : n € w} which is a candidate for a principal type realized
by ([col, ... ,[ce]). We will allow ¢ to be undefined for finitely many s.
Because of the consistency property, if QS is defined then ¢3(Z/¢) € Q5. The
construction will satisfy the following requirements for every e > 0.

Pl: 0, €V or =0, € V;
P?: If 0, € ¥ and o, = Jz6(x), then O(c) € ¥ for some ¢ € C}
Qe: ([co], .., [ce]) realizes a principal type of T.

The priority ranking of the requirements in the decreasing order is:

P[]17P027Q07"‘7P617P627Q67“'
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We attempt to satisfy the requirements in the order of their priority. We say
that at stage s > 0:

P! requires attention if o, ¢ U*~! and -0, ¢ U™,

P? requires attention if o, € ¥*! and o, = Jz6(z) for some 6 such

that 0(c) ¢ U~ for every ¢ € C;
Q. requires attention if Q57! is undefined.

Once satisfied at some stage, requirements P! and P? are never injured again.
However, we say that

Q. is injured at stage s > 0 if Q57" is defined, but ¢*(z/¢) ¢ Q'

Construction

STAGE 0:
Let U9 = @ and let Q° be undefined for every e € w.

STAGE s > 0:
Let Req be the highest priority requirement which requires attention at
stage s. We now attack Req as follows.

Let Req = P!
(a) If T = Vz[(¢5 ! = o0.)(T/C)], then ¥ = ¥t U {o,}.
(b) If T FVZ[(¢* 1 = —0,)(T/C)], then U = U1 U {—0,}.

The properties on the left-hand side of (a) and (b) can be checked effec-
tively because T is decidable.

(¢) If neither (a) nor (b) is satisfied, we add either o, or —o, to ¥*!
such that if some (Q-requirement must be injured, then the first
such injured requirement is of the highest priority. (Since the
types in {I';, : n € w} are computable, we can effectively check
whether a given QQ-requirement is injured.)

We effectively check whether some @), is injured at stage s. Let ny be the
least such n, if it exists. For every n > ng, (1) will be undefined.
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Let Req = P?
Thus, 0. € ¥~ and o, = Jzf(x) for some 0. Let ¢ be the first constant

in C' which has not been used in the construction before stage s. We define
Us =0t u{0(c)}.

Let Req = Q.

Thus, Q7! is undefined. We find the first (e + 1)-type ['(zp,... ,7.) €
{T,, : n € w} such that ¥ (zo/co,...,ze/ce) € [(zg,...,x.), and set
Qf =gef ['(xo, ... ,2¢). This can be done effectively because of the following
two facts.

(1) Such T exists because T has a prime model, so it is an atomic theory,
hence every formula consistent with 7" belongs to some principal type.

(2) For every computable complete type, we can effectively decide whether
a given formula or its negation belongs to that type. End of the con-
struction.

Lemma 7.5 For every e, Q. =qef lim, 2 exists. Hence every Q. is satisfied.

Proof. Assume that e = 0. Let ¢, be the least stage such that QF is defined.
Let Q° =T,,. Then ¢ *(z¢/co) € I'n,. Hence, by construction, @ will
never be injured, so 0, = I',,.

Assume that e = 1. Let & be a complete formula such that & €
Qo(= T,,). Clearly, =&y(xp) is inconsistent with g, and Qg is never injured.
Choose the least stage so such that & (cy) € W®. Let ¢; be the least stage
> 59 such that Q' is defined. If Q% =T, , then ¢ *(20/co, z1/c1) € T,
Since every formula consistent with U (Z/¢) is also consistent with €, it
follows that @) is not injured after ¢;.

The general proof is by induction on e. If e > 0, choose the least s such
that

Vi>s(QL =0, =0Q,,),
VS (zo/coy- - yTe 1/Ce—1) is a complete formula for 2, 1,
(2% is defined.

Let ¢ > s. It follows that Qf = Qf since ¢ (xo/co, ... , Tee1/Cou1, Te/Ce) €
Q5,50 Y51 (xo/coy- -, Te1/Ce 1) € QF, and hence Q5_; C QF. O
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Theorem 7.6 (Millar [134]) There is a complete decidable theory T with a
prime model which does not have a computable prime model. In addition, all
types of T are computable.

Proof. The language of T'is L = {P,(-) : n € w}, where every P, is a unary
relation symbol. Let 0y(z),6;(z), 02(x), ... be a computable enumeration of
all quantifier-free formulae in L whose only free variable is x. For a quantifier-
free formula 0(x) in L, let

[0(2)] =qer pk(0(x) = Ok (2)).
For a finite sequence o € 2™, let
00 () =det /\{Pk(x)a(k) 0<k<m—1}.

The set of sentences T is defined using a computable tree 7 C 2<¢ which
will be constructed later. The idea is to use the nodes in 7 to define certain
formulae which are consistent with 7 and to use the nodes in (2<“ — 7)) to
define certain formulae which are inconsistent with 7. Namely, the axioms
of T fall into the following two groups:

Ax I Va—bg(x) for every g € 2<¥ — T,

AxIT Fzo...3zp [ AN wiFxy AN bu()]

0<i<j<n—1 0<i<n—1
for every a € T and every n > 1.

In addition to being a computable tree, 7 will satisfy the following con-
dition:

VE[peT = p"1eT|. (%)

This allows us to conclude that T" has the properties stated in the following
four lemmas.

Lemma 7.7 T s consistent. Hence T is a theory.

Proof. Consistency of T will follow easily from the construction of 7. We
can also use the compactness theorem to prove that the set of all axioms of
T has a model. Assume that S is a finite set of axioms. Let oy,...,0,_1



32 V. S. Harizanov

be a list of all axioms in S from Ax II. For every i € {0,... ,k — 1}, let o;
be the node in 7 and n; the natural number corresponding to o;. Define
a finite model A of L as follows. The domain A is Aqg U ... U A,_;, where
Ay, ..., Ax_1 are pairwise disjoint sets, and for every i € {0,... , k — 1}, A;
has n; elements. Fix i € {0,...,k — 1}. Let m; = lh(c;). We define the
unary relations on A; in such a way that o; is true, and for every j > m;,
we have ij4 D A;. The sentences in S from Ax I are then automatically
satisfied, because 7 is a tree with property (x). O

Lemma 7.8 T admits the elimination of quantifiers.

Proof. We will use Theorem 5.5. Let A, B =T and D C A, B. We will prove
that Ap and Bp satisfy the same existential sentences. Let 371 (T,7) be a
formula of L and let d € D<“ be such that v(Z, 7) is a quantifier-free formula,
and A = 3y (7,7)[d]. Assume that ¢ (7,7) is in a disjunctive normal form.
Choose a disjunct §(%,7) of 1 (Z,7) such that A = §(%,7)[d, @ for some
a € A<¥. Let m > 1 be the largest number such that P,, ; occurs in §. Let
a € rng(a) — B, and let y be the variable in rng(y) assigned to a. Assume
that 6(y) is the largest subformula of 6(7,7), containing only variable y. Let
a € 2™ be such that A, = 6,(a). Clearly, §(y) is a subformula of 6, (y).
Since 0, (y) is consistent with 7', we conclude that oo € T, so B = Jy6,(y).
Now it is easy to see that B = Iy (T, 7)[d). O

Lemma 7.9 T is complete.

Proof. Let o be a sentence in L. If ¢ is inconsistent with 7', then T+ —o.
Therefore, assume that o is consistent with 7. We will prove that 7'+ o. By
Lemma 7.8, there is quantifier-free formula 1 (x) such that

T FVz(o < ¢(z)).

Hence T+ (0 < Jz(x)). (x) can be written as a disjunction of conjunc-
tions of atomic formulae or negations of atomic formulae. Let A be a model
of T such that A = o. Let a disjunct 0(x) of ¢)(x) and a € A be such that
A, = 0(a). Assume that m > 1 is the largest number such that P,,_; occurs
in f(z). As in the proof of the previous lemma, there is o € 2™ such that
A4 E 0.(a) and 0(z) is a subformula of §,(z). Thus, a € T, so Jxb,(x) is
an axiom of T. Therefore T 3x6(x). Hence T+ Jxyp(x). O
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Lemma 7.10
(i) T is decidable.

(ii) Fvery computable model of T is decidable.

Proof.

(i) The sets of axioms in Ax I and Ax II are computable because 7 is
computable. Hence the decidability of T" follows from Lemma 7.9.

(ii) The statement follows from Proposition 5.4 (ii) since T is decidable
and admits the elimination of quantifiers. O

Since T" admits the elimination of quantifiers, every 1-type of 1" is unique-
ly determined by a function f € 2¢ such that for every k € w:

Py(z)™™ e D(z).

We now construct a computable binary tree in such a way that every type of
T is computable, and every decidable model of T realizes a nonprincipal 1-
type. Since every type of T is computable, T" has countably many types, so it
has a countable saturated model, and hence a prime model. However, a prime
model of T' cannot be decidable because it does not realize a nonprincipal
type.

T is computably enumerated, where for every s € w, 7, is the part of T
enumerated by stage s. The construction satisfies the following requirements
for e € w:

R. : [¢? is the satisfaction predicate of a decidable model A =T

e

—> A realizes a nonprincipal type of T.

To achieve this, for every gog) which is a satisfaction predicate of a decidable
model A of T, we define an infinite set of e-marked nodes and a unique
e—marked element. The e-marked nodes belong to a single infinite branch
which determines a nonprincipal type of T, satisfied by the element of A
which corresponds to the e-marked element. For e € w, exactly one new
e-marked node is defined at every stage s of the construction such that
se{0lu{e+1l,e+2,...}.
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For any a, let a® denote the empty sequence, and for m > 1, let a™
abbreviate the sequence of m consecutive a’s.

Construction

STAGE O0:
7o is the tree consisting of the nodes 1°70 for all e € w, and of their initial
segments. For every e € w, the node 1°70 is e-marked.

STAGE s + 1:
STEP 1: For every € Tj:

Enumerate 81 into 7,,; and

Declare that 70 (and hence every vy € 7T, such that 40 is an initial
segment of ) is in the complement of 7.

STEP 2: Consider each e < s. Let o be the e-marked node at s.

Case (a): No e-marked element has been defined at any previous stage.
Action: Search for the least j < s (if it exists) such that

P2 ([0a(2)],5) 4= 1.

)

If such 7 does not exist, then « is the e-marked node at s + 1.

If such j is found, define the e-marked element to be j. Let
B be the node, enumerated in 7,y by Step 1, of the maximal
length such that « is the initial segment of 5. The construction
guarantees the uniqueness of 5. Define 3 to be the e-marked node
at s + 1, and enumerate both 470 and 5°1 into T,1.

Case (b): Assume that j is the e-marked element.
Action: Let [h(a) = n. Find the least b € {0, 1} (if it exists) such
that

P ([0a(z) A Pa(2)"],4) 4= 1.

If such b does not exist, then « is the e-marked node at s + 1.
Now assume that b exists. Let 3 be the node, enumerated in
Ts+1 by Step 1, of the maximal length such that b is an initial
segment of 5. The construction guarantees the uniqueness of f3.
Define 5 to be the e-marked node at s + 1, and enumerate both
£°0 and 51 into T,,;. End of the construction.
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Let T =qget U T5s. T is a computable tree by construction.

sEw

Lemma 7.11

(1)
(ii)

Every 1-type of T is computable.

FEvery type of T is computable.

Proof.

(1)

(ii)

It is easy to see that the principal types of T are computable. Assume
that I'(x) is a nonprincipal type of T. Since T admits the elimination
of quantifiers, I'(z) is uniquely determined by a function fr € 2¥. That
is, for every i € w,

Pix) €D = fuli) = 1.

To prove that I'(z) is computable, it is sufficient to prove that f is
computable. Let e > 0 be such that 1°70 is an initial segment of f. If
there were only finitely many e-marked nodes on the infinite branch
of 7 determined by f, then, since every e-marked node “branches”, f
would determine a principal type. Therefore, there is an infinite set F
of such e-marked nodes. Since E is computable by the construction of
T, f is computable.

Let Q(xg,...,2,_1) be an arbitrary type of T. Since T' admits the
elimination of quantifiers, €2 is uniquely determined by its 1-subtypes

and by the set ¥ of all inequalities among xg,... ,x,_1, which are in
. Since, by (i), all 1-types are computable, and ¥ is finite, it follows
that €2 is computable. O

Lemma 7.12 FEvery decidable model of T realizes a nonprincipal type of T

Proof. Assume that A is a decidable model of T'. Then there is an effective
enumeration (a;);cn of A, and e € w such that for every formula 6(x) of L
and every i € w:

AE 0(ai) <= o2 ([0(2)],1) 4= L.
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Let a be the e-marked node of the least length. Since T+ Jz6,(z), there
is i € w such that A4 = 0,(a;). Hence there is j € w such that j is the
e-marked element and for some stage s € w, ¢4 ([0a(z)],5) = 1. It follows
from the construction of 7 that there are infinitely many e—marked nodes.
For every such node 3, both 570 and $°1 belong to 7. Hence T has an
infinite branch determining a nonprincipal type which is realized in A by a;.
O

Now, let us show that the ¥J complexity assumption in the Effective
Omitting Types Theorem (Theorem 6.2) cannot be replaced by a II3 one.
Assume that a theory T is as in the previous theorem. Then the set of all
nonprincipal types of T is not omitted in any decidable model of T'. However,
by Proposition 3.6, the set of all nonprincipal types of T is a II set.

Goncharov and Nurtazin [79] have also given an example of a decidable
theory without a computable prime model. The language of the theory is
infinite, and the theory is Wg—stable. In [73], Goncharov has established a
criterion for the computability of a prime model of a complete decidable
theory. Let us first state a model-theoretic result about Ny—stable theories.

Theorem 7.13 Let T be an Ny—stable theory in at most countable language,
and let U be an arbitrary model of T. For every set X C U, the complete
theory of Ux has an atomic prime model.

Theorem 7.14 (Goncharov [73]) There is a complete decidable Ro—stable
theory in a finite language (consisting of four unary relation symbols and one
binary relation symbol), which does not have a computable prime model.

Theories obtained in Theorem 7.6 and in Theorem 7.14 have infinite sets
of axioms. However, Peretyat’kin [168] has found a finitely axiomatizable
complete (hence decidable) theory T with a prime model, which does not have
a decidable prime model. In Peretyat’kin’s example, 71" is associated with a
computably enumerable binary tree 7 which has the following properties.
For every node « of T, either both or none of &~ 0 and o~ 1 belong to T.
Every node of 7 is an initial segment of a leaf of 7, and the set of all finite
branches of 7 is non-computable. A tree with these properties was first used
by Goncharov and Nurtazin [79]. To prove that the described tree suffices
for the result, Peretyat’kin has invented a general method for constructing
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finitely axiomatizable theories whose properties are determined by Turing
machine computations.

Definition 7.3 Let X C w. A model A is decidable in X if A <r X and
there is an enumeration (a;);c, of A such that the theory of (A, a;)ic is
<r X.

Theorem 7.15 (Denisov [43], Millar [134], Drobotun [49]) Let T be a com-
plete decidable theory with a prime model. Then T has a prime model which
is decidable in @'.

Theorem 7.16 (Drobotun [49]) For every set X such that X <p @', there
15 a complete decidable theory with a prime model which is not decidable in

X.

Millar [145] has introduced a different concept of the effectiveness of a
model, which is weaker than the concept of decidability.

Definition 7.4 A countable model A for L is almost decidable if there is
a computable function F' which assigns to every finite binary sequence o a
finite set F'(«) of formulae in LU {¢y, ¢y, ¢a, ...}, where ¢, ¢, o, ... are new
constants, such that the following conditions are satisfied.

(1) For o € 2%, if 8 is an initial segment of « , then F(3) C F(«).
(2) We can assign to every f € 2“ a model Ay such that
U {F(a) : @ is an initial segment of f}
determines the complete diagram of 4, and for all but countably many
f € 2%, Ay is isomorphic to A.

Every decidable model is almost decidable, and there is an almost decid-
able model which is not decidable. In fact, the concept of almost decidability
is introduced to capture a class of models which fail to be decidable because,
although there are computable strategies for their construction, the strategies
are not uniformly computable.

Theorem 7.17 (Millar [145])

(i) If a complete decidable theory T' has fewer than continuum many com-
plete types, then T has an almost decidable prime model.

(ii) There is a complete decidable theory which has a prime model but does
not have an almost decidable prime model.
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8 Computable Saturated Models and Com-
putably Saturated Models

In 1961, Vaught introduced the notion of a countably saturated model. In
1970’s, Barwise, Schlipf and Ressayre [28, 27, 184, 190] introduced the notion
of a computably saturated model. Barwise and Schlipf have extensively used
computably saturated models to study computability over admissible sets.

Definition 8.1

(i) Let U be an arbitrary model. U is Ro—saturated if for every finite subset
X of its domain, Uy realizes every type ®(x) of the theory Th(Uy).

(ii) Let U be a model for a computable language L. U is computably sat-
urated if for every finite subset X of its domain, every computable set
of formulae ®(z) in Ly consistent with Th(Ux) is realized in Uy.

Hence, every Njy-saturated model for a computable language is com-
putably saturated. A countable Ny—saturated model is simply called sat-
urated.

Theorem 8.1

(i) A complete theory in a computable language whose models are infinite
has a countable computably saturated model.

(ii) Fvery computably saturated model is Ro—homogeneous.
(iii) Elementarily equivalent countable saturated models are isomorphic.

(iv) A complete theory with a countable saturated model has a prime model.

Hence it follows from (ii) of the previous theorem that every countable
saturated model is homogeneous. It follows from (i) of the previous theo-
rem that every countable model for a computable language has a countable
computably saturated elementary extension.

Theorem 8.2 (Engeler, Ryll-Nardzewski, Svenonius) The following state-
ments are equivalent for a complete theory T

(i) T is Ry—categorical.
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(ii) There is a countable model of T which is both prime and saturated.
(iii) All types of T are principal.

(iv) For every finite sequence T of variables, there are only finitely many
types of T in T.

(v) For every finite sequence T of variables, there are only finitely many for-
mulae with free variables among the elements of the sequence T, which
are not pairwise equivalent with respect to T'.

(vi) All models of T are atomic.

Theorem 8.3 A complete theory T has a countable saturated model if and
only if for every n € w, T has only countably many n—types.

Hence, every complete theory with only countably many non-isomorphic
countable models has a countable saturated model. While countable satu-
rated models do not exist for complete theories with uncountably many types,
countable computably saturated models always exist. Thus, the proofs of
many early results in model theory are simplified if countable computably
saturated models are used to replace certain large models which exist only
under specific assumptions of set theory.

Theorem 8.4 (Millar [137]) Let T' be a theory in a computable language L.
Suppose that T has a complete extension T in the language LU{cy, ... ,cn_1},
where ¢y, . .. ,ch_1 are new constants, such that T does not have an atomic
model. Then T has a model which is not computably saturated.

Proof. Since T" does not have an atomic model, there is a formula
¥(Coy . v s Cat1; Toy - s Te1) in L(T")

which is consistent with 7" and not contained in any principal type of T".

Let 6y,0:1,605,... be a computable enumeration of all formulae in L in free
variables (7,%) = (Yo, -+ , Yn—1,%0,--- , Tm—1). We define a computable set
of formulae ®(y,T) = {1y, V1, Yo, ...} by:

1/)0 = 1/)(@7 E)a

Vrv1 = [0k(¥,T) < FZ(0k(7,2) A o(T,2) A ... ANe(y,Z))] for k> 0.
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®(co, ..., ¢ 1,T) generates an m—type of 7. It must be a nonprincipal type
since no principal type of 7" contains ¢ (co, ... ,¢, 1, T). So there is a model
(A, ag,...,a, 1) of T" omitting ®(cy,...,¢, 1,T), such that A is a model
of T. Since ®(y,T) is a computable set of formulae, A is not computably
saturated. a

Proposition 8.5 (Millar [134]) Let T be a complete decidable theory with
a countable saturated model. FEvery consistent computably enumerable set
®(zg,...,xn_1) of formulae, n € w, is contained in a computable type of T.

Proof. Assume that ®(zg,...,z,_1) is a consistent computably enumer-
able set of formulae which is not contained in any computable type of T
Then there is no formula ¢ = ¢(zy,... ,x,—1) of L(T) such that ® U {¢} is
contained in exactly one n—type of T" in variables xg,... ,z, 1. We can use
the splitting along the nodes of a binary tree to show that 7" has 2% many
n-types. Hence T" does not have a countable saturated model, contradicting
the assumption. O

Theorem 8.6 (Morley [150], Millar [133, 134]) Let T be a complete decidable
theory such that all types of T are computable. If the set of all types of T is
computably enumerable, then T has a decidable saturated model.

Proof. Let I'y,I'; I'y, ... be an effective enumeration of all types of T" such
that every type appears infinitely often. Also, consider an effective enu-
meration of all finite sequences of constants from an infinite set C' of new
constants. Modify the construction in the proof of Theorem 7.4 so that the
constructed decidable model is saturated. O

Theorem 8.7 (Millar [134]) There is a complete decidable theory T with a
countable saturated model which does not have a computable saturated model.
In addition, all types of T are computable.

Proof. The example in the proof of Theorem 7.6 can be modified to guar-
antee that every decidable model of 7' omits a (nonprincipal) 1-type of 7.
O

As Millar [134] has pointed out, there is no connection between the decid-
ability of a prime model and the decidability of a countable saturated model
(if they exist) of a complete decidable theory.
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Theorem 8.8 (Millar [134]) Let T' be a complete decidable theory.

(i) If all types of T are computable, then T has a countable saturated model
which is decidable in @'.

(ii) If T has a countable saturated model, then T has a saturated model
which is decidable in some hyperarithmetic set.

Theorem 8.9 (Denisov [43]) For every set X C w such that X < @', there
15 a complete decidable theory T with a countable saturated model, such that

T has neither a countable saturated model decidable in X, nor a prime model
decidable in X .

Morley introduced a very important classification of formulae according
to their complexity.

Definition 8.2 Let I/ be an N;-saturated model for a countable language
L.

(i) Let #(x) be a formula in Ly. We say that an ordinal « is the Morley
rank or the transcendence rank of 6(z) if the set of formulae

{0(x)} U{y(z) : ~¢p(x) has the Morley rank < a}

in Ly is consistent and has finitely many maximal consistent extensions
in the theory of Uy .

We assign oo to §(z) as its Morley rank if #(x) is consistent with the
theory of Uy, but no ordinal is assigned to it as its Morley rank.

(ii) The Morley rank of U is the Morley rank of the formula = = .

It is convenient to work with N;—saturated models because a formula has
the same Morley rank in two elementary equivalent N;-saturated models.
The valid formula x = x is chosen to “represent the model” because it has
the largest Morley rank. Clearly, a formula §(z) in Ly has the Morley rank
0 if it is satisfied in U by at least one but at most finitely many distinct
elements. Such a formula is also called algebraic.

It follows that all N;—saturated models of a complete theory 7" have the
same Morley rank, called the Morley rank of T. It can be shown that if
Morley rank of 7" is not oo, then it is a countable ordinal. A theory T" whose
Morley rank is not oo is called totally transcendental. A complete theory is
totally transcendental if and only if it is Ny—stable.
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Theorem 8.10 (Peretyat’kin [169]) There is a complete finitely axiomatiz-
able Rg—stable theory of finite Morley rank, which has neither a computable
prime model nor a computable saturated model.

Schlipf [190] has established that if A is a countable, computably sat-
urated model and S is a computably axiomatizable theory consistent with
Th(A), then A can be expanded to a computably saturated model of S. For
example, a countable nonstandard model of additive number theory can be
expanded to a model of Peano arithmetic if and only if it is computably

saturated (see [122]). For applications of computably saturated models see
[112, 117, 123].

9 Decidable Homogeneous Models

While countable homogeneous models are relatively simple objects in model
theory, they can be very complex from a computability-theoretic point of
view. Classical model theory has established that every countable model
has a countable homogeneous elementary extension. Two countable homo-
geneous models are isomorphic if and only if they realize the same finite
types. Thus, a countable homogeneous model is uniquely determined, up to
isomorphism, by a set of types it realizes. Therefore, the following question,
first posed by Morley, is a very natural one.

Let T be a complete decidable theory. Assume that the type spec-
trum of a countable homogeneous model A of T consists only of
computable types and is computable. Is A necessarily decidable?

(The converse is obviously true.)

Goncharov, Peretyat’kin and Millar have independently answered Mor-
ley’s question negatively by providing examples of a non-computable count-
able homogeneous model of a complete decidable theory such that the type
spectrum of the model consists only of computable types and is computable.
Millar [136] has used the infinite injury priority method to construct his coun-
terexample. In addition, Goncharov [68] and Peretyat’kin [166] have char-
acterized a decidable countable homogeneous model of a complete decidable
theory. While Peretyat’kin’s counterexample has not used this characteriza-
tion, Goncharov has used the characterization to find his counterexample.
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Goncharov [72] has later given an example of a complete Ry—stable decid-
able theory which does not have a computable homogeneous model. Notice
that such theory has neither a computable prime nor a computable saturated
model. Another consequence of Goncharov’s example is the existence of a
decidable model without a homogeneous computable elementary extension.

To present Peretyat’kin’s counterexample to Morley’s question, we use
from model theory, the Lo$-Vaught Test and a characterization of submodel
complete theories from Theorem 5.5; and from computability theory, the no-
tion of an approximable set and the existence of a non-approximable c.e. set,
both of which are due to Peretyat’kin.

Theorem 9.1 (Los-Vaught Test) If a theory S of an arbitrary language
has only infinite models and for some infinite cardinal k > |L(S)|, S is
k—categorical, then S is complete.

Definition 9.1 Let X C w. X is approzimable if there is a computable
function f such that for every m € w,

0,...,m—=1}nX|> f(m)
and for infinitely many m,

{0,... ,m—1}NX| = f(m).
(If m =0, then {0,... ,m — 1} =45 3.)

Hence, a set X is not approximable if and only if for every computable
function f,

Vm [{0,... , m—=1}NX|> f(m)] =
[FmoVYm = my [{0,... ,m —1} N X]| > f(m)].

Theorem 9.2 (Peretyat’kin [166]) There is a computably enumerable set X
which is not approximable.

Proof. We will algorithmically enumerate X at stages.

Construction
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STAGE 0: Let Xo =qer 9.

STAGE s+ 1:  Let X, be the part of X enumerated by stage s. For every
e < s, consider all £ such that

for every n € {{e,k)y+1,...,{e,k+ 1)},

Ves(n) L A0, ..., n—1} N X| = @es(n).
Enumerate all such (e, k) in X,;;. End of the construction.

Let X = |J X,.

SEw

Lemma 9.3 X is not approrimable.
Proof. Let ¢ € w be such that o, is total. Assume that
Vnl{0,...,n =1} NX| = p.(n).
Let mo =qer {€,0) + 1. We will prove that
Vm = mp[l{0, ... ,m —1} N X| > ¢.(m)].
Let m > mg. There is a unique k such that m € I, where
I'={{e,k)y+1,...,(e,k+1)}.
Consider the least s > e such that
(Vn € I)[pes(n) L A{0,...,n =1} N X4| = @es(n)].
By construction, (e, k) € X1 — X;. Hence

HO,...,m—=1}NX|>[{0,... ,m =1} N X4| = pes(m) = @c(m)]. O

Theorem 9.4 (Goncharov [68], Millar [136], Peretyat’kin [166]) There is a
complete decidable theory T and a countable homogeneous model M of T
such that M is not computable, and the type spectrum of M consists only of
computable types and s computable.
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Proof. We will present the example from [166]. First, we will define a
complete and decidable theory T in L which admits the elimination of quan-
tifiers. Then for an arbitrary c.e. set X, we will define a c.e. set Sy of types
of T" such that there is a homogeneous model M with the following proper-
ties. M realizes precisely the types in Sy; and if M is computable, then X
must be approximable. However, by Theorem 9.2, X can be chosen to be
non-approximable, thus forcing M to be non-computable.

Theory T

Definition of T. The language of T'is L = {=, R, Py, P, P, ...}, where
R is a binary relation symbol and for ¢ € w, P; is a unary predicate
symbol. We will also consider the finite sublanguages Ly, = {=, R},
and Ly = {=,R, Fy,... ,Ps_1} for s > 0. Let T' =ger | J,~ Ts, where T
is a set of sentences in L, defined as follows. -

T, has the following two axioms.

Ax 1 Vz—R(x,x);
Ax 2 VaVy[R(z,y) = R(y,x)].

For s > 0, T, has, in addition to the above two axioms, the following
axiom schema:

Axy Vo Vr, 1[0'(xo, 21, .. ,2p 1) = FT,0(20, 1, ..., Tp1, Tn)],
where ¢ is a conjunction of atomic formulae and negations of
atomic formulae in L; which is consistent with {Az 1, Az 2}, and
0’ is a subformula of 4. We will call § a finite diagram in L, and
0" a subdiagram of §.

Lemma 9.5 For s > 0, T, is consistent.

Proof. Clearly, Ty is consistent. Assume that s > 0. Let Ay be a model
in L, of axioms Ax 1 and Ax 2. We will construct a model A of T,. Let
01,605, ... be an enumeration of all axioms Ax, in which each axiom appears
infinitely often. Let 6; be of the form

Vo .. .VZUn,l[&,(lUU,xl, . ,xn,l) — HZUn(S(lUU,J?l, . ,xn,l,xn)].



46 V. S. Harizanov

We will extend A to A; in such a way that A, satisfies the matrix of #; on
all n—tuples from Ay. Let A; = Ay U {a}, where a ¢ Ay. Let

Ao = 5’(30,31, oy Ap_1)

for ag,ay,... ,a,_1 € Ay. Extend the definitions of the predicates in L to
the set {ag,a,...,a,_1,a} so that

A Ed(ag,ar,...,a, 1,a).
Continuing in a similar fashion, we construct a chain of models
ACA CAC--.
Let A =ger J As. O

5>0
Lemma 9.6 For s > 0, T, is Ny—categorical.

Proof. Let A and B be countable models of T;. We will prove that they are
isomorphic. Assume that f is a finite (partial) isomorphism from A to B and
dom(f) = {ap,a1,... ,an_1}. Let 0'(xg,x1,... ,2,_1) be the finite diagram
of A determined by dom(f), let a € A —dom(f), and 6(xg, x1,... ,Tp_1,Ty)
be the finite diagram of A determined by dom(f) U {a}. We have that
B = §'[f(ao), f(a1),..., f(an_1)]. Thus, there is b € B such that

B ): 6[f(a0)7f(a1)7 Tt 7f(an71)7b]'

Then f; = fU{(a,b)} is a finite isomorphism from A to B. Similarly, if
by € B — ran(f), there is a; € A such that fo, = f; U {(ay,b1)} is a finite
isomorphism from A to B. O

Lemma 9.7 For s > 0, T, is complete.
Proof. T has no finite models since {x; # x; : i # j Ai,j < n} belongs to

a finite diagram of 7. Since T} is Ny—categorical, by the Los-Vaught Test, it
is complete. O

Lemma 9.8 For s > 0, T is decidable.
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Proof. T} is complete and computably axiomatizable. Hence, it is decidable.
O

Lemma 9.9 For s > 0, T, admits the elimination of quantifiers.

Proof. We will prove that 7T is submodel complete by showing that

(VA,B E=T,)(VD C A, B) [A and B satisfy the same existential

sentences in L(T;) with parameters from D).
Let A ): g(dg, Ce ,dnfl, ag, ... ,am,l), where
do,...,dnfleD and ao,...,am,leA—D.

Extend the identity function on {dp,...,d, 1} to a finite isomorphism f
from A to B such that ag,...,a, 1 € dom(f). Then

B ): 3.1,'0 .. .Ekvm,lﬁ(do, C ,dn,hxo,. .. ,xm,l).

Types of T
Description of the types of T. The fact that T admits the elimination
of quantifiers allows us to easily describe all finite types of T

A 1-type I'(z) of T' is uniquely determined by the sequence f € {0,1}¥
such that {Pof(o) (x), Plf(l)(:c), PQf(Q) (x),...} CT.

For n > 2, an n-type ['(xg,...,2, 1) of T is uniquely determined
by the 1-types I' [ {zo},...,T | {z, 1} and some finite Ly—diagram
(S(l‘o, N ,l'n_l).

Description of a set Sy of types of T. Let X be a c.e. set of natural
numbers.

Definition 9.2

(i) A sequence f € {0,1}* is compatible with X if there is [ € w such
that for ¢ € {0,...,[— 1},



48

V. S. Harizanov

fl+i)=1if i€ X, and f(l+i)=0 if i¢ X,
f(20) =0 and for i > 21, f(i) = 1.

(ii)) A 1-type is compatible with X if the infinite binary sequence
which determines it is compatible with X.

That is, f is compatible with X if f is defined arbitrarily on some
initial segment of length [, then “follows” X on length [, after that has
value 0, and then its value becomes and remains 1 forever.

A 1-type belongs to Sy if and only if it is determined by an almost
constant 1-sequence (that is, IngVn > nyf(n) = 1).

A 2—type I' =T'(x,y) of T with I'y(x) =T | {z} and Ty(y) =T | {y}
belongs to Sx if and only if I'y, 'y € Sy and the following condition is
satisfied: = R(z,y) € I'(z,y), or neither I';(z) nor I'y(y) is determined
by the constant 1-sequence, or if one of I'; (z) and I's(y) is determined
by the constant 1-sequence, then the other one is compatible with X.

An n—type belongs to Sx if and only if each of its 2-subtypes belongs
to SX

Lemma 9.10 There is a homogeneous model which realizes precisely the
types in Sx.

Proof. The existence of such a model follows from the next two properties.
Property (1) will guarantee Henkin’s witnesses, and property (2) will guar-
antee the homogeneity of the model which can be constructed by Henkin’s
method.

(1) If T'(xg, ... ,2y—1) € Sx and O(xy,... ,zy_1,) is a formula consistent

with ' (that is, 326 (zo, ... ,xn—1,x) € I')), then there is an (n+1)—type
Q(zg,... ,xy_1,2) € Sy containing I" and 6.

Let us prove (1). Let the language of 6(xy, ... ,x, 1,2) be Ls. Since Ty
eliminates the quantifiers, there is a finite diagram §(zo, ... ,Z,_1,)
of T such that

F8(zoy ..y Tpo1,x) = O(x0,. .., Tp_1,T).
We can extend I'(zg, ..., 2, 1) U{d(x0,... , 2, 1,2)} to a type

Qzo, ... Ty 1,T)



Chapter 1 Pure Computable Model Theory 49

in Sx. If x = x; for some i < n, then the required extension {2 is unique.
Otherwise, choose Q in such a way that Q(zg,...,z,_1,2) | {z} is
compatible with X.

(2) Ty (zoy...,Tn 1,%,) € Sx and To(zg,... , 2y 1,2,) € Sx and if
F1 f {xﬂa s 7:Un71} = F2 f {xﬂa B 7:Un71}7

then there is an (n + 2)-type Q(xg,... , 2, 1,Zn, ) € Sx such that Q
contains I'y(zg, ... ,xn_1,2,) and Ty(xg, ... , Ty 1,T).

Let us prove (2). Let
T(xo, - s T, Ty ) =aer L1(X0, -+« Tne1,Tn) UTa(x0, ..., Tpyo1, ).
If for some i < n,
(x; =) € T1(x0y - -+ s Tpo1,n) Ul (Zo,s -+ 5 Tty Tn),

then the required extension 2 of I' is uniquely determined. Otherwise,
Q2 will be determined by T', x,, # z, and =R(z,, ). a

Lemma 9.11 The set Sx of types is computably enumerable.

Proof. It is sufficient to prove that the set of all 2—types in Sx is computably
enumerable. To prove this fact, it is enough to prove that a family 7 of 2—
types in Sy is computably enumerable, where

T2{l(z,y): R(z,y) €T
A (T [ {z} is determined by the constant 1-sequence)
A (T T {y} is determined by a sequence compatible with X)}.

Let {X;}ic be a computable enumeration of X. For every pair (p,t) of a
finite sequence p = (pg,...,p1) and a number ¢, we define f,g € 2 as
follows:
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f(o):pm"'af(l_l):plfla
F)=1if 0€X,and f(I)=0 if 0¢X,

FRl—1)=1if I—1€X,and f2—1)=0if [—1¢ X,
F@) =0,and fi)=1 if i> 2l

Clearly, f is compatible with X if no new elements among {0, ... ,[ — 1} are
enumerated in X after stage t. The sequence g keeps track of that part of
the enumeration. Namely,

g(s) = 0 if (Xs—X,.1)N{0,...,l—1}#@ for s>t ,and

g(s) = 1 otherwise.

Notice that ¢ is determined by an almost constant 1-sequence. Also, by
the above remark, if ¢ is determined by the constant 1-sequence, then f is
compatible with X.

Let 'z (2, y) be the 2-type such that

L@ y) 2 {R(x,y), B, P k> 0}
Then T = {Tzy(z,y) : D € 2 ALt € w}. O
Lemma 9.12 Assume that a homogeneous model of T realizing precisely the
types in Sx is computable. Then the set of types
{T:T isa l-type of T compatible with X}
s computably enumerable.

Proof. Let M be a homogeneous model of T' realizing precisely the types
in Sx. Let a’ be an element of M which realizes in M the 1-type © of T’
determined by the constant 1-sequence. For every a € M, let I', be the 1-
type realized in M by a. Since M is computable by assumption, it is enough
to prove that

{T':T isa Il-type of T compatible with X'} =

{To:a€e MAME R(a',a)}.
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We first assume that M = R(a’,a) for some a € M. Since the 2-type
realized in M by (d/,a) belongs to Sy, I', is compatible with X (by the
choice of a).

We now assume that I' is a 1-type of T" compatible with X. Let a 2-type
Q(z,y) be such that R(z,y) € Q, Q [ {z} =O(x) and Q | {y} = ['(y). Since
Q2 belongs to Sy, it is realized in M by some (b',b). Thus, a’ and ' realize
the same 1-type in the homogeneous model M. Let f be an automorphism
of M such that f(b') = a'. Let f(b) = a for some a € M. Since (d’,a) and
(b',b) realize in M the same 2-types, it follows that ' = I';. Also, since
RM(b',b), we have that RM(a’, a). O

Lemma 9.13 Let M be a homogeneous model realizing precisely the types
in Sx. If M is computable, then X is approximable.

Proof. By Lemma 9.12, the set
{T": T is a 1-type of T' compatible with X}

is computably enumerable. Therefore, we can algorithmically enumerate the
infinite binary sequences which determine the 1-types of 17" compatible with
X. We choose such a computable enumeration ag, oy, s, ... in such a way
that for every e > 0, the length of agreement of a, with X is at least e.
Hence (Ji > 2¢)[a.(i) = 0].

We will define, by recursion, a unary computable function g as follows.

9(0) =0
For n > 0, g(n) is the least number such that
gn) >g(n—1),  g(n)>2n+2,

and for every e < n, there is | = [., which satisfies the following
conditions:
g9(n) > 21,
ae(2l) =0, ae(2l + 1) = ae(2l + 2) = ... = ae(g(n)) =1, (*)
(i:0<i<li—1Aa(+i)=1}={0,1,...,1 =1} N X,
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Thus, at stage n, we look at the initial segment of length g(n) of each
of the sequences ag,aq, ... ,a, 1 and, within this segment, obtain the
compatibility of the sequences with X,,). However, past this initial
segment, it is still possible to have value 0 in certain «,’s for e < n.

We define a function f by f(n) = [{0,1,...,n — 1} N Xypy|. Clearly,
f is computable and for every n € w, f(n) < [{0,1,...,n — 1} N X]|. Let
e € w. We define n, to be the least number such that n, > n and «, does
not have a value 0 past the initial segment of length g(n.). We will prove

that f(n.) = [{0,1,... ,n.— 1} N X|.

Since a, is compatible with X, we have the following equality for [ = [, :
{i:0<i<l—1Na(l+i)=1}={0,1,...,l—-1}NX.
On the other hand, by the definition of g, we have
{i:0<i<l=1Na(l+7) =1} ={0,1,...,1 =1} N Xy,

Therefore, to prove that f(n.) =| {0,1,...,n. — 1} N X |, it is enough to
prove that n. <[, .

Assume that e = n, — 1. The required inequality follows from the length
of the compatibility of a.

Now assume that e < n, — 1. By the definition of g, g(n. — 1) > 2n,. By
the definition of n., a, must have value 0 past the initial segment of length
g(n.—1). Hence, the desired inequality follows from the condition () in the
definition of g. a

In [142], Millar has given an example of a complete decidable theory with
only computable complete types and with only countably many non-isomor-
phic countable models, which has an undecidable countable homogeneous
model.

To state Goncharov’s and Peretyat’kin’s characterization of a decidable
countable homogeneous model of a complete decidable theory, we introduce
the following definition.

Definition 9.3 A computable set 7 of computable types of a theory T in
L has the effective extension property if the following condition is satisfied
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for an effective enumeration 'y, 'y, 5, ... of all types in 7, and an effective
enumeration 6, 0y, 60, ... of all formulae in L.

There is a partial computable binary function f such that for every n,: €
w, if Ty, = Tp(xo, ... ,2x_1) for some k € w, and T, is consistent with §; =
0i(zo, ..., @K1, Tk), then f(n,i) is defined, 'y, is a (k + 1)-type and

(Fn U {0i}) € T

Theorem 9.14 (Goncharov [68], Peretyat’kin [166]) Let A be a countable
homogeneous model with the type spectrum T . Then A is decidable if and
only if T is a computable set of computable types and T has the effective
extension property.

As a consequence of this characterization, Goncharov-Nurtazin’s, and
Harrington’s characterization of a decidable prime model, as well as Mor-
ley’s and Millar’s characterization of a decidable countably saturated model
can be obtained. Another consequence of this characterization is the next
theorem, also obtained by Millar [139] as a consequence of a more general
result.

Theorem 9.15 (Goncharov [68], Millar [139]) Let the set of all computable
types of a complete theory T be computable. If the set of all complete types
realized in a countable homogeneous model A of T is a 39 set of computable
types, then A is decidable.

Theorem 9.16 (Millar [147]) Assume that T is a complete decidable theory
all of whose types are computable and which has only countably many type

spectra. Let A be a countable homogeneous model of T. If the type spectrum
of A is 29, then A is almost decidable.

Algorithmic complexity of countable homogeneous models has also been
studied by Denisov [41, 42, 43]. The following result is a computable ana-
logue of the classical model-theoretic result that every theory in a countable
language has a countable homogeneous model.

Theorem 9.17 (Denisov [43])

(i) Every complete decidable theory has a countable homogeneous model
which is decidable in @'.
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(ii) For every X C w such that X <p @', there is a complete decidable
theory which does not have a countable homogeneous model decidable
in X.

Theorem 9.18 (Tusupov [200]) Let A be a countable homogeneous model of
a decidable theory, such that the type spectrum of A is a computable family
of computable types. Then A is decidable in ¢'.

While every countable model has a countable homogeneous elementary
extension, Goncharov and Drobotun [76] have constructed a computable lin-
ear order which does not have a computable homogeneous elementary exten-
sion. They have also constructed a decidable model which does not have a
computable homogeneous elementary extension. (Also see [162].)

10 Vaught’s Theorem Computably Visited

Theorem 10.1 (Vaught) There is no complete theory which has exactly two
non-isomorphic countable models.

Proof. By contradiction. Assume that T has exactly two non-isomorphic
countable models. Then 7" must have a countable saturated model A and a
prime model C. Clearly, A and C are not isomorphic. Since A is not prime,
there is an n—tuple of elements of A which realizes a nonprincipal type of T
Without loss of generality, assume that n = 1. Thus, there is a € A which
realizes a nonprincipal type I'(z). Let ¢ be a new constant. Since (A, a)
is a countable saturated model of I'(c), I'(c) also has a prime model (B,b).
However, B is not prime because it realizes a nonprincipal type I'(x). Hence
B and C are not isomorphic. Finally, (B,b) is not saturated because T is not
No—categorical, so T and, hence, I'(¢) satisfy (v) of Theorem 8.2, so I'(¢) is
not Ny-categorical. Hence B and A are not isomorphic. The existence of A,
B and C contradicts the assumption at the beginning of the proof. O

Theorem 10.2 (Ehrenfeucht) For every n > 3, there is a complete theory
with exactly n non-isomorphic models.

On the other hand, Millar and Kudaibergenov have constructed a com-
plete decidable theory with exactly two non-isomorphic decidable models.
However, the effective version of Ehrenfeucht’s result remains true [118]. To
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present Millar’s and Kudaibergenov’s result, we use from model theory, a
characterization of submodel complete theories from Theorem 5.5; and from
computability theory, the existence of two computably inseparable c.e. sets.
That is, there are c.e. sets X and Y such that

XNY=¢ and —(3IR)[R iscomputable AX CRARNY =g|.

Theorem 10.3 (Millar [135], Kudaibergenov [118]) There is a complete de-
cidable theory T with exactly two non-isomorphic decidable models.

Proof. We present the example from [135]. We will define a theory T" such
that the following conditions are satisfied.

(1) T has only one nonprincipal 1-type, I'(x). I'(z) is a computable type.
(Notice that T C T'(z).)

(2) There is no computable 2-type Q(z,y) of T such that
[(z) UL (y) Ufz #y} € Qz,y).
(3) I'(c) has a decidable prime model, where ¢ is a new constant.

(4) If a model of T realizes a computable nonprincipal type of T, then it
realizes all computable nonprincipal types of T

Lemma 10.4 Conditions (1)—(4) imply the theorem.

Proof. Let (B,b) be a decidable prime model of I'(c), I'(¢) = TUT'(¢), which
exists by (3). Then B is a decidable prime model of T" which realizes I'(z).
['(x) is a nonprincipal type, hence there is a decidable model A which omits
['(x). Since A is decidable, all types realized in A are computable. Since
every type realized in A is principal, A is a prime model of T'. We will prove
that every decidable model of T is either isomorphic to A or to B. Let D be
a decidable model of T

CASE (a): D omits I'(z). Since D is decidable, all types realized in D are
computable. By (4), D omits all nonprincipal types of T. Since every type
realized in D is principal, D is a prime model of T', hence D = A.

CASE (b): D realizes I'(x). Let d € D be such that D |= I'(x)[d]. We
claim that (D,d) = (B,b) and, hence, that D = B. Assume otherwise,
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that is, (D,d) 2 (B,b). Then (D,d) is not a prime model of I'(¢). Thus,
(D, d) must realize a nonprincipal type Q(¢,Z) = Q(c, x1,...,z,) of [(c).
Hence I'(z) C Q(x,7), and Q(x,7) is a computable type. Also, Q(z,T) is
a nonprincipal type of 7', hence it is realized in B. Let V/,b},... 0, € B
be such that B | Q(z,T)[V,b),...,0,]. It follows by (2) that I'(z) cannot
be realized in a decidable model B by two different elements, b and &', since
the 2-type determined by (b,0') in B would be computable. Thus, (B,b) =
Q(c,7)[b], ... ,b,]. This is a contradiction, since (B,b) is a decidable prime
model of T'(c), and (¢, T) is a nonprincipal type of T'(c). O

The language of T'is L = {P,(-), Su(+,-) : n € w}, where each P,(-) is a
unary relation symbol and each S, (-,-) is a binary relation symbol.

Let X C w and Y C w be computably inseparable c.e. sets. We will
encode X and Y into 2-types of T'. Let (X;);e,, and (Y})e, be computable
enumerations of X and Y, respectively, such that if n € X; or n € Y}, then
n < t. (Wehave X, C X; C Xy C ... and J,., Xy = X, and similar
relations for Y.)

We first define 7" such that 7" C T'. The axioms of 7" are the universal
closures with respect to x and y of the following formulae. Let n,t € w.

Ax 1 PF(z) = Pra(z);

Ax 2 =S, (z, z);

Ax 3 S,(z,y) = Sp(y,x);

Ax 4 Px) = Sz, y);

Ax 5 (=P(z) N=P(y) Ao #y) = Su(w,y) if n € X

Ax 6 (—P(z) AN=P(y) Nx #y) = —S,(x,y) if n € Y.

Clearly, T" is a universal set of sentences. T" is obviously consistent, since

a nonempty set A with PA = A for t € w, and S = ¢ for n € w is a model
of T".

We will now extend 7" to T in such a way that 7" is submodel complete,
and, therefore, admits the elimination of quantifiers. We will add a new set
of axioms. First we introduce some notation.

Let M be a finite model of 7. Let A (@) be the conjunction of all
atomic and negated atomic sentences true in Mj;, in which only relation
symbols Py, ..., P, and Sy, ... ,S, may occur. There are only finitely many
such sentences.
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T' is extended to T by adding a new group of axioms for every n € w:
Ax 7 (VZ)(39)[A e (T) = Awa (T, 7)),
where M and N are finite models of 7" such that M C N, allowing M = @.

Lemma 10.5 T is consistent.

Proof. By compactness. a

Lemma 10.6 T is computably axiomatizable.
Lemma 10.7 T is submodel complete.

Proof. We will prove

(VA,BET)(VD C A,B)[A and B satisfy the same

existential sentences with parameters from D].
Let A,B =T and D C A,B. Let §(Z,y) be a conjunction of atomic and
negated atomic formulae, and d € D@ such that A = (39)8(z,7)[d]. Let
@ € A"®) be such that A = 6(Z,7)[d,a). Let M be the submodel of A whose
domain consists of the elements in d. Let A/ be the submodel of A whose
domain consists of the elements in d and @. Since T" is a universal theory,
we have M, N |=T'. Let n be the largest subscript of a P—predicate symbol

or of an S—predicate symbol occurring in §(Z,y). (If no P—predicate symbol
and no S—predicate symbol occurs in 6(7,7), let n = 0.) Clearly,

= [Ay(7,9) = 0(7, 7)].

Since (VZ)(3Y)[Amn(T) = Apn=(Z,7)] is an axiom of T', we have that

T k= (Vo) (3) [ A (T) = 6(7,7)].

Since B = A (Z)[d] and B |= T, we have B = (37)6(7, y)[d)]. O

Let us now prove that T satisfies the conditions (1)—(4).
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T has only one nonprincipal 1-type, T'(z). Furthermore, T'(z) is a
computable type.

Let I'*(z) be a 1-type of T. Since T" admits the elimination of quan-
tifiers and =S, (z, z) is an axiom, every formula in L(T") with one free
variable is equivalent to a quantifier-free formula whose only relation
symbols are from {P, : n € w}. Therefore, I'*(x) is uniquely deter-
mined by the set {¢ : Py(z) € I'*(x)}. Assume that this set is nonempty,
and let ¢y be its smallest element. Since

Pto(x) = Pt0+1(x) = Pt0+2(x) =y,

we have that = Py(z) A ... A =P, 1(z) A P, (x) is a complete formula
of I'*(x). Hence, I'*(z) is a principal type. Thus, there is exactly
one nonprincipal 1-type I'(z), where I'(z) contains {=FP;(z) : t € w}.
Since T' is decidable and admits the elimination of quantifiers, we can
effectively find for each formula a corresponding quantifier-free formula.
Thus, I' is computable.

There is no computable 2—type Qx,y) of T such that
I@)UT(y) U{z #y} CQz,y).

Assume otherwise for some Q(x,y). Define
R={ne€w:Sy(z,y) € Uz, y)}

R is a computable set since Q(x,y) is a computable type. By Ax 5
and Ax 6, X € R and Y N R = @, contradicting the computable
inseparability of X and Y.

Let ¢ be a new constant. Then T'(c) has a decidable prime model.

To prove (3), it is enough to prove the following lemma.
Lemma 10.8 Every computable type of T'(c) is principal.

Let us first prove that Lemma 10.8 implies (3). Since I'(z) is a com-
putable type, ['(c) has a decidable model (B,b). Since every type re-
alized in a decidable model is computable, by Lemma 10.8, every type
realized in (B, b) is principal. Hence (B,b) is a prime model of T'(c).
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Let us next prove Lemma 10.8.

Proof. Assume otherwise. Let = = =(¢, z3,... ,2,) be a computable
nonprincipal type of I'(¢). It is an (n — 1)—type for n > 2. By (2), for
each 7 € {2,...,n}, there is the least k(z) with Py (x;) € Z. Thus,

LA Pry(zi)] € =.

2<i<n

Since = is nonprincipal, /\2@.@ Pyiy(w;) is not a complete formula.
Hence there are infinitely many distinct (n — 1)-types of I'(¢) which
contain

{Prgy(z;) - 2 < i < .

Thus, there are infinitely many distinct n—types of 7" which contain
{Prgy(z) : 2 <i <npUT(9).

Since T eliminates quantifiers, every formula of L(7') in n free variables

for n > 2 is uniquely determined by the %n(n — 1) many 2-types it

determines. Hence infinitely many 2-types of T' contain

{Priiy (7)), Prijy (), @i # 25}

for some 4,5 € {2,...,n}, or infinitely many 2-types of T' contain
{Prgiy(z;)} UT () for some 7 € {2,...,n}. Again, by the elimination
of quantifiers, each of these implies that for some k(i) and for infinitely
many n, both { Py (x;), Sn(z,y)} and {Pyiy(z;), ~Sn(z,y)} are consis-
tent. This contradicts the axioms of T". O

(4) If a model of T realizes a computable nonprincipal type of T, then it
realizes all computable nonprincipal types of T'.

For every nonprincipal computable type ©(z1, ... ,2,) of T, there is i €
{1,...,n} such that I'(z;) C ©(x,...,x,). Therefore, any model of T'
realizing a nonprincipal computable type must realize I'. As before, we
can conclude that all decidable models of 7" realizing I" are isomorphic.
Hence the statement follows. O

While the theory T' constructed in the previous theorem has only two non-
isomorphic decidable models, it has 2% non-isomorphic countable models.
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Millar [138] has further shown that there is a complete decidable theory with
only countably many non-isomorphic countable models, which has exactly
two non-isomorphic decidable models.

11 Decidable Ehrenfeucht Theories

Definition 11.1 An Fhrenfeucht theory is a complete theory with only
finitely many non-isomorphic countable models.

Clearly, if a complete decidable theory T is Wy—categorical, then T has,
up to isomorphism, only one countable model which can be chosen to be
decidable. In 1971, Baldwin and Lachlan [23] established Vaught’s conjecture
that every complete N;—categorical theory has either exactly one or exactly w
many non-isomorphic countable models. The following result is an effective
version of the Baldwin-Lachlan’s result.

Theorem 11.1 (Harrington [88], Khisamiev [99]) If a complete decidable
theory T is Ry —categorical, then every countable model of T is isomorphic to
a decidable model.

Proof. Every countable model of T' can be viewed as a prime model of some
other N;—categorical decidable theory. O

Nerode posed the following problem:

Let T be a complete decidable theory which has only finitely many
non-isomorphic countable models. Can all of these models be cho-
sen to be decidable?

By Vaught’s theorem, 7" cannot have exactly two non-isomorphic count-
able models. We will prove that 7" must have a decidable prime model.
Assume otherwise. Then T has a decidable model realizing a nonprincipal
type, which is omitted in another decidable model of T realizing another non-
principal type, etc. Here we use the fact that every finite set of nonprincipal
types of T is omitted in some decidable model of 7". Thus, contrary to the
assumption, 7" has infinitely many non-isomorphic decidable models.

Morley gave an example of a theory T" with exactly six non-isomorphic
countable models, of which only the prime one can be chosen to be com-
putable (even decidable). Moreover, Lachlan has found a simple example of



Chapter 1 Pure Computable Model Theory 61

such a theory, using the fact that there is a computable linear ordering of
order type w + w* whose w—part is not computable. Peretyat’kin [163] has
generalized this result. He has obtained for every n > 3, a theory 7" in a
finite language, with exactly n non-isomorphic countable models, of which
only the prime one can be chosen to be computable (decidable). To con-
struct such theories, Peretyat’kin has used a least upper bound operator to
obtain an underlying Ny—categorical theory which admits the elimination of
quantifiers, and in which a binary tree can be distinguished by constants.

The countable non-isomorphic models of decidable Ehrenfeucht theories
in all mentioned examples can be chosen to be decidable in 0'. The question
then arises whether all countable models of an arbitrary complete decidable
Ehrenfeucht theory can be chosen to be, for example, arithmetic. Millar
has answered this question negatively by showing that there is a complete
decidable theory with only finitely many non-isomorphic countable models,
some of which must be chosen to be of arbitrarily high hyperarithmetic de-
gree. Moreover, the theory in Millar’s example is persistently Ehrenfeucht
(see Definition 3.2). Persistently Ehrenfeucht theories are also called persis-
tently finite theories and have been introduced and first studied by Benda.
It can be shown that every persistently decidable Ehrenfeucht theory has a
decidable saturated model.

Definition 11.2 Let X C w. We say that a model A is decidable exactly in
X if A is decidable in X and for every Y C w, if A is decidable in Y then
X<rY.

Theorem 11.2 (Millar [141]) Let H, be a hyperarithmetic set, where n € w.
Then there is a complete decidable persistently Ehrenfeucht theory T with an

undecidable countable model, such that for every undecidable countable model
A of T, A is decidable exactly in H,.

For every H,,, the corresponding theory in the previous theorem has eigh-
teen countable non-isomorphic models, exactly three of which are decidable.
To define such a theory, Millar has used the existence of a computable sub-
tree of w<¥ having exactly one infinite branch f, where f =p H,, (see [187],
page 456).

In Morley’s, Lachlan’s and Peretyat’kin’s counterexamples to Nerode’s
question, the theories have non-computable types. Therefore Morley raised
the following question:
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Let T be a complete decidable theory with all types computable,
which has only finitely many non-isomorphic countable models.
Can all of these models be chosen to be decidable?

Assume that one of the finitely many non-isomorphic models of T must
be undecidable. Clearly, 7" is not Ny—categorical. The fact that 7" has a
finite number of non-isomorphic decidable models has several implications.
As shown before, T' has a decidable prime model. The set of all types of T’
is computably enumerable, because every computable type of T is realized
in some decidable model of T'. Since the set of all types of T" is computably
enumerable, 7" has a decidable saturated model. We can mimic Vaught’s
construction to obtain a third non-isomorphic decidable model. Therefore,
if the answer to Morley’s question is negative, then a counterexample must
have at least four non-isomorphic countable models. Indeed, Goncharov has
recently announced a negative answer to Morley’s question.

Theorem 11.3 (Goncharov [75]) There is a decidable Ehrenfeucht theory
with all types computable, whose non-isomorphic countable models cannot be
chosen to be all decidable.

Millar asked the following question:

If T is an arithmetic Ehrenfeucht theory whose types are all arith-
metic, are all countable models of T arithmetic?

Ash and Millar have proven that if the answer to this question is negative,
then a counterexample must have at least five non-isomorphic countable mod-
els. Ash and Millar have also proven that the answer to this question is pos-
itive when every type of T' is realized in only finitely many non-isomorphic
countable models.

Theorem 11.4 (Ash-Millar [20]) If T is a complete, arithmetic, persistently
Ehrenfeucht theory with a countable non-arithmetic model, then T has at least
five non-isomorphic countable models.

Theorem 11.5 (Ash-Millar [20]) If T is a complete, persistently Ehren-
feucht theory with only arithmetic complete types, then all countable models
of T are arithmetic.
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Theorem 11.6 (Millar [143]) If T is a decidable Ehrenfeucht theory with a
countable model which is not decidable in ¢", then T has at least five non-
1somorphic countable models.

Theorem 11.7 (Reed [178, 179]) Let H, be a hyperarithmetic set, where
n € w. Then there is a decidable persistently Ehrenfeucht theory T with
exactly five non-isomorphic countable models:

(i) A decidable prime model;

(ii) A decidable non-homogeneous model which is the reduct of the prime
model of T'(c), where ¢ is a new constant and T'(x) is a computable
nonprincipal type of T';

(iii) A decidable homogeneous model which realizes all computable types of
T;

(iv) A non-homogeneous model decidable exactly in H,, which is the reduct
of the prime model of Q(d), where d is a new constant and Q(z) is the
only non-computable 1-type of T';

(v) A saturated model decidable exactly in H,.

Thus, the theory in the previous theorem has, up to isomorphism, three
decidable models and two models which are decidable exactly in H,. It fol-
lows from Theorem 11.6 that this is an example of a decidable Ehrenfeucht
theory with the least possible number of non-isomorphic countable models
which are not all decidable in @". Tt is not known whether a decidable Ehren-
feucht theory whose undecidable countable models are decidable exactly in
@" can have fewer than five countable models.

Closely related to the notion of an Ry—homogeneous model is the notion
of an almost homogeneous model.

Definition 11.3 A model is almost homogeneous if some finite expansion of
the model by constants is Nyg—homogeneous.

It is not known whether there is an Ehrenfeucht theory with a model
which is not almost homogeneous. Millar [143] has shown that if 7" is a
persistently Ehrenfeucht, persistently decidable theory whose every model is

almost homogeneous, then every countable model of T is isomorphic to a
decidable model.
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12 Decidable Theories with Countably Many
Countable Models

Millar has constructed a complete decidable theory with exactly two non-
isomorphic decidable models and only countably many non-isomorphic count-
able models. To present Millar’s construction, we use from: computable model
theory, a characterization of a universal theory with a complete decidable
model completion, as stated in Theorem 5.6; and from computability theory,
the existence of a certain computable binary tree, as will be established by
Theorem 12.1.

Definition 12.1 For a tree 7, an infinite branch f of 7 is called a limit
branch if for every initial segment « of f, there is a node § € T such that «
is an initial segment of 3, and [ is not an initial segment of f.

For finite or infinite binary sequences f and g, we write f <, g if there
is a (finite) binary sequence « such that a0 is an initial segment of f and
a1 is an initial segment of g.

Theorem 12.1 (Millar [138]) There is a computable binary tree T whose
leaves form a computable set L, and a unary computable function h such
that the following conditions are satisfied.

i) VoeTla¢ L=a"1€T]

(ii) There is exactly one limit branch of T, which we denote by f. Moreover,
f is not computable.

(iii) If g is an infinite branch of T different from f, then all but finitely
many values of g are 1, and f <p, g.

(iv) If B € L and v € T are such that v <y, 3, then 1h(y) < 1h(p).

(v) There is at most one element of a given length in L. If ag, oy, g, ...
is an enumeration of L in the order of the increasing length of nodes,
then for all i,j € w, h(i) = lh(a;) and (i < j = a; <p, ;).

Theorem 12.2 (Millar [138]) There is a complete decidable theory T with
exactly two non-isomorphic decidable models, which has only countably many
non-isomorphic countable models.
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Proof. We will define a complete decidable theory T" such that the following
conditions are satisfied.

(1) T has a nonprincipal computable 1-type, I'(z).

(2) Every countable model of T is homogeneous.

(3) There is a sequence (I',)new Of types of T' such that:
I'y=1I;

['; is non-computable;
If ¢ < j, then every model which realizes I'; also realizes I';;

For every n € w, there is a countable model which realizes [, and
omits [',11;

(3.5) The type spectrum of a countable model A of T' is exactly the set
of all types in {I';, : n € w} which A realizes.

Lemma 12.3 Conditions (1)—(3) imply the Theorem.

Proof. Since I' is a computable type, T" has a decidable model A which
realizes I'. Since the computable type I' is nonprincipal, T" has a decidable
model B which omits I". Clearly, A and B are non-isomorphic. Let D be a
decidable model of T'. D must omit I'y, because I'; is not computable. Hence,
by (3.3), D omits every 'y for k > 1. Thus, since all countable models of T’
are homogeneous, if D realizes I', D is isomorphic to A, and if D omits I,
D is isomorphic to B. Hence, T" has exactly two decidable non-isomorphic
models.

For every n € w, let A,, be a countable model of 7" which realizes I",, and
omits I',, 1. Hence, by (3.3), A, realizes every 'y for k < n, and omits every
[y for & > n. Hence, by (3.5), {T'x : & < n} is the type spectrum of A,.
Thus, since all countable models are homogeneous, 1" has exactly countably
many countable models.

The language of T is L = {P, (), Su(-,") : n € w}, where for n € w, P,(+)
is a unary relation symbol and S, (-, -) is a binary relation symbol.

Let a computable binary tree 7 whose leaves form a computable set L,
and a unary function h be as in Theorem 12.1. We first define 7" such that
T CT. The axioms of T" are the universal closures of the following formulae:

Ax 1 P(x) = Pi(x) for t € w;
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Ax 2 =S, (z,z) for n € w;
Ax 3 S,(z,y) = S,(y,x) for n € w;
Ax 4 Pyx) = =Su(x,y) for n > h(t);

Ax 5 [0 Bi(z) A= By) Ax # yl = = N\icinw) Sila, y)e®
for a ¢ T such that lh(a) = h(t + 1);

Ax 6 /\i<lh(a) Si(z,y)*® = =S, (z,y)
for « ¢ T — L such that lh(a) < n;

Ax 7 /\i<lh(a) Sl(xv y)a(i) = [Pt(x) g Pt(y)]
for a € T — L such that lh(«) < h(t);

Ax 8 /\i<lh(a) Sl(x7 y)a(Z) = [ Pt(aj) \/Pt(y)]
for a € £ such that lh(a) = h(t);

Ax 9 [Nicinay Si(@9)*D AN sy Si(y, 2)PD A # )
= /\i<1h(a) Si(z, Z)a(i) for a, B € 2<¥ such that a <z, .

Now it can be shown that Theorem 5.6 applies to T”. T will be a complete
decidable model completion of T". O

Let T" be a complete decidable theory with all complete types computable.
It is known that there is such a theory which has, up to isomorphism, 2%°
countable models. Hence it has undecidable models. Millar (see Theorem
6.5) has shown that if 7" does not have a decidable model whose finite ex-
pansion by constants is prime, then 7" must have, up to isomorphism, 2%
countable models. The question then arises whether there is a T' with only
countably many non-isomorphic countable models and with an undecidable
countable model. First we introduce the following

Definition 12.2 Let I' and 2 be types of 1. The type ordering is defined
by
'<Q<«= (VAET)[A realizes I' = A realizes Q.

Theorem 12.4 (Millar [142])) There is a complete decidable theory T with
all complete types computable, and with only countably many non-isomorphic
countable models such that its countable saturated model is undecidable.
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Proof. The theory T is the model completion of a universal theory T’,
obtained using Theorem 5.6. The ordering of all nonprincipal 1-types of T
is linear with order type w*. The set of all complete types of T is not 9.
Every decidable model of T" omits a type of T', and, therefore, every countable
saturated model of T" is undecidable. O

Theorem 12.5 (Millar [144)) There is a complete decidable theory T with
all complete types computable, and with only countably many non-isomor-
phic countable models, such that T has a decidable saturated model and a
countable undecidable homogeneous model.

Proof. The theory T is the model completion of a universal theory T’,
obtained using Theorem 5.6. The set of all complete types of T"is computably
enumerable. This guarantees the existence of a decidable saturated model.
The set of all types realized by a countable undecidable homogeneous model
is not £9. However, both the set of all 1-types realized and the set of all
1-types omitted by a countable undecidable homogeneous model are linearly
ordered by the type ordering relation, with order type w*. a

13 Indiscernibles and Decidability

The notion of order indiscernibles, introduced by Ehrenfeucht and Mostow-
ski, plays an important role in generating models with certain properties.

Let T be a fixed complete theory in L and let & be an N;-saturated
model of T". Since all countable models of T" are elementarily embeddable in
U, we can assume that all countable models considered in this section are
elementary submodels of U.

Definition 13.1 Let D C U.

(i) A set of formulae I' = ['(xy,... ,2,-1) is a type over D if there are
ag, - .- ,an_1 € U such that for every formula 6(zo, ... ,z,_1) in Lp we
have

9(1’0, R ,l’n_l) el Up ): 9(1’0, R ,l’n_l)[ag, R ,an_l].
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(ii) Let B C U, where B = {by, by, bo, ...} is a fixed enumeration of B. A
set ' of formulae with free variables among x, z1, x9, ... is the w—type
of B over D (with respect to the enumeration of B) if for every n € w,
for every finite sequence (ko, ..., k,_1) of natural numbers and every
formula # in Lp in n free variables, we have

H(xko,... ,xkn_l) el'—= Up ): H(xko,... ,:L‘kn_l)[bko,... 7bkn—1]'

Definition 13.2 Let D C U and I C U, where I = {iy, i1, 19,...} is a fixed
enumeration of .

(i) I is a set of (order) indiscernibles over D if for every n € w and every
increasing n—tuple ky < ... < k,_; of natural numbers:

(igy--- yin—1) and (ig,,-.. %, ,) satisfy the same formulae in Lp.

(ii) I is a set of total indiscernibles over D if for every n € w and every
n—tuple (ko, ..., k, 1) of distinct natural numbers:

(10, -+ yin—1) and (ig,...,ig, ,) satisfy the same formulae in Lp.

(iii) The indiscernibles over @ are simply called the indiscernibles.

Proposition 13.1 Every theory with an infinite model has a model A with
an infinite set I of indiscernibles such that I C A.

Kierstead and Remmel [107] have studied computable analogues of the
previous proposition. They have shown that the problem of determining
whether a decidable model of T has an infinite set of indiscernibles is a ¥
question. They have investigated decidable theories which have decidable
models with infinite computable sets of indiscernibles, as well as the possible
Turing degrees of the sets of indiscernibles in decidable models.

Let us recall that an w—branching tree is a tree whose nodes belong to
w<¥. Kierstead and Remmel [107] have shown that the problem of finding
an infinite set of indiscernibles in an infinite decidable model of 7" is, in some
sense, equivalent to the problem of finding an infinite branch in a computable
w-branching tree. More precisely, a decidable model A of T is equivalent to
an w-branching tree 7 if there are oracle algorithms gogl) and <p£2), such that
the following is true:
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)

i) For every infinite set I of indiscernibles in A, 2{ outputs an infinite
2

branch f; of T;

(ii) For every infinite branch f of T, gog) outputs an infinite set Iy of
indiscernibles in A;

(iii) For every infinite branch f of T, f;, = f.

Kierstead and Remmel have proven that for every decidable model of a com-
plete theory, there exists an equivalent computable w—branching tree; and
for every computable w—branching tree 7, there exists a complete decidable
theory whose every decidable model is equivalent to 7 .

Definition 13.3 Let A be a countable model of T', and let D C U be such
that A C D. Let I' = ['(xg, ... ,2,_1) be a type of T over D.

(i) T is definable over A if for every k € w, for every formula
9(3707 <o 5 Tp—1,Y0, - - - 7yk71)

in L, there exists a formula dg = dy(yo, ... ,yx 1) in L4 such that for
every dg, ... ,dg 1 € D

9(1‘0,... , Tp_1,dg, ... ;dk—l) el
<~ U ): (Sg(yo,... ,yk_l)[dg,... adk—l]-

We call the set
{60(yoy -+ yk—1) : O(xos -+« , Tn_1,Y0,--- ,Yk—1) is a formula in L}
a definition of T over A.

(ii) T is computably definable over A if there is an algorithm which assigns

to every formula 6(xg,... ,2,_1,7) in Ls a formula dy(y) such that
{00(9) : O(x0,... ,2,1,7) is a formula in L4} is a definition of I' over
A.

To prove that certain theories have decidable models with infinite com-
putable sets of indiscernibles, we use from model theory, a result in stability
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theory which establishes that the range of a sequence whose every member
realizes a certain type, forms an infinite set of indiscernibles.

This result is stated in part (ii) of the following theorem, and it uses the
basic fact about the unique definable extensions, stated in part (i) of the
same theorem.

Theorem 13.2

(1)

Let A be a countable model of T', and let B and D be subsets of U such
that A C B C D. Let I'(T) be a type of T over B which is definable
over A. There is a unique type over D, denoted by I'p(T), which is
definable over A, such that T'(T) C I'p(T).

Let A be a countable model of T such that there is a type I'(x) which is
definable over A and not realized in A. Let (by, by, b, ... ) be a sequence
of elements in U such that for every n € w, by, realizes T4, (), where
A, = AU{by : k < n}. Then {by,by,b,...} is an infinite set of
indiscernibles over A.

Proof.

(1)

(ii)

Let {0p(y) : 0(Z,7y) is a formula in L4} be a definition of T'(Z) over A.
Define I'p(T) to be the following set of formulae in L 4.

{0z, do, ... ,ds_1) : (k €w) A (do,...,dss € D)
A (Ll ): (Sg(yg, e ,yk_l)[dg, Ce adk—l])}-

Since B C D, we have that I'(Z) C I'p(7).

['p(T) is a consistent set of formulae by compactness. I'p(T) is complete
because U = (—dy < d-9). The uniqueness of ' (7) follows from the
definition of a type over a model.

Notice that, by (i), if i, 7 € w are such that ¢ < j, then the restriction
of the type I'4;(x) to A; is the type I'4,(z).

Let {0g(y) : 6(z,7) is a formula in L,} be a definition of I'(x) over
A. To show that {bgy, b1, bs,...} is a set of indiscernibles over A, it is
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enough to show that for every two increasing sequences f,g € 2¥, for
every n > 1, and every formula # in L, in n free variables

U= H[bf(()), ... ,bf(n—l)] = UE G[bg(g), ... 7bg(n—1)]- (%)

Let such f and g be given, and fix n. Assume that f(n) < g(n). Let
{7([@) : 6(z,y) is a formula in La} be a definition of I'y , over A.
Then for a formula 6 in L, in (n + 1) free variables, we have

UEObs) -+ 5 brm-1), byem)] == U = wlbro), -+ bpn-)]

— H(bf(g), e ,bf(n,l),x) € FAg(n)(x)
= 0(bf(0), - ,bf(n,l),l‘) c FAf(n)($)

— U ): H[bf(g), . 7bf(n—1)7 bf(n)].
Now the equivalence in (x) follows inductively.

To prove that {bg, by, bs,...} is an infinite set, consider the formula
0(z,y) = =(z = y). To prove that A = Vydy(y), we assume otherwise.
Hence

A = =0y (y)[a] for some a € A = U = —dp(y)]a]
— (z=a)e(x)
— a realizes I'(z) in U

= q realizes I'(z) in A.

However, the last statement contradicts the assumption of the theorem.
Hence A | Vydy(y) and, thus, U |= Yydy(y). Let i,j € w be such that
i < j. Then A = 6p(y)[bs] and =(z = b;) € ['y,(x). Since b; realizes
['4;(z), we have that b; # b;. O

Theorem 13.3 (Kierstead-Remmel [106]) Let A be a decidable model of T
such that there is a computably definable type T'(x) over A, which is not
realized in A. Then T has a decidable model with an infinite computable set
of indiscernibles.
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Proof. Let {0y(y) : 0(z,7) is a formula in L4} be a definition of I'(x) over A
such that there is an algorithm which to every formula 6(z,7) in L4 assigns
d9(7). Let L' be La U {co,c1,ca,...}, where cg,cq,¢,... is a computable
enumeration of new constants. We inductively define the following sets of
sentences in L'

Ty = the theory of A, in Ly

Tov1 =ToU{B(cn, cn1y-- 5 00) : (O(xn, Tp1,... ,20) isin Ly)
Adg(Cp1,...,¢c0) € Ty} for n > 0.

Let 7" =qet U,,c, Tn- 1" is a consistent complete theory in L'. 1" is decidable
because A is decidable and the considered definition of I'(x) is algorithmic.
By the Effective Completeness Theorem, there is a decidable model B of T".
As mentioned before, we assume that B < U. Let I =gef {bo,b1,bo,...},
where for every i € w, b; is the interpretation in B of the constant ¢;. Since
B satisfies T, we can assume that A < B. Clearly, I is a computable set.

We use Theorem 13.2 (ii) to show that I is an infinite set of indiscernibles.
Let Ay = A, and A,1 = AU {boy,...,b,}. We show that

Ca, () ={0(z,cn_1,--. ,c0) : (0(Tn, Tp_1,...,m) isin Ly)

/\(Sg(Cn_l, . ,CO) S Tn}

Thus, b, realizes ['4 (). O

Examples of theories to which Theorem 13.3 applies are the theory of
dense linear order without endpoints, and the theory of real closed fields.

Theorem 13.4 (Kierstead-Remmel [106]) Let Q) be a generalized quantifier
whose interpretation is “there are infinitely many”. Assume that T is a stable
theory which also satisfies the following decidability condition (D).

There 1s an effective procedure which decides for every formula in
L of the form p(z,yo,... ,Yp_1), whether

TU{(3yo) .- Fye—1)(Q2)o(2, 90, - Yk-1)}

has a model.
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Then T has a decidable model with an infinite computable set of total indis-
cernibles.

Proof. Such a theory T has a decidable model A and a type I" over A, such
that I' is computably definable over A, and not realized in A. Also, since T’
is stable, every set of order indiscernibles is a set of total indiscernibles. O

The strong decidability condition (D) in the previous theorem cannot be
replaced by the usual decidability condition. Also, the stability condition
cannot be omitted from the assumption of the theorem, as shown by the
following counterexample.

Proposition 13.5 (Kierstead-Remmel [106]) There is a complete theory T
satisfying the decidability condition (D) such that T has infinitely many de-
cidable models, none of which has an infinite computable set of indiscernibles,
although each of them has an infinite set of indiscernibles.

It is well known from the classical model theory that every Ng—stable
theory is stable in all infinite powers. It is easy to show that there is an
Np—stable decidable theory which does not satisfy the decidability condition
in Theorem 13.4.

Theorem 13.6 (Kierstead-Remmel [106]) If T is an Ro—stable and decidable
theory, then T has a decidable model with an infinite computable set of total
indiscernibles.

Kierstead and Remmel have shown that Ry—stability in the previous the-
orem can be replaced neither by stability nor even by superstability.

Proposition 13.7 (Kierstead-Remmel [106]) There is a complete decidable
superstable theory which has an infinite decidable model, but it does not have
a decidable model with an infinite computable set of indiscernibles.

The following result illustrates an application of Theorem 13.6.

Theorem 13.8 (Kierstead-Remmel [106]) If T is No-stable and decidable,
then T has models of arbitrarily large cardinality, which realize only com-
putable types.
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Proof. By Theorem 13.6, T has a decidable model A with an infinite com-
putable set of indiscernibles I. Let x be an arbitrary infinite cardinal. There
are a model B of T', and a subset J of B of cardinality s such that J is the set
of indiscernibles satisfying the same w—type of T" as I. Since T' is Ny—stable,
by a result from model theory, there is a prime model C over .J. Clearly,
A and C realize the same types. Since A is decidable, the types that they
realize are computable. O

Theorem 13.9 (Kierstead-Remmel [107]) If A is a decidable model with an
infinite set of indiscernibles, then A has an infinite set I of indiscernibles

such that the hyperdegree of I is strictly less than the hyperdegree of Kleene’s
0.

Kierstead and Remmel have also investigated the degrees of sets of indis-
cernibles in decidable models of Ry—categorical theories.

Definition 13.4 A decidable theory T has decidable atoms if there is an
effective procedure which decides whether a given formula is an atom in the
Lindenbaum algebra of formulae with the corresponding free variables.

Kierstead and Remmel [107] have shown that the problem of finding an
infinite set of indiscernibles in an infinite decidable model of an Ny—categorical
theory with decidable atoms is, in some sense, equivalent to the problem of
finding an infinite branch in an infinite computable tree. In particular, for
every infinite computable binary tree 7, there is a decidable model A of an
Ny—categorical decidable theory with decidable atoms, such that there is an
effective one-to-one correspondence between the infinite branches of 7 and
the w—types of infinite sets of indiscernibles in A.

Thus, the set of Turing degrees realized by the sets of w—types of infinite
sets of order indiscernibles in a decidable model of an Ny—categorical theory
coincides with the set of degrees realized by recursively bounded II{ classes.
Thus, the following result follows from Jockusch-Soare’s work [94] on Turing
degrees of TI? classes.

Theorem 13.10 (Kierstead-Remmel [107]) Let A be a decidable model of
an Ng—categorical theory with decidable atoms. A has an infinite set of in-
discernibles of low Turing degree, and A has an infinite set of indiscernibles
of a c.e. degree. If A does not have an infinite computable set of indis-
cernibles, then there are continuum many w—types of infinite sets of indis-
cernibles, which have mutually incomparable Turing degrees.
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There are decidable models of T with infinite sets of indiscernibles which
have no hyperarithmetic infinite sets of indiscernibles. However, it is not true
if T' is Ny—categorical.

Theorem 13.11 (Kierstead-Remmel [107]) If A is a decidable model of an
Wo—categorical complete theory, then A has an infinite set I of indiscernibles
such that deg(l) < 0.

14 Degrees of Models

Clearly, a computably axiomatizable complete theory is computably enumer-
able. Kleene [108] and Hasenjaeger [89] have independently shown that if T
is a computably axiomatizable theory, then 7" has a countable model whose
domain is a set of natural numbers, such that every relation and function of
the model is AJ. On the other hand, there is a computably axiomatizable
theory which does not have a model in which every relation and function is
c.e. OT CO-C.e.

Unless otherwise stated, we consider only models whose domain is w. (For
such a model A, a set of formulae in L4 can be thought of as a set of natural
numbers.) This allows us to define the (Turing) degree of A, denoted by
deg(.A), as the Turing degree of the atomic diagram A4 of A. Thus, A is
computable if and only if deg(.A) = 0.

It is easy to see that the theory of a model A is computable in the complete
diagram of A, and that the complete diagram of A is computable in (A4)®).
Henkin’s construction of a model of a complete theory 7" produces a model
B whose atomic diagram and complete diagram are both computable in T
(see Theorem 4.1). Hence T and the complete diagram of B have the same
Turing degree. The atomic diagram of a model of T" may be of much lower
Turing degree than 7. For example, true arithmetic is the theory of the
standard model of natural numbers, and its Turing degree is 0.

Shoenfield has used the following lemma from computability theory to
improve Hasenjaeger’s and Kleene’s result.

Lemma 14.1 (Kreisel’s Basis Lemma) An infinite computable binary tree
has a AY infinite branch.

Shoenfield has first strengthened Kreisel’s Basis Lemma by proving that
an infinite computable binary tree has an infinite branch of Turing degree
< 0.
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Theorem 14.2 (Shoenfield [194)) If T is a computably axiomatizable theory,
then T has a countable model whose degree is < 0'.

Proof. Extend T to a complete theory S in the same language such that the
Turing degree of S'is < 0'. This can be done using Shoenfield’s strengthening
of Kreisel’s Basis Lemma. O

Jockusch and Soare [95] have generalized Kreisel-Shoenfield Basis Theo-
rem.

Theorem 14.3 (Low Basis Theorem) An infinite computable binary tree has
an infinite branch of low Turing degree.

The Low Basis Theorem implies that every computably axiomatizable
theory has a model of low Turing degree.

Knight [110] has shown that for a model A, either there is a finite set
S C A such that all bijections of A that fix S are automorphisms of A; or for
every Turing degree d > deg(.A), there is a model B isomorphic to A such
that deg(A) = d. Wehner [212] and Slaman [195] have independently found
a countable model A such that the Turing degrees of models isomorphic to
A are exactly the non-computable degrees.

Since the degree of a model is not invariant under isomorphisms, Jock-
usch has introduced the following complexity measure of the isomorphism
type of a model. The isomorphism type of a model A is the set of all models
isomorphic to A.

Definition 14.1 (Richter [185]) The degree of the isomorphism class of A,
if it exists, is the least Turing degree in {deg(B) : B = A}.

The following theorem establishes that the degree of the isomorphism
class of a model satisfying certain general computable condition cannot be
different from 0.

Theorem 14.4 (Richter [186]) Assume that a model A satisfies the following
computable embeddability condition.

For every finite model C isomorphic to a submodel of A and every
embedding f of C into A, there is an algorithm which determines
whether a given finite model D extending C can be embedded into
A by an embedding extending f.
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Then if the degree of the isomorphism class of A exists, it must be 0.

Proof. If A is a computable model, then the statement follows immediately.
Assume that A is not computable. We will prove that there is model B
isomorphic to A such that deg(.A) and deg(B) form a minimal pair. Hence
0 will be the only possible degree of the isomorphism class of A. A model B
and an isomorphism A from B onto A will be constructed in stages by finite
extension. Let L be the language of A.

Construction
STAGE 0: Let By = ¢ and hy = @.
STAGE s = 2e + 1: First assume that there is a finite model C for L

extending B, and an embedding ¢g of C into A extending h,, such that for
some n € w, both {e}¢(n) and {e}*(n) are defined and

{e}(n) # {e}*(n).

In this case, for some such C and g, let Bsy1 =ger C and hgy 1 =qer g- Other-
wise, let Bsi1 =qer Bs and hgy 1 =ger hs-

STAGE s =2e+2: Ife € A—rng(hy), let hsy1 =qger hs U {(u,e)}, where
u € w is the least number such that u ¢ dom(h,). Otherwise, let hs 1 =qef hs.
In both cases, extend B to B, such that h,,; is an embedding of B, into
A. End of the construction.

Let B =get Uye, Bs and h =ger U,e, hs- Clearly, h is an isomorphism
from B to A. Now, let us prove that deg(.4) and deg(B) form a minimal
pair. Since A is not computable, by Posner’s Lemma, it is enough to prove
that for every e € w:

{e}* = {e}? = f total = f is computable.

Thus, assume {e}* = {e}® = f, where f is total. By construction, there is a
stage s such that for every finite extension C of B; which can be embedded into
A, and every n € w such that {e}¢(n) is defined, we have {e}¢(n) = {e}*(n).
Hence f(n) = {e}*(n). By the computable embeddability condition, f must
be computable. O

The previous theorem can be applied to show that the isomorphism class
of a countable tree which is not isomorphic to a computable tree, does not
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have a degree. Hence, the isomorphism class of a countable linear ordering
which is not isomorphic to a computable linear ordering does not have a
degree.

Theorem 14.5 (Richter [186]) Let S be a theory in a finite language L such
that there is a computable sequence Ay, A1, Aa, ... of finite models for L
which are pairwise non-embeddable. Assume that for every X C w, there is
a countable model Ax of S which is computable in X and

(Vi)[A; is embeddable in Ax < i€ X].

Then for every Turing degree d, there is a countable model of S whose iso-
morphism class has degree d.

Proof. Let d be a Turing degree and D C w be such that deg(D) = d.
Let X =4t D ® D. We will show that Ay is a countable model of S whose
isomorphism class has degree d. Clearly,

AD@ﬁ <TD®ﬁ<T D7

so deg(Ax) < d. Let B be a model isomorphic to Ayx. It is enough to prove
that deg(B) > d. This follows from the fact that

(i € D < Ay is embeddable in B) A
(i ¢ D < Ay is embeddable in B).

O

The previous theorem can be used to show that for every Turing degree
d, there is a countable abelian group whose isomorphism class has degree d.
A corresponding sequence of finite models consists of cyclic groups of every
prime order, and the abelian group assigned to an arbitrary set of natural
numbers is obtained by forming countable direct sums.

Theorem 14.3 implies that there is a nonstandard model of Peano arith-
metic of low degree. McAloon has asked whether there is a nonstandard
model A of Peano arithmetic such that the theory of A is not arithmetic and
the degree of A is arithmetic. Harrington has given the answer by establish-
ing the following result.
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Theorem 14.6 (Harrington) There is a nonstandard model A of Peano
arithmetic such that the theory of A has degree 0%) and the degree of A
is < 0.

The construction uses Harrington’s worker method with infinitely many
workers. The n—th worker produces the ¥,,—part of the complete diagram of
the model, using @™ as an oracle. To assure coherence, every n—th worker
constantly guesses what the (n + 1)-st worker has done. In [111], Knight
has improved Harrington’s result by showing that there is a nonstandard
model A of Peano arithmetic such that the theory of A has degree 0), and
the degree of A is low. This result follows from a general theorem of Knight
[111] for which she has used Harrington’s worker method with infinitely many
workers to produce a model of a theory T', which realizes a certain set of types
of bounded complexity.

Feferman [59] has stated that every arithmetic set is computable in the
degree of every nonstandard model of true arithmetic. In fact, his proof
yields a stronger result. First we need the following definition.

Definition 14.2 A Turing degree d is a subuniform upper bound for the
arithmetic sets if there is X C w such that deg(X) < d and

(Vn)(F)[ X = gM)].

Theorem 14.7 (Feferman [59]) If A is a nonstandard model of true arith-
metic of degree d, then d is a subuniform upper bound for the arithmetic
sets.

As Marker has pointed out, certain results on the degrees of nonstandard
models of true arithmetic are analogous to the results on the degrees of
nonstandard models of Peano arithmetic. From the fact that the degree of
true arithmetic is 0, it follows that there is a nonstandard model of true
arithmetic of degree < 0“). Knight has shown that there is such a model
of degree < 0. Marker has used a modification of Harrington’s worker
method with three workers to obtain the following result.

Theorem 14.8 (Marker [127]) Let d be a Turing degree such that for every
n=>0d> 0. Then there is a nonstandard model A of true arithmetic
such that deg(A) < d'.
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It follows from the previous theorem that there is a nonstandard model of
true arithmetic whose degree d is such that d’ = 0). Marker has also shown
that for a nonstandard model A of Peano arithmetic, the set of degrees of all
models isomorphic to A is closed upward. In particular, the set of degrees of
all nonstandard models of true arithmetic is closed upward.

Knight, Lachlan and Soare [116] have strengthened Theorem 14.8 by
showing that, given d as in Theorem 14.8, there is a nonstandard model
A of true arithmetic such that (deg(A))’ < d'. As a consequence of their
result, they have obtained

Corollary 14.9 (Knight-Lachlan-Soare [116]) There is a nonstandard model
of true arithmetic of degree d such that d" = 0.

Proof. By a result of Sacks, there is a Turing degree d such that d” = 0),
and for every n € w, d > 0. Fix such d. Let A be a nonstandard model
of true arithmetic such that (deg(A))’ < d’. Hence (deg(A))" < 0. O

Knight attempted to answer Jockusch’s question about a characterization
of the degrees of nonstandard models of true arithmetic, by conjecturing that
if a degree d is such that (¥n > 1)[d > 0], then d is the degree of a model
of true arithmetic. This conjecture is refuted by the following theorem.

Theorem 14.10 (Knight-Lachlan-Soare [116]) There is a Turing degree d
which is not a subuniform upper bound for the arithmetic sets, such that
(Vn > 1)[d > 0™)]. In addition, d" = 0“),

If d is as in Theorem 14.10, then, by Theorem 14.7, d is not the degree
of a model of true arithmetic.

In the 1984 Logic Colloquium material, Solovay gave a characterization
of the degrees of nonstandard model of true arithmetic. Solovay’s character-
ization is in terms of the effective enumerations of families of the so-called
Scott sets.

Let aq, a1, ae, ... be a computable enumeration without repetition of all
nodes in 2<“.

Definition 14.3 A set S C P(w) is called a Scott set if it satisfies the
following conditions for all X,Y C w:

(1) (X eSAY <r X)=Y €S,
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(2) (X eSAYeS)=XpYeS,

(3) [X € SA(T ={ay, :n € X} is an infinite tree)]
= (37 € S)[{a, : n € Z} is an infinite branch of T].

For n € w, let 0,(z) be a formula in the language of Peano arithmetic
which expresses that “x is divisible by the n—th prime number”. If A is a
nonstandard model of Peano arithmetic, then

{{n: AFEOu(z)al} [a € A}
is a Scott set. It is called the Scott set of A and is denoted by Scott(A).

Definition 14.4 Let T be a complete extension of Peano arithmetic and let
X Cw. X is representable with respect to T if for some formula 6(z) of L(T)
and every n € w:

[TFOn)]<neX.

Scott [192] has proven that the family of all Scott sets coincides with
the family of sets which are representable with respect to some complete
extension of Peano arithmetic.

An enumeration of a countable family S C P(w) is a binary relation v
such that S = {vy, v1,1va,. .. }, where for every i € w, v; =qer {n : (i,n) € v}.
By “effectivizing” conditions (1) —(3) in Definition 14.3, we obtain the notion
of an effective enumeration of a Scott set.

Definition 14.5 Let S be a countable Scott set. An enumeration v of S is
an effective enumeration if there are computable functions f(-,-), g(-,-) and
h(-,-) such that the following conditions are satisfied for all i,j € w:

(1) (=XAY={e}¥)=Y = Vi(ise):
(2) v @ vj = vy(i;
(

3) [vi= X A(T ={an:n € X} is an infinite tree) A vp;) = Y]
—> [{an, :n € Y} is an infinite branch of 7.

Theorem 14.11 (Solovay) Let d be a Turing degree.
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(i) d is the degree of a nonstandard model of true arithmetic

& d is the degree of an effective enumeration of a
countable Scott set which contains all arithmetic sets.

(ii) Let S be a countable Scott set.

d is the degree of a nonstandard model of true
arithmetic with the Scott set S

< d is the degree of an effective enumeration of S.

In the following theorem, Knight has established a general sufficient con-
dition for a Turing degree to be the degree of a model representing a given
Scott set. We will use the following notation in the theorem. For a theory T
and n € w, we define T;, to be the set of Godel numbers of all ¥, sentences
inT'.

Theorem 14.12 (Knight [113]) Let v be an effective enumeration of a (cou-
ntable) Scott set S, and let T' be a complete theory such that for everyn € w,
T, € 8. Assume that there is an algorithm which on every input n € w,
using the n—th jump of v, outputs i € w such that v; = T,,11. Then there is
a model A of T which represents S, such that the atomic diagram of A is
Turing reducible to v.

This theorem gives Theorem 14.11 as a corollary. Another corollary is
the following strengthening of Theorem 14.6.

Theorem 14.13 (Knight [113]) Let v be an effective enumeration of a (cou-
ntable) Scott set S. Let d be the Turing degree of v. There is a nonstandard
model A of Peano arithmetic with the Scott set S such that the theory of A
has degree > d“) and the degree of A is < d.

Since many models do not have the degree of their isomorphism class,
Jockusch has introduced another measure of model complexity which is in-
variant under isomorphisms. This measure uses jumps of the degrees of
models.

Definition 14.6 Let a be a computable ordinal. The a—th jump degree of a
model A is, if it exists, the least Turing degree among {deg(B)® : B = A}.
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Obviously, the notion of the 0—th jump degree of A coincides with the
notion of the degree of the isomorphism class of A. While Richter [186]
has shown that the only possible 0-th jump degree of a linear ordering is
0, Knight [110] has shown that the only possible first jump degree of a
linear ordering is 0’. No nonstandard model of Peano arithmetic has 0-th
jump degree. There is a nonstandard model of Peano arithmetic with a 1-st
jump degree. We have the following general results for jump degrees of linear
orderings and Boolean algebras.

Theorem 14.14 (Knight [110], Ash-Knight [9], Jockusch-Soare [96], Ash-
Jockusch-Knight [8], Downey-Knight [46]) Let a > 1 be a computable ordinal
and let d be a Turing degree such that d > 0. Then there is a linear
ordering A whose a—th jump degree is d and such that A does not have —th
Jump degree for any [ < «.

Theorem 14.15 (Jockusch-Soare [97])

(i) Let d be a Turing degree such that d > 0“). Then there is a Boolean
algebra A whose w—th jump degree is d.

(ii) Let n € w, and d be a Turing degree such that d > 0™ . Then there is
no Boolean algebra A whose n—th jump degree is d.

Result (i) of Theorem 14.15 is a straightforward application of a method by
Feiner, see [97].

15 Automorphisms and
Computable Models

One of the important and interesting questions in computable model theory
is how a specific aspect of a computable model may change if the model
is isomorphically transformed so that it remains computable. A model B
isomorphic to a computable model A is not necessarily computable. However,
even if B is computable, it can still lose many of the computable properties

of A.

A computable property of a computable model A which Ash and Nerode
have considered is an additional computable relation R on the domain of A
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(that is, R is not named in the language of A). For example, Ash and Nerode
have studied conditions under which the image of R under any isomorphism
from A to another computable model is necessarily a computable or a c.e.
relation.

Definition 15.1 Let R be an additional relation on the domain of a com-
putable model A.

(i) (Ash-Nerode [21]) R is intrinsically c.e. on A if the image of R under
every isomorphism from A to a computable model is c.e.

(ii) Let P be a certain class of relations. R is called intrinsically P on A
if the image of R under every isomorphism from 4 to a computable
model belongs to P.

For example, Moses [155] has established that relations which are intrin-
sically computable on a computable linear order A are precisely those that
are equivalent in A to quantifier-free formulae with finitely many parame-
ters. Let A be a computable Boolean algebra and let R be a computable
subalgebra of A. Odintsov [161] has established that R is intrinsically c.e.
if and only if R is generated by a finite set of elements and a finite set of
principal ideals of A. This characterization implies that if R is intrinsically
c.e. then R is intrinsically computable. However, it is easy to see that there
are intrinsically c.e. relations which are not intrinsically computable.

Ash and Nerode have introduced a computable syntactic condition for a
new relation on the domain of a computable model, to be called a formally
c.e. relation.
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Definition 15.2

(i) An L,,, formula with free variables among T is a (computable) ¥
formula if it is equivalent to a formula of the form

necw

where (0, (T,7,))necw is a (computable) sequence of quantifier-free for-
mulae.

(ii) (Ash-Nerode [21]) Let R be an additional m-ary computable relation
on the domain of a computable model A. R is formally c.e. on A if

and only if there is a finite sequence (by, ... ,bx_1) of elements in A and
a computable ¥; formula F(zo,...,Zm 1,bo,...,bg 1) such that the
following equivalence holds for every ag,... ,a, 1 € A:

R(ao,... ,am_l) < Ay ): f(ao,... ,&m_1,bo, ... abk:—l)-

R is formally computable on A if both R and its complement are for-
mally c.e. on A.

That is, R is formally c.e. on A if and only if R is equivalent to an
infinite disjunction of a computable sequence of existential formulae with
finitely many fixed parameters from A. A formally c.e. relation is also called
a formally Y, relation.

Clearly, every formally c.e. relation on a computable model is intrinsically
c.e. Ash and Nerode have proven, under a certain decidability condition (D),
the converse, thus establishing the equivalence of a syntactic and a semantic
condition. For an m-ary relation R on a model A, the condition (D) is:

There is an algorithm which determines for k € w, for an existential for-
mula ¢ (zo, ..., Tm_1,Y0,--- ,Yr—1) and a sequence (by, ... ,bx_1) of elements
of A, whether the following implication holds for every ag,... ,a, 1 € A:

[AA ): T/J(ao,- . 7am717b07' . 7bk71)] — R(a07 s 7am71)-

Condition (D) implies that R is a computable relation. It also implies
that A is 1-computable, which is a property of a model defined as follows.

Definition 15.3 A model A is 1-computable if there is an algorithm which
determines for every existential formula ¢ (o, ... ,x, 1) and every sequence
(ag, ... ,a, 1) of elements of A, whether ¢ (ay,...,a, 1) is true in A4.
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Let P be a class of formulae. Define the P—diagram of a model A for
language L to be the set of all P—sentences in L4 which are true in Aj,.
Thus, a model is 1-computable if its existential diagram is computable or,
equivalently, its universal diagram is computable.

Theorem 15.1 (Ash-Nerode [21]) Let R be an additional m—ary relation on
the domain of a model A, satisfying the decidability condition (D). Then

R s intrinsically c.e. on A< R s formally c.e. on A.

Proof. (<) Always true for a relation R on the domain of any computable
model.

(=) Without loss of generality, let R be a unary relation. Assume that
R is not formally c.e. We assume that w is the domain of all considered
computable models. We will construct a computable model B and an iso-
morphism f : B — A such that f~'(R) is not c.e. Let s be an arbitrary
stage of the construction. We will define a finite set ¥® of formulae of the
open diagram of B, and a finite partial isomorphism f; from B to A.

By a finite partial isomorphism from B to A at stage s, we understand
an injective function g with a finite domain such that for every 6 € W, if
6 = 0(by,...,b,_1) for some by,...,b,_1 € w, then g(bg) {,...,9(bn_1) |
and A = 0[g(bo), ... ,9(bn-1)]-

Define U! = ¢ and f;, = ¢. Let X, = f,'(R) for s € w. At the end
of the construction, we will have that f = lim, f, exists. Let X =q¢ f~'(R)
and ¥ = (J,, , U°. The construction will ensure that X is not c.e.

Let (f¢)eew be an effective list of all atomic and negated atomic formulae
in the language of A, augmented with the constants for the elements of w.
The construction will meet the following requirements for every e > 0,

P': 6,€¥ or -0, € U;

P!: e € dom(f);
P?: e € rmg(f);
Q.: X #W..

The strategy for meeting a single requirement (). is to wait for a stage s
such that for some b € w, b € W, ;. Define f,(b) such that f;(b) ¢ R. Hence
b ¢ X,. Now, let n® =4¢t b. Let n.' be undefined for every e € w.
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We say that at stage s,

P? requires attention if 0, ¢ ¥*~1 =0, ¢ ! and all elements of w

occurring in @, are in the domain of f, ;

Pl (P?) requires attention if e ¢ dom(fs_1) (e & tng(fs_1));

e

Q. requires attention if n¥~! is undefined;

P (P?) is injured if fi(e) # fi-1(e) (f7'(e) # f. 1 (€));
Q. is injured if ! is defined and fy(nf™') # fs_1(ni 1),

Construction

STAGE s:  For a requirement Req, we have the following clauses in the
definition of Req is attacked at stage s.

Req= P? Let 0, = 0.(by, ... ,b, 1) for some by, ... b, | € w.
Define ¥ = Us=1 U {#*}, where k € {0,1} is such that

A ): HS[fsfl(bUL tee 7fsfl(bn71)]'

Let fs —def fsfl-
Req= P! Define ¥ = U*~! and f; = f;_1 U {(e,a)}, where a € w is the

e
least new element at stage s.

Req= P? Define ¥* = ¥U*~' and f, = f,_1 U {(b,e)}, where b € w is the

e
least new element at stage s.

Req= Q. Let U® =4 ¥*~!. There exists b € W, s and a partial isomorph-
ism from B to A at stage s which maps b into an element from
(w—R). Choose the least such b, and then define f; to be the least
corresponding partial isomorphism (in some effective ordering of
all finite functions on w). Hence b ¢ X;. Define n$ = b.

Attack the highest priority requirement Req which requires attention at
stage s, and which can be attacked without injuring any requirement of
a higher priority. Whether this can be done for a ()-requirement can be
checked effectively because the decidability condition (D) holds. If some
lower priority requirement (); is injured at s, then n; becomes undefined.
End of the construction.
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It is not difficult to show that each requirement is attacked and injured
only finitely often, and that all P-requirements are met. Thus, we have a
computable model B and an isomorphism f.

Lemma 15.2 FEvery QQ—requirement is satisfied.

Proof. Assume otherwise. For example, let (), be the requirement of the
highest priority which is not satisfied. Then X = W,. Let sy be a stage
by which all requirements of higher priority than (). have been attacked
for the last time, and at which the sequences of numbers coming from the
higher priority requirements have reached their final values, d and f(d). Let
b, b1, b, ... be a computable enumeration of W,. Consider an arbitrary b.
Find the least corresponding stage s. Let 1, (z,d) be the corresponding
existential formula. That is, v, (z,d) = (3y)d(x,d,7), where §(by,d, d)
is the conjunction of all formulae of ¥* ! and Ih(y) = Ih(d). Clearly,
B =, bk, d], so A=, [f(bk), f(d)]. Let f(d) = (ao, ... ,a,_1). Since Q. is

not attacked at s, we have for every a € A

[Aa E ¢, (a,a0,...,a, 1)] = R(a).

Conversely, for every a € R, there is k € w such that a = f(bg). Thus, the
following equivalence holds for every a € A

[As E V Yr(a,ag,...,a, 1)] < R(a).

kEw

This is a contradiction since R is not formally c.e. on A. a

As an immediate consequence, we have that if both R and its complement
satisfy the decidability condition (D), then

R is intrinsically computable on A <= R is formally computable on A.

The decidability condition (D) cannot be omitted from the previous the-
orem. Goncharov [70] and Manasse [126] have shown that there are com-
putable models with intrinsically c.e. relations which are not formally c.e.
Chisholm [34] has established the best possible result on the definability of
intrinsically c.e. relations on 1-computable models.
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Definition 15.4 Let F be an L,,, formula with free variables among z. F
is a (computable) Xy formula if it is equivalent to a formula of the form

new mew
and F is a (computable) II; formula if it is equivalent to a formula of the
form

new mew

where (0, (T, Uy Zmn) )nmew 15 @ (computable) sequence of quantifier-free
formulae.

This definition has been extended by Ash [1] to all (computable) ¥, and
I1,, formulae, where « is a computable ordinal.

Definition 15.5 Let R be an additional m—ary computable relation on the
domain of a computable model A. R is formally 33 (I13, respectively) on A

if and only if there is a finite sequence (bg, ... ,bg_1) of elements in A and
a computable Xy (I, respectively) formula F(xg,... , Zm_1,bo,...,bg_1)
such that the following equivalence holds for every ag,... ,a, 1 € A.

[AA ): f(a[), RN P b[), R ,bkfl)] — R(ag, c ,am,l).
R is formally Ay on A if R is both formally 9 and formally II3 on A.

Theorem 15.3 (Chisholm [34])

(i) Let R be an additional relation on the domain of the 1-computable
model A. Then

R s intrinsically c.e. on A = R is formally 115 on A.

(ii) There is a decidable model A and an additional relation R on its do-
main, such that R is intrinsically c.e. and not formally X3 on A. More-
over, R is not definable by any X5 formula.

Barker [24] has extended Theorem 15.1 to X9 relations. He has proved
that if certain extra decidability conditions are satisfied, then R is intrinsi-
cally X9 if and only if R is formally 39. Barker [25] has further proved an
analogous result for all 32 relations, where « is a computable ordinal.
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Let A be a computable model. Davey [40] has considered two additional,
disjoint, computable relations, R; and Ry, on the domain A. He has studied
conditions under which there is a computable model B isomorphic to A such
that the corresponding isomorphic images of R; and Ry are A?—inseparable.
For example, let R; and R, be infinite, disjoint, computable subsets of w such
that Ry U R, is coinfinite. Then, there is a computable model isomorphic to
(w, <) such that the images of R; and Ry are computably inseparable.

While all the previous results address only levels of the arithmetic or
hyperarithmetic hierarchy, Harizanov has also considered Turing degrees of
the images of a computable relation on the domain of a computable model
A, under all isomorphisms from A to computable models.

Definition 15.6 (Harizanov [83]) Let R be an additional relation on the
domain of a computable model A. The (Turing) degree spectrum of R on A,
in symbols Dg4(R), is the set of Turing degrees of the images of R under all
isomorphisms from A to computable models.

For a computable model B isomorphic to A, the (Turing) degree spectrum
of R on A with respect to B, in symbols Dg 4 5(R), is the set of Turing degrees
of the images of R under all isomorphisms from A to B.

Harizanov has studied various aspects of degree spectra, such as: the
structure of uncountable degree spectra, the effect of decidability condition
(D) on the cardinality of a degree spectrum, realizing c.e. degrees in a degree
spectrum via c.e. and, in general, via AJ isomorphic images of R, and finite
degree spectra.

To state results about uncountable degree spectra we assume, without loss
of generality, that R is unary. Let B be a computable model isomorphic to A.
By Z(A, B) we denote the set of all isomorphisms from A to B. We say that a
partial function p from A to B is a finite isomorphism from A to B if p is one-
to-one, dom(p) is finite and for every atomic formula o = a(zg, ..., 2, 1) in
L(A), and every ag, ... ,a, 1 € dom(p), we have

A= alag, ... ,an-1] <= B Eap(a),... ,plan—1)].

By Zg, (A, B) we denote the set of all finite isomorphisms from A to B. We
define the R—equivalence relation ~p on Zg, (A, B) as follows:

q~pr < (Vbecran(q)Nran(r))g”'(b) € R < r~'(b) € R].
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Theorem 15.4 (Harizanov [85])

(i) The following are equivalent:

) Dga(R) is uncountable.

1) Dgag(R) is uncountable.

2) Dgag(R) has cardinality 2.

3) There is a nonempty set S C Zg, (A, B) such that the following
two conditions are satisfied:

(A) (VpeS)(Vae A)(Vbe B)(Ig €8S)
[(¢ 2 p) A (a € dom(q)) A (b € ran(q))];

(0
(
(
(

(B) (VpeS)3q,r€S)[(g2p) A (r2p) A=(g~rT)]

(ii) Let S be as in (i)(3). Then for every set C >¢ S, there is an isomor-
phism f from A to B such that

In particular, if S is computable, then Dgap(R) = D and, moreover,
for every set C' C w, there is an isomorphism f from A to B such that

C=r f(R) =r f.

Theorem 15.5 (Harizanov [87]; Ash, Cholak and Knight [5]) The following
are equivalent:

(1) Dgap(R) = D and, moreover, for every set C' C w, there is an iso-
morphism f from A to B such that C =¢ f(R) =r f.

(2) Thereis e € w and p € 2<¥ such that the set

Sep =aer {981 q €2 A g2 p}
has the following properties:
Se,p g Iﬁn(Aa B),

Condition (3)(A) from Theorem 15.4 is satisfied for S=S., , and

(3i € w)(¥g 2 p)(Va € dom(q))[pf" ™ (a) |= g(a)].
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(3) There is a nonempty computable set S C Ty, (A, B) such that the con-
ditions (A) and (B) from Theorem 15.4 are satisfied.

In the proof of =(2) = —(1) for Theorem 15.5 in [87], the construction of
C can be done computably in ¢”. Hence C' € AJ. Thus, if not every Turing
degree is obtained in a degree spectrum Dg 4 5(R) via an isomorphism of the
same Turing degree, then there is such a A} degree. This conclusion also
follows from the proof in [5] since there is a generic AY set.

In [84], the priority method has been used to establish how the Ash-
Nerode decidability condition affects the cardinality of the degree spectrum.

Theorem 15.6 (Harizanov [84])

(i) If the Ash-Nerode decidability condition (D) holds for a non-intrinsic-
ally c.e. relation R on a model A, then the degree spectrum of R on
A is infinite.

(ii) There is a computable non-intrinsically c.e. relation R on a computable
model A such that the degree spectrum of R on A has exactly two
degrees.

Also, in [84] some new computable syntactic conditions have been intro-
duced, which have allowed the use of the permitting method to obtain every
c.e. degree in the degree spectrum. Ash, Cholak and Knight [5] have gen-
eralized this result to include in the degree spectrum all a—c.e. degrees in
Ershov’s hierarchy of A) degrees, see [52, 53, 54]. For a computable ordinal
a, a Turing degree is a—c.e. if it contains an a—c.e. set. A set C' C w is a—
c.e. if there exists a computable function f : w? — {0,1} and a computable
function o : w? — a + 1 with the following properties:

(Vz)[lim f(z,s) = C(z) A f(x,0) = 0],

§—00

(Vz)(Vs)o(z,s + 1) < o(x, s) Ao(z,0) = «], and
(V) (Vs)[f(z,s + 1) # f(z,5) = o(z,s + 1) < o(x, 5)].

In particular, 1—c.e. sets are c.e. sets, and 2—c.e. sets are d—c.e. sets. For
other characterizations of a—c.e. sets, also see [51, 15]. In [15], Ash and
Knight have studied intrinsically a—c.e. relations. For other generalizations
of a syntactic condition in [84], see [14, 16].
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In [86], Goncharov’s infinite injury method has been modified to con-
struct a computable non-intrinsically c.e. relation with a two-element degree
spectrum whose nonzero degree is < 0'. First, a family S of c.e. sets and
a computable set P, which have certain required properties, have been con-
structed. A function v from w onto S is called a computable enumeration of S
if there is a uniformly computable sequence {v;};¢,, of functions from w to the
set of finite subsets of w such that for every n € w, v(n) = U{w(n) : t € w}.
The family S constructed has two injective computable enumerations, v and
i, such that every other injective computable enumeration A of § is com-
putably equivalent to v or pu. Here, \ is computably equivalent to v if the
function f : w — w such that v = Af is recursive. The set Y defined by
Y ={n€w:(3m e P)lv(m) = u(n)]}is anon-c.e. AY set. The enumeration
v has then been encoded into a rigid computable model A. The category of
injective computable enumerations of &, whose morphisms are equivalences
(computable equivalencies, respectively) of the enumerations, is equivalent
to the category of computable models isomorphic to A whose morphisms are
isomorphisms (computable isomorphisms, respectively) of the models. The
set R which encodes P in A is computable and its degree spectrum on A has
the required property.

The ideas described in the previous paragraph have originated in Gon-
charov’s work [69, 70] on the dimension of a computable model (see Theorem
15.7). Similar ideas have also been used by Ventsov [203, 204, 206], as well
as by Cholak, Goncharov, Khoussainov and Shore [36].

Definition 15.7 Let P be a certain class of functions. A computable model
A is P—categorical if for every computable model B isomorphic to A, there
exists an isomorphism from A to B, which belongs to P.

An example of a computably categorical model is the ordered set of ra-
tionals. In general, a computable linear ordering is computably categorical
if and only it has only finitely many elements with an immediate successor
(77, 181]. A computable Boolean algebra is computably categorical if and
only if it has finitely many atoms ([182], also see Theorem 1 in [77]). For
more examples of computably categorical models see [39].

Ash [3] has established for every ordinal o < w{, under certain extra de-
cidability assumptions, a necessary and sufficient condition for a computable
model A to be A?-categorical, termed A has a X2 Scott family. (The ex-
tra decidability assumptions are needed only for establishing the necessary
condition.) For a = 1, this result has been first obtained by Goncharov [65].
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Definition 15.8 A computable model A has a ¥? Scott family if there is
a finite sequence (bp, ..., b, 1) of elements in A and a computable sequence
(Fn(xoy -+, Tm_1,b0, ... ,br_1)) new of existential formulae satisfiable in A4
such that the following two conditions hold.

(1) For every ag,...,an_1 € A, there is n € w such that
./4,4 ): fn(ao, v A1, bo, e abk—l)-

(2) For every n € w and every two sequences (ag,...,G, 1) € A™ and
(doy...,dpm 1) € A™,

if AA ):fn(a(]a-" 7am717b07"' 7bk71)
and AA ):.,Fn(d(), ,dm_l,bg,... ,bk_l),
then (A, agp, - . . ,am_l) = (A, dg,... ;dm—l)-

Khoussainov and Shore [105] and Kudinov [119] have shown that there
is a computably categorical model A without a X% Scott family. Moreover,
they proved that there is such a model with the additional property that
every expansion by finitely many constants is computably categorical.

The notion of a dimension of a computable model originates in Mal’cev’s
work on computable algebras in early 1960’s. We say that two computable
models A and B have the same computable isomorphism type if there is a
computable isomorphism from A to B. The dimension of a computable model
A is the number of computable isomorphism types of computable models
which are isomorphic to A. Clearly, the dimension of a computable model
is < w, and a computable model is computably categorical if its dimension
is 1. It has been shown that for many classes of computable models, the
dimension of the models is either 1 or w, see [65, 66, 74, 77, 78, 205, 207].

Theorem 15.7 (Goncharov [70, 71]) For every natural number n > 2, there
1 a rigid computable partial ordering with dimension n.

In the following theorem, Millar, extending an earlier result of Goncharov,
has proved that a small amount of decidability for a computably categorical
model is sufficient to preserve computable categoricity under expansions by
finitely many constants.
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Theorem 15.8 (Millar [146]) Let A be a 1-computable and computably cat-
egorical model. For every finite sequence of elements ag, ... ,a,_1 from A,
the model (A, aq, ... ,a, 1) is computably categorical.

The question then remains whether the condition of 1-computability in
the previous theorem can be removed. Cholak, Goncharov, Khoussainov and
Shore have answered negatively by establishing the following stronger result.

Theorem 15.9 (Cholak-Goncharov-Khoussainov-Shore [36]) Let n € w.
There exists a computably categorical model A such that for every element
a € A, the expanded structure (A, a) has dimension n.

It is not known whether the previous result holds for n = w.

Khoussainov [102] has also studied a generalization of the notion of a
dimension of a computable model by allowing homomorphic images. Other
types of algorithmic dimensions of computable models, such as program di-
mension and uniform dimension, have also been studied [101, 103].

In [159], Nurtazin gave several characterizations of a decidable model A
which is computably isomorphic to every other isomorphic decidable model.
One of the characterizations is that there is an expansion (A, ag, ... ,a,_1) of
A (by finitely many constants) such that the set of atoms of the Lindenbaum
algebra of Th(A,ag,...,a, 1) is computable and (A,ao,...,a, 1) is the
prime model of Th(A, ag, ... ,a,_1)-

Ash and Nerode [21] and Goncharov [65] have also studied the class of
the so-called computably stable models.

Definition 15.9

(i) A computable model A is computably stable if every isomorphism from
A to a computable model is computable.

(ii) Let P be a certain class of functions. A computable model A is P—
stable if every isomorphism from A to a computable model belongs to

P.

Thus, computably stable is the same as Al-stable. It is easy to see
that A is computably stable if and only if all computable relations on the
domain A are intrinsically computable. Ash and Nerode, and Goncharov
have given a computable syntactic condition for A which is equivalent to A
being computably stable, under the assumption that A is 1-computable.
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Theorem 15.10 (Ash-Nerode [21], Goncharov [65]) Let A be a 1-comput-
able model. Then A is computably stable if and only if there is a sequence of
elements ag, ..., Gym_1 from A and a computable sequence Vg, 1, Vg, ...
of existential formulae in free variables x, xy, ..., tm_1 such that the sets

{a€e A: Ay Evn(a,ag,...,an 1)}
form a family of singletons whose union is A.

Ash [2] has generalized this result to A%-stable models for every n > 1.
He has established a syntactic condition, termed A has a formally A%-
enumeration, which is, under certain additional decidability conditions, equi-
valent to A being A%-stable. Ash [1] has also established a similar result for
all hyperarithmetic degrees. For example, for every computable ordinal «,
no infinite reduced abelian p-group is A%-stable, as shown by Barker [26].

Ash and Goncharov [7] have also introduced and studied the notions of
strong AS—stability and strong AS-categoricity.

Definition 15.10 (Ash-Knight [9]) Let (A, B) be a pair of computable mod-
els (c.e. models, respectively), and let X C w. We say that (A, B) codes X
via a computable sequence (D,,)ne, of computable models (c.e. models, re-
spectively) if the following isomorphism condition is satisfied:

D, =2 A if neX] and [D, 2B if n¢ X].

For example, if X is a I1 set, then there is a computable sequence (Dy,)new
of computable linear orders such that D,, is isomorphic to w + w* if n € X,
and D,, is isomorphic to w+14+w* if n ¢ X. Ash and Knight [9] have obtained
some general computable syntactic conditions on computable models A and
B and a computable ordinal «, so that (A, B) codes every II9 set X via a
computable sequence of computable models. A necessary condition is that
all computable infinitary X, sentences true in A are also true in B. Ash and
Knight have shown that if certain “useful relations” which give information
about A and B are c.e., then this necessary condition is also sufficient. For
every computable ordinal ;, Knight [114, 115] has also established a different
set of sufficient conditions for a pair (A, B) of computable models to code
every I12 set via a computable sequence of computable models. Here, not all
“useful” relations have to be c.e., but A and B must be “more alike”.

Ash [4] has also established, under certain assumptions, a necessary and
sufficient condition on c.e. models A and B and a computable ordinal «,
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which allows (A, B) to code every TI2 set X via a computable sequence of
c.e. models. The method used is an extension of Ash’s method of the so-
called a—systems, introduced in [1]. For further extensions of this method
see [12, 13].

Ash, Knight, Manasse and Slaman [17], and Chisholm [33, 35] have also
considered a different approach to studying the effectiveness of model theory.
While Ash, Knight, Manasse and Slaman call this approach relatively com-
putable model theory, Chisholm calls it effective model theory. The basic idea
is to allow, instead of computable models, arbitrary models, and to require
all notions to be relativized to the complexity of the corresponding models.
One of the advantages of this approach is the elimination of certain “patho-
logical” situations. For example, the notion of intrinsically c.e. is replaced
by the following notion of relatively c.e.

Definition 15.11 Let R be an additional relation on the domain of a com-
putable model A. R is called relatively c.e. on A if the image of R under
every isomorphism from A to any model B is c.e. in the atomic diagram of

B.

Now a forcing method has been used to obtain the following analogue of
Theorem 15.1, thus establishing the equivalence of a semantic and a syntactic
notion, without an extra decidability condition. (See a related paper [11],
which involves a new classification of computable infinitary formulae.)

Theorem 15.11 (Ash-Knight-Manasse-Slaman [17], Chisholm [35]) Let R
be an additional relation on the domain of a computable model A. Then

R s relatively c.e. on A<= R s formally c.e. on A.

Using forcing, a similar result has been obtained for the new notion of relative
categoricity. This line of investigation has been continued by Soskov [197,
198] to intrinsically IT} relations and to hyperarithmetic relations.

Let A be a computable model and let 0(R) be a computable sentence true
in an expansion of A by a computable relation R. Ash, Knight and Slaman
[10, 19] have investigated the conditions under which there is a computable
model B isomorphic to 4 such that no relation on B satisfies o0(R) and is
computable relative to B.

Vlach [208] has studied the degrees of algebraically independent sets on
computable models. Hird [91] and Ash, Knight and Remmel [18] have inves-
tigated the existence and the degrees of the so-called quasi-simple relations
on computable models.
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