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Abstract of Dissertation

Detecting Properties of Algorithmically Presented Algebraic and Relational
Structures

A Markov property, P , for a class of groups, C, is any property such that there is a

positive witness, G+ 2 C, that exhibits the property, and there is a negative witness,

G� 2 C, such that any group in C which contains a copy of G� fails to exhibit

property P . We show that detecting a Markov property is ⇧0
2-hard in the class of

recursively presented groups, which are those groups that have a presentation with

computable set of generators and recursively enumerable set of relators. Furthermore,

detecting a Markov property is ⌃0
1-hard in the class of computable groups, those with a

computable domain and a computable atomic diagram. These results are an extension

of the classic result by Adian and Rabin in the class of finitely presented groups.

We apply these results to determine the exact computability-theoretic complexity

of detecting Markov properties of groups, including being abelian and torsion-free.

We then find the exact complexity of detecting properties at higher levels of the

arithmetical hierarchy, notably the properties of being torsion, nilpotent, and cyclic.

Finally, we redefine the notion of a Markov property for classes of computable relational

structures and follow a similar analysis and application of results as in the class of

computable groups.
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Chapter 1

Introduction

1.1 Computability Theory

1.1.1 Decision Problems

A collection of classical objects of study in computability theory, which motivated

the early development of the field, are the decision problems. A simple definition of

a decision problem is any problem that can be phrased as a question with a yes or

no answer. A decision problem is decidable if there is an algorithm which determines

whether the answer is yes or no. For example, the set of primes can be thought of as

the problem:

Given a natural number x, is x a prime?

Clearly this is a decision problem, and moreover, a simple algorithm can be

described which determines the answer regardless of the particular x; that is, you

can always determine (given enough time) if your number is prime.

One can trace the history of computability theory through more complex decision

problems. In 1928, David Hilbert and Wilhelm Ackermann posed the

Entschiedungsproblem, which asked for an algorithm to determine which statements
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of the first-order logic are universally valid and which are not. In 1936, a negative

solution was independently found by Alan Turing and Alonzo Chuch; the

Entschiedungsproblem is undecidable [47]. Amongst his Millennium Problems, Hilbert

also posed what would come to be known as Hilbert’s Tenth Problem, which asks for

an algorithm that can decide if a Diophantine equation with integer coe�cients has

solutions in the integers, or not. A negative solution for this question took the better

part of a century, and the question remained open until 1970 when Yuri Matiyasevich

[38] finished the proof begun by Julia Robinson, Martin Davis, and Hilary Putnam.

1.1.2 Basic Computability

We all have an intuitive notion of being computable or algorithmic. However, to

fully understand what is meant by a negative solution to decision problems, that is,

what is meant by being undecidable, we must define the exact notion of computability.

A function (of natural numbers) is computable if it can be evaluated on its inputs by

a program in some formal system of computability.

When a formalization is needed in the following text, we will always refer to the

standard Turing Machines as developed by Alan Turing in the 1930s. However, all

formal systems of computability are made up of finite collections of instructions which

must capture our intuitive understanding of a computation, and each system has a

well-defined notion of an algorithm, which is a finite list of these instructions.

All formal models of computability are equivalent to one another, and so it does

not matter which is used. Furthermore, we seldom need to call on any formalization,

as the intuitive notion of computability is also taken to be equivalent. This accepted

equivalence is captured by the Church Turing Thesis.

The Church-Turing Thesis.

1. A function f is computable if and only if f is a total function and it is intuitively

computable.

2



2. A function f is partial computable if and only if f is intuitively computable.

Considering a particular formalization does allow us to capture some useful

properties of algorithms. Firstly, it is clear that there are only countably infinitely

many algorithms in any given formalization, and, if we establish some computable

procedure for listing all the functions these algorithms yield, we get an e↵ective

enumeration of all partial computable functions. We fix an algorithmic enumeration

procedure for this collections of functions and index them.

Definition 1.1. There is an e↵ective enumeration of all unary partial computable

functions:

'0(x),'1(x), . . . ,'e(x), . . .

Note that this list contains functions which do not necessarily halt on every or,

in fact, any inputs and thus some are properly partial computable functions. That

is, 'e halts (denoted 'e(x) #) on any input x from its domain but runs forever on

inputs, z, that are not in its domain ('e(z) "). As is usual, the domain of the e-th

partial computable function is denoted by We.

Definition 1.2. There is an e↵ective enumeration of the domains of all unary partial

computable functions:

W0,W1, . . . ,We, . . .

This enumeration will be referred to repeatedly in the following text, and it will

serve as the primary objects that we “work against”, or diagonalize against, when

building non-computable examples. (See [15] and [45].)

Another useful tool through this work, is Kleene’s s-m-n Theorem.

Theorem 1.1. If f(x, y) is a partial computable function, then there is a computable

function g for which

f(x, y) = 'g(x)(y).

3



Rather than using the full technical expression of this theorem, usually we use

the intuitive notion Kleene captured: that we can computably get the index of any

intuitive algorithm and that if we are given an e↵ective list of algorithms we can

compute the corresponding list of indices.

As one might expect, sets and relations are defined to be computable when their

characteristic functions are computable. A set is said to be computably enumerable

(or c.e.) if there is an algorithm which enumerates its elements; notice such a set is

not necessarily computable. Thus, being computably enumerable is a more inclusive

characteristic than being computable, and so it is higher in the hierarchy of non-

computable sets.

1.2 Some Model Theory

A predicate language, L, is a collection of relation symbols, function symbols, and

constant symbols. We constrain ourselves to languages with only finitely many such

symbols.

A L-structure, is given by A = (A, I), where A is the universe, or domain, of L

and I is the interpretation of L in A. The interpretation I is a function taking the

symbols in L to their corresponding relations, functions, and constants in A. For

example, if we consider the language L = {+,0}, then an example of a L-structure

is the additive group of rational numbers, (Q,+, 0).

Formulas in a language L are strings of the usual logical symbols (parentheses,

variables, propositional connectives, quantifiers, equality) and the symbols of L,

constrained by the formation rules for terms and formulas. When limited to the first-

order logic, as we by and large will be, only finite connectives are admissible, and

only finitely-nested first-order quantifiers. The formulas obtained by these rules are

referred to as L!! formulas [13].
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A formula in first-order logic with no free variables is called a sentence. The set

of all sentences true of a structure A is the theory, Th(A), of the structure.

Given A, a structure for L, we expand the language L to a new language

LA = L [ {a : a 2 A}

by adding a new constant symbol for each element of A. We then expand A to a

model for LA, AA, by interpreting each new constant a by the element a. The atomic

diagram of a A, denoted D(A), is the set of all atomic sentences and negations of

atomic sentences of LA which hold in this expanded structure AA. A structure A

with a computable domain is said to be computable when its atomic diagram D(A)

is a computable set.

The elementary (or full) diagram of A, denoted Dc(A), is the set of all first-order

sentences of A true in AA. A structure with a computable domain is said to be

decidable if its full diagram is a computable set.

The standard model of arithmetic N = (N,+, ·, 0, 1) is a computable structure,

but it is not decidable. There are non-standard models of arithmetic, i.e. models which

have the same theory as N but are not isomorphic to it. Tennenbaum showed that

non-standard models of arithmetic are not computable. A computable theory always

has a decidable model. This follows from Henkin’s proof of the Gödel completeness

theorem [3].

Theorem 1.2 (Gödel). A relation is arithmetical if and only if it is definable in the

standard model of arithmetic.

So the relations definable in N are precisely the arithmetical relations, hence the

name arithmetical hierarchy.

5



1.2.1 The Arithmetical Hierarchy

Relations built from computable relations using quantifiers can be classified using

Kleene’s arithmetical hierarchy. Every such relation is equivalent to a relation in

prenex normal form, which is a string of quantifiers followed by a computable relation.

A relation in prenex normal form can be classified according to the number of

alternating quantifiers and the initial quantifier using the arithmetical hierarchy.

Definition 1.3. [The Arithmetical Hierarchy]

1. ⌃0
0 = ⇧0

0 = �0
1 = all the computable relations

2. ⌃0
n+1= all relations of the form (9y)R(x, y) where R 2 ⇧0

n

3. ⇧0
n+1= all relations of the form (8y)R(x, y) where R 2 ⌃0

n

4. �0
n+1 = ⌃0

n+1 \ ⇧0
n+1

We get ⌃0
n sets and ⇧0

n sets from this definition, as sets are just one place relations

of the form x 2 A. The base level of the arithmetical hierarchy is composed of the

computable sets. The ⌃0
1 sets are exactly the computably enumerable sets.

The arithmetical hierarchy is a proper hierarchy of computability in the sense

that ⌃0
n+1 and ⇧0

n+1 strictly include ⌃0
n and ⇧0

n sets. There is a corresponding Turing

hierarchy.

An oracle Turing machine is a Turing machine which can ask questions of the

form “is n 2 S?” of a set S ✓ N and use the yes or no answer in its computation.

The set S is called an oracle. A function is S-computable if it is computable by

a Turing machine with oracle S. For a set B whose characteristic function, �B, is

S-computable we say B is Turing reducible to S, denoted B T S. There is an

enumeration procedure for S-computable functions, denoted 'S
0 ,'

S
1 , . . . ,'

S
y , . . ., and

the corresponding domains are denoted W S
0 ,W

S
1 , . . . ,W

S
y , . . .

6



Definition 1.4. For a set S ✓ N, the jump of S, denoted S 0, is S 0 = {x : x 2 W S
x }.

Definition 1.5. The set ;(n), the n-th jump of the empty set, is defined recursively:

;
0 = {x : x 2 W ;

x}

;
(n+1) = (;(n))0 for n � 1.

The jump of the empty set is the halting set, K = {e : 'e(e) #}. Note that the

jump of a set S, S 0, is like the halting set with oracle S, rather than the empty

set. The correspondence between the arithmetical sets and the Turing hierarchy was

captured by Emil Post.

Theorem 1.3 (Post). For A ✓ N and n 2 N, A 2 �0
n+1 if and only if A T ;

(n).

Corollary 1.3.1. S ✓ N is �0
2 if and only if S T ;

0. If S ✓ N is c.e., then S T ;
0.

Furthermore, ;(n) T ;
(n+1) and ;

(n+1)
6T ;

(n). So the jumps of the empty set

form a strictly increasing (in a Turing reducibility sense) chain of sets.

The Turing degree hierarchy will not be explored here, but an introduction to the

topic can be found in [45], [46], and [15].

1.3 Index Sets

1.3.1 The Halting Problem

Despite defining computable and non-computable objects, we have yet to see a

concrete example of a non-computable object, other than those in the collection of

decision problems. It is by no means trivial that a non-computable object should

exist at all, since there are uncountably many sets of natural numbers. The first

example of an undecidable problem, and, in a computability theoretic sense, perhaps

the most important is the halting problem:

7



Given a natural number e, we ask: does the e-th partial computable

function halt on input e?

This problem can be expressed as the relation 9s('e,s(e) #), and a straightforward

diagonalization argument shows that it is undecidable.

1.3.2 Many-one reducibility

To precisely determine the complexity of a given property or set in the arithmetical

hierarchy we need a means for giving lower-bounds on complexity. Simply finding a �

level statement of a relation only confirms that the relation is not more complicated

than �, a simpler statement may exist. m-reducibility is the tool which allows us to

find such lower bounds. In the following we conflate defining relations with the sets

they define, when convenient and unambiguous.

Definition 1.6 (Post, 1944). We say a set B is many-one reducible (or m-

reducible) to a set A (denoted B m A) if and only if there is a computable function

f such that for all x 2 N,

x 2 B () f(x) 2 A.

Definition 1.7. A set A is ⌃0
n-complete if A 2 ⌃0

n and X m A for every set

X 2 ⌃0
n. The notion of ⇧0

n-complete is similarly defined.

1.3.3 Index Sets

We will frequently build m-reductions in the following text when we seek to

establish the exact complexity of a property or set. To aid us in this, there is a

collection of sets with well-known complexity. The most famous of these is the halting

set, the set counterpart to the halting problem in Section 1.3.1. Since the halting

problem is undecidable, K is of a higher complexity than ⌃0
0 = ⇧0

0 = �0
1.

8



Definition 1.8. (Index set)

1. A computable index for a structure A is a number e such that 'e is the

characteristic function of the atomic diagram of A.

2. For a class, C, of structures, the index set, denoted I(C), is the set of computable

indices for elements of C.

Definition 1.9. (Common index sets)

FIN = {x | Wx is finite}

INF = {x | Wx is infinite}

TOT = {x | 'x is total} = {x | Wx = !}

COF = {x | Wx is cofinite}

REC = {x | Wx is recursive/computable}

Theorem 1.4 (Rice’s Theorem).

If A is an index set, other than ; or N, then K m A or K m A. Hence, every

nontrivial index set is incomputable.

Rice’s theorem gives us a lower bound for the complexity of the common index

sets: they are all at least ⌃0
1 sets. The following result states the precise complexity

of each set, which are obtained through m-reductions.

Theorem 1.5. (Complexities of common sets)

1. The set K is ⌃0
1-complete.

2. The set FIN is ⌃0
2-complete.

3. The set INF is ⇧0
2-complete.

9



4. The set TOT is ⇧0
2-complete.

5. The set COF is ⌃0
3-complete.

6. The set COF is ⇧0
3-complete.

7. The set REC is ⌃0
3-complete.

A diagram of the arithmetical hierarchy with the placement of these sets can be

found in Figure 1.1.

We also make use of Ershov’s hierarchy, or the di↵erence hierarchy. A set S is

d-c.e. if it is the di↵erence of two c.e. sets, i.e., if S = S1 � S2 where S1 and S2 are

⌃0
1 sets. We can extend this definition to the n-c.e. sets where S = S1 � S2 is n-c.e.

if it is the di↵erence of a ⌃0
1 set S1 and a (n � 1)-c.e. set S2. We can also relativize

this definition to get the d � ⌃0
n sets where the component sets are ⌃0

n sets rather

than ⌃0
1 sets.

1.4 Computable Structure Theory

At times, the first-order logic is insu�cient for our purposes. Then we turn to

the computable infinitary formulas. We write
!

S to denote disjunction and !S to

denote conjunction over the (possibly infinite) set S. Computable infinitary formulas

allow disjunctions and conjunctions over computable sets S but only finite strings of

quantifiers. Unlike for first order logic, there is no prenex normal form, but negation

can be brought inside the connectives so we have the following classification.

We provide an abridged, intuitive definition of ⌃↵/⇧↵ formulas. A computable

ordinal ↵ is one with the same order type as some computable well-ordering. All

such ordinals have a notation in Kleene’s O, the set of ordinal notations. The exact

definition is given by recursion on computable ordinals and can be found in [3].

10
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Figure 1.1: The arithmetical hierarchy and complexities of some common sets
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Definition 1.10.

1. The computable ⌃0 (which are equivalent to the computable ⇧0 formulas) are

the finitary quantifier-free formulas.

2. For a computable ordinal ↵ > 0,

(a) a computable ⌃↵ formula '(x̄) has the form

!
i2I(9ūi)  i(x̄, ūi)

where each  i is a computable ⇧� formulas for some � < ↵ and the

disjunction is c.e.,

(b) a computable ⇧↵ formula '(x̄) has the form

!i2I(8ūi)  i(x̄, ūi)

where each  i is a computable ⌃� formulas for some � < ↵ and the

conjunction is c.e.

Theorem 1.6 (Ash, [3]). The relations defined in a countable structure A by a

computable infinitary ⌃↵ (or ⇧↵) formula is ⌃0
↵ (or ⇧0

↵, respectively) relative to the

atomic diagram of A.

1.5 Decision Problems on Groups

One of the first undecidable problems in mathematics was the word problem,

which asks: for a finitely presented group, can we decide whether or not two words

in the generators represent the same element. This problem was posed before the

development of computability theory, in 1911 by Max Dehn, along with the conjugacy

12



problem and the group isomorphism problem. The word problem for groups was shown

to be undecidable independently by Pyotr Novikov in 1955 and William Boone in

1958.

In Chapter 2, we will study decisions problems of Markov properties for the class

of recursively presented groups, an example of which is the word problem. Recursively

presented groups are those which are described by a computable set of generators and

for which there is an algorithm for enumerating the (possibly infinitely many) relators.

We establish that in this class detecting a Markov property is ⇧0
1-hard. Then we turn

to studying a number of Markov properties at higher levels.

In Chapter 3 we perform a similar analysis on the class of computable groups,

those with decidable word problem. We conclude that detecting a Markov property

is ⇧0
1-hard, and then consider a variety of specific group properties at higher levels.

Finally, in Chapter 4, we abstract the main results of the previous chapters, to

determine the lower bound for detecting a Markov property in the class of computable

relational structures. A relational structure is a structure with only relation symbols

in its signature, that is, no function and constant symbols. We spend the rest of the

chapter applying this result to various classes of relational structures.

13



Chapter 2

The Class of Recursively Presented

Groups

2.1 Preliminaries

We begin by considering detection of Markov properties in the class of recursively

presented groups, a class which contains both finitely presented and computable

groups. While detection problems on finitely presented groups have been well studied

(see [40], [14], [33], [31]), recursively presented groups have been less so, despite

common groups such as the additive group of rational numbers properly falling into

this class. Here we give a deeper treatment to this question.

Definition 2.1. A group G is said to be recursively presented if it is described by a

computable set of generators and there is an algorithm for enumerating the (possibly

infinitely many) relators. We will denote such a presentation:

hx0, x1, . . . | R0, R1, . . .i.

A remark: literature in computable model theory refers to what we will later call
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computable groups as recursive groups. This is not what is meant here by recursively

presented groups, which are generally not recursive, and not even necessarily isomorphic

to computable groups. Only the relator enumerating algorithm of recursively

presented groups is computable.

In fact, the set of generators can be made computable, not just computably

enumerable, but the latter is usually su�cient for our purposes. If a group has

presentation

hx0, x1, . . . | R0, R1, . . .i,

where the set of generators is computable and we can computably enumerate the

relators R0, R1, . . ., perform a variant of Craig’s trick, as described in [13], to find

a presentation with a computable set of relators. First, add a generator, t, to the

presentation and make it equivalent to the identity by enumerating it into the relators:

ht, x0, x1, . . . | t, R0, R1, . . .i.

Then we pad each each Ri with si many t’s by taking Ritsi as a relator, where si is

the stage at which Ri is enumerated by the computable algorithm for the relators.

The presentation

ht, x0, x1, . . . | t, R0t
s0 , R1t

s1 , . . .i

gives the same group, since the copies of t will cancel out, leaving the content of Si, as

the relation Ri. Furthermore, it is a presentation with a computable set of relators,

not just computably enumerable. Given a relation in the group, it will have form Str.

To decide if it is in the relators, run the original enumeration algorithm for r steps. If

S has been enumerated, it is among the relators, if it has not, it will never be among

the relators.
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Definition 2.2. (Markov property) A property, P , of groups is Markov for the class

of recursively presented groups if there is a recursively presented group G+ so that

G+ |= P , and there is a recursively presented group, G�, so that for any recursively

presented group H, if G� ,! H then H 6|= P . Note that this also means G� 6|= P .

We call G+ a positive witness for the Markov property, and G� a negative witness

for the Markov property.

Most interesting group properties are either Markov or are the negation of a

Markov property. An example of a property which is neither Markov, nor co-Markov

is the property of being Hopfian.

Definition 2.3. Let � be a complexity class (for example, in the arithmetical hierarchy),

C the class of recursively presented groups, and A an index set for the collection of

recursively presented groups with Markov property P . That is A ✓ I(C). We say

detecting P is:

1. � within the class of recursively presented groups, if there is a set C in the

complexity class � such that A = C \ I(C).

2. �-hard in the class of recursively presented groups, if for any set S in �, there

is a computable function f : ! ! I(C) such that f(n) 2 A if and only if n 2 S.

3. �-complete in the class of recursively presented groups if P is � and �-hard in

the class of recursively presented groups.

For example, let A be the set of all indices of computable groups, and P the

property “abelian.” This property is described by the ⇧0
1 formula 8x8y(xy = yx), so

the corresponding detection problem is ⇧0
1 in the class of computable groups. Later

(Corollary 3.2.1) we will see that it is ⇧0
1-complete.

We use standard computability-theoretic notation throughout. Recall that the

eth partial computable function on the natural numbers in some fixed, acceptable
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enumeration of Turing machines by 'e, and its domain by We. The set We,s is the

sth finite approximation of We, and we may assume throughout that for every s the

cardinality |We,s+1 �We,s| is at most one.

2.1.1 Group Theory

We use standard notation from group theory. The free group on the generators of

a group G will be denoted FG. The symmetric group on a set of n elements will be

denoted Sym(n), rather than Sn, which is more typical.

The free product of groups A and B is the group whose elements are of the form

a1b1a2b2 . . . arbr where all ai 2 A, all bi 2 B, and the group operation is concatenation

followed by reduction. The free product will be denoted A ⇤ B, as usual. The direct

product of groups A and B is the group on the set of the cartesian product of A and

B, for which the binary operation is defined component-wise. The direct product will

be denoted A⇥ B, as is standard.

When a product of countably infinitely many groups is constructed in the following

text it will always the direct sum of the groups. That is, all but finitely many entries

in each infinite tuple are the component appropriate identity.

A more unusual group product which will be particularly useful to us is the wreath

product.

Definition 2.4. (Wreath product) For groups G and H and the left group action ⇢

of H on a set ⌦, the regular wreath product of G by H is the semidirect product

G⌦ oH where G⌦ is the direct product of |⌦|-many copies of G. The regular wreath

product is denoted G oH.

For an introduction to the wreath product, refer to [44].

Here we provide pictures of two wreath products as some background and justifi-

cation for the the results we use.
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Example. Consider the wreath product Q oD where Q = Sym(2) and D = Sym(3).

Let � = {1, 2, 3} viewed as a D-set. The base of the wreath product is

K = ⇧�2�Sym(2)� ⇠= (Sym(2))3 = Sym(2)⇥ Sym(2)⇥ Sym(2)

with the standard component-wise operations.

Next we must define the action of D on the set K, that is, how elements of Sym(3)

permute components of ⇧�2�Sym(2)�. We define the action ' by

' : dq� = qd� for all d 2 D, q 2 Q, and � 2 �,

where d� is the left action of d on �.

We can also express the action of Q on K by tuples where q� is (q, �) and

d : (q, �) 7! (q, d�).

For example, if q� = ((12), 2) and d = (123), then dq� = qd� = ((12), 3), that is,

the element (12) from Sym(2), is moved from the second component of a triple in

(Sym(2))3 to the third component.

Finally, the wreath product is the group

Sym(2) o Sym(3) = ⇧�2�Sym(2)o' Sym(3)

= {(u, x) : u 2 ⇧�2�Sym(2), x 2 Sym(3)}

with operation

(u, x)(v, y) = (yvx
�1
, xy) = (u(x�1v), xy)

in your preferred left action notation.
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For example,

((1, (12), 1), (123))((1, 1, (12)), (12)) = ((1, (12), 1)(1, (12), 1), (123)(12)) = ((1, 1, 1), (13)).

Example. We can also view the wreath product Q oD as a subgroup of Sym(⇤⇥�)

where ⇤ and � are the set being acted on by Q and the set being acted on by D,

respectively.

Again consider Q = Sym(2) and D = Sym(3). Let ⇤ = {a, b} and � = {1, 2, 3}.

Then Q oD ⇠= W , where

W = hD⇤, Q⇤
� : � 2 �i  Sym(⇤⇥�)

the subgroup of Sym(⇤⇥�) generated by sets of permutations D⇤ and Q⇤
�.

Define the sets of permutations

Q⇤
� = {q⇤� : q 2 Q}

for each � 2 �, where q⇤� : ⇤⇥� 7! ⇤⇥� is defined by

q⇤� (�, �
0) =

8
>><

>>:

(q�, �0) if �0 = �

(�, �0) if �0 6= �.

That is, a permutation that only works on “matching” second coordinates. In the

diagrams below, this can be visualized as an inner permutation.

For example, consider q⇤� in Q⇤
� for the only non-trivial element of Sym(2), that

is q = (ab) and � = 2. Then

q⇤� (a, 2) = (qa, 2) = ((ab)a, 2) = (b, 2),
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but q⇤� (a, 3) = (a, 3) because � 6= 3.

We define D⇤ = {d⇤ : d 2 D}, as a set of permutations d⇤ : ⇤ ⇥ � 7! ⇤ ⇥ �,

where d⇤(�, �) = (�, d�).

For example, let’s consider d⇤ in D⇤ for the permutation d = (123) and the element

(�, �) = (a, 2) of ⇤⇥�. Then d⇤(a, 2) = (a, (123)2) = (a, 3).

The following diagrams give some visualization of this interpretation of the wreath

product.

Example. Symmetric groups.

0

3 2

1

a1 b1

a2

b2

b3

a3

Figure 2.1: Graph � with automorphism group Sym(2) o Sym(3).

Consider the automorphisms of graph �, Aut(�). Any ' 2 Aut(�) must satisfy

the following conditions:

• ' fixes the vertex 0,

• it permutes the “inner ring” of vertices, � = {1, 2, 3}, and

• for each i, either

– '(ai) = a'(i) and '(bi) = b'(i), or

– '(ai) = b'(i) and '(bi) = a'(i).
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We can see that the “outer ring” is {ai, bi : i 2 �}, which is in correspondence

with ⇤⇥�, and that Sym(3) acts on � = {1, 2, 3} and Sym(2) acts on ⇤ = {a, b}.

Thus, it is easy to conclude that this automorphism group is in fact the wreath product

Sym(2) o Sym(3).

3 2

1

a1 b1

c1

a2 b2

c2

a3 b3

c3

Figure 2.2: � with automorphism group Z3 o Z3.

Example. A similar analysis of this diagram as in the previous example, will lead

to the conclusion that its automorphism group are Z3 oZ3. Furthermore, all elements

are of order divisible by 3. In fact, the subgroup of such automorphism is exactly all

the elements of order 3n.

It is known that for any prime p the regular wreath product Zp oZp is isomorphic

to the Sylow p-subgroup of Sym(p2) and has nilpotency class p [25].

We will also periodically reference the Prüfer groups, denoted Z(p1). The Prüfer

group is the quotient group Q/Z, where, for a fixed prime p, Q is the additive group

of those rational numbers whose denominators are powers of p. This group is also

known as the p-quasicylic group. For an exploration of these groups, see [26].

A group is solvable if it has a normal series such that each normal factor is Abelian.

A useful collection of solvable groups are the free solvable groups of rank 2 and class
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n, denoted F2/F
(n)
2 , which is the quotient of the free group on 2 generators, F2, and

the n-th derived subgroup of F2, F
(n)
2 . The derived subgroup of F2 is F (1)

2 = [F2, F2],

and the n-th derived subgroup of F2 is defined recursively by F (n)
2 = [F (n�1)

2 , F (n�1)
2 ].

This collection of groups of was shown to be uniformly computable by Myasnikov,

Romankov, Ushakov, and Vershik in [42].

Some element level notational conventions that we will employ include: denoting

the commutator, x�1y�1xy, of elements x and y from group G, by [x, y]; and using

=G to denote equality in the group G.

It should be noted that in a recursively presented group, equality is not generally

a computable predicate, but it is definable by a computable infinitary ⌃1 formula.

To see this, first observe that words in FG which evaluate to the identity in group G

can be algorithmically enumerated. So when we write w =G v for some w, v 2 FG,

we mean: !
s2N

(wv�1
2 1G,s),

where 1G,s is the s-th finite approximation of the set of words in FG which evaluate

to the identity in G.

As a consequence, inequality is a ⇧0
1 predicate.

2.2 General Result and Applications

Here we consider the complexity of detecting an arbitrary Markov property in the

class of recursively presented groups.

Theorem 2.1. Let P be a Markov property for recursively presented groups. Then

detection of P is ⇧0
2-hard in the class of recursively presented groups.

Proof. We reduce the index set of the infinite c.e. sets, INF = {e : |We| = @0}, to

the detection of P .
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Let

G+ = hx0, x1, . . . |R0, R1, . . .i = hx | R(x)i

and

G� = hy0, y1, . . . |S0, S1, . . .i = hy | S(y)i

be groups witnessing that P is Markov for recursively presented groups with G+ ✏ P

and G� 6✏ P . For each e 2 N, we give a recursive presentation of a group Ge such

that Ge has property P if and only if e 2 INF .

We will need countably many distinct copies of the presentation of G�, so we

write

G�(yi) = hyi,0, yi,1, . . . |S0, S1, . . .i = hyi | S(yi)i

to specify distinct generating sets.

Construction.

Stage 0. Begin by setting

Ge,0 = G+ ⇤G�(y0) ⇤G�(y1) ⇤ · · · = hx,y0,y1, . . . | R(x),S(y0),S(y1), . . .i,

for every e and ne = 0.

Stage s+1. Let e  s. We begin this stage with the presentation Ge,s = Ge,0 if ne = 0.

Otherwise, by previous stages of the construction, we have

Ge,s = hx,y0,y1, . . . | y0,y1, . . . ,yn�1,R(x),S(y0),S(y1), . . .i.

If We,s+1 �We,s is empty, set Ge,s+1 = Ge,s. Otherwise, set

Ge,s+1 = hx,y0,y1, . . . | y0,y1, . . . ,yn�1,yn,R(x),S(y0),S(y1), . . .i,
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and increment ne by 1.

End of construction.

Let Ge be the lims!1 Ge,s.

Clearly, for every e, Ge is a recursively presented group.

If We has finite cardinality ne, then Ge is the group with presentation

Ge = hx,y0,y1, . . . | y0,y1, . . . ,yn�1,R(x),S(y0),S(y1), . . .i,

which is a presentation of G+ ⇤G� ⇤G� ⇤ · · · , which obviously contains a subgroup

G� and thus does not have property P .

If We is infinite, the presentation resulting from the construction is

Ge = hx,y0,y1, . . . | y0,y1, . . . ,R(x),S(y0),S(y1), . . .i,

which is isomorphic to G+ and so does have property P .

We have now established that no Markov property is algorithmically detectable

in the class of recursively presented groups. It follows that detection of any Markov

property that can be characterized by a finitary ⇧0
2 formula, or a by a computable

infinitary ⇧2 formula, is a ⇧0
2-complete decision problem. (See Section 1.4 for the

definition of computable infinitary formulas.)

Recall that equality is a ⌃0
1 predicate and hence not computable in the class of

recursively presented groups. Also, recall that for group G we write =G, FG, and 1G

to respectively denote equality in the group, the free group on the generators, and

the group identity.

Corollary 2.1.1. Detecting the following properties is ⇧0
2-complete in the class of

recursively presented groups.
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1. Being abelian.

2. Being torsion-free.1

3. Being trivial.

4. Being divisible.

5. Being a torsion group.

Proof. The proof for each property requires two components in order to satisfy

Theorem 2.1: (i) verification that the property is Markov for the class of recursively

presented groups, and (ii) a ⇧0
2 defining formula for a group G satisfying the property.

1. Abelian groups are those which satisfy the formula:

8w 2 FG 8v 2 FG (wv =G vw),

which is ⇧0
2 as =G is a ⌃0

1 predicate. Set G+ = hx | i and G� = hx, y | i and

apply Theorem 2.1.

2. Torsion-free groups are characterized by the formula:

8w 2 FG

⇣
!

n2N
(w =G 1G _ wn

6=G 1G)
⌘
,

which is computable ⇧2 (again because =G is a ⌃0
1 predicate). Set G+ = hx | i

and G� = hy | y2i and apply Theorem 2.1.

3. The characterizing formula for triviality is

8w 2 FG (w =G 1G),

1
This result was shown by Lempp [31] in 1997. His approach uses more sophisticated

combinatorial group theory.
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which is ⇧0
2. Let G+ = hx | xi and G� = hy | i and apply Theorem 2.1.

4. A group is divisible if and only if

8w 2 FG

⇣
!

n>0
(9v 2 FG (w =G 1G _ vn =G w))

⌘
,

which is computable ⇧2. Set G+ = hx1, x2, . . . | x
p
1 = 1G+ , x

p
2 = x1, x

p
3 = x2, . . .i,

the Prüfer group, Z(p1), for some prime p, and G� = hx | i and apply Theorem

2.1.

5. Torsion groups are characterized by the formula:

8w 2 FG

!
n2N

(wn =G 1G),

which is computable infinitary ⇧2. Set G+ = hx | x2
i and G� = hy | i and

apply Theorem 2.1.

2.3 Results at Higher Levels

Many interesting Markov properties do not have descriptions at the ⇧0
2 level, so the

result in Theorem 2.1 is insu�cient to precisely determine their complexity. In this

section we analyze a selection of group-theoretic properties. While the properties

studied are Markov for the recursively presented groups, we seldom use the full

abstract definition because we can draw on concrete witnesses.

2.3.1 Finite Groups

We take group finiteness to mean the group is a finite group.
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Theorem 2.2. Detecting finiteness is ⌃0
3-complete in the class of recursively presented

groups.

Proof. A characterizing computable infinitary ⌃3 formula is

!
n2N

9(w1, . . . , wn) 2 [FG]
n
8v 2 FG (v 2G {w1, . . . , wn}),

where 2G stands for the ⌃0
1 formula saying that v is equal, in G, to one wi.

Recall the definition of the set COF = {e 2 N : |We| < @0}, which is a ⌃0
3-

complete set. To show ⌃0
3-completeness of detecting finiteness, we reduce COF to

this detection problem. We construct a sequence of groups Ge such that Ge if finite

if and only if e 2 COF .

Construction

Stage s = 0. For all e 2 N, initialize

Ge,0 = hx0, x1 . . . | [xi, xj], x
2
i , for all i, j 2 Ni,

where [x, y] = x�1y�1xy the commutator. That is, Ge,0
⇠= Z!

2 .

Stage s+1. In this stage we enumerate generators of Ge,s into the relators, for all

e  s, based on the enumeration of We.

If We,s�1 = ;, we begin this stage with Ge,s = Ge,0. If We,s = ;, set Ge,s+1 = Ge,s

and proceed to the next stage. Otherwise, if k 2 We,s, set

Ge,s+1 = hx0, x1 . . . | xk, [xi, xj], x
2
i , for all i, j 2 Ni

and proceed to the next stage.

If we have already enumerated elements into We,s at a previous stage, we begin

with

Ge,s = hx0, x1 . . . | xk for k 2 We,s; [xi, xj], x
2
i , for all i, j 2 Ni.
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If We,s+1 �We,s = ;, we set Ge,s+1 = Ge,s and proceed. Otherwise, if

ks+1 2 We,s+1 �We,s, enumerate xks+1 into the relators and proceed to the next stage

with Ge,s+1 = hx0, x1 . . . | xk for k 2 We,s+1; [xi, xj], x2
i , for all i, j 2 Ni.

End of construction.

Let Ge = lims!1 Ge,s.

Then the resulting groups have presentations

Ge = hx0, x1 . . . | xk for k 2 We; [xi, xj], x
2
i , for all i, j 2 Ni.

Observe, if We is finite of cardinality n, Ge
⇠= Zn

2 , a finite group. If We is not

cofinite, Ge
⇠= Z!

2 and is infinite.

2.3.2 Cyclic Groups

Theorem 2.3. Detecting whether a group is cyclic in the class of recursively presented

groups is ⌃0
3-complete.

Proof. The property of being cyclic is characterized by the computable infinitary ⌃3

formula:

9w 2 FG 8v 2 FG

!
n�1

(v =G 1G _ wn =G v).

For completness we reduce COF to the detection problem as follows. We use the

fact that the product of cyclic groups Zn and Zm is cyclic if and only if n and m are

relatively prime. Let pn be the nth prime number.

Construction.

Stage 0. Begin with

Ge,0 = hx0, x1, . . . | xp0
0 , xp1

1 , . . . ; [xi, xj] for i, j 2 Ni

Stage s+1. If We,s+1 �We,s is empty, set Ge,s+1 = Ge,s.
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If n 2 We,s+1�We,s, add xn to the relators of Ge,s and take that as the presentation

for Ge,s+1.

End of construction.

Let Ge = lims!1 Ge,s.

If the setWe is cofinite, all but finitely many of the generators are “killed o↵” in the

construction and we have a recursive presentation for a group that is a finite direct-

product of cyclic groups of relatively prime orders. Otherwise, Ge is a recursively

presented group that is isomorphic to an infinite direct product of the cyclic groups

referenced above, and so is itself not cyclic.

2.3.3 Nilpotent and Solvable Groups

We use nilpotency to mean that a group has the property of being nilpotent.

Theorem 2.4. Detecting nilpotency is ⌃0
3-complete in the recursively presented groups.

Recall that a group G is nilpotent if it has a central series of finite length. Consider

the lower central series of G:

G = G0 � G1 � . . . � Gn = {1G}

where G0 = G, and Gi+1 = [Gi, G] for each i  n. The finiteness of this series can be

expressed as a computable infinitary ⌃3 formula:

!
n2N

8~g 2 Gn
�
[[. . . [[g0, g1], g2], . . .], gn] =G 1G

�
,

where [x, y], as usual, denotes the commutator. The (unique) length of the central

series for any group is called the nilpotency class of the group.
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For completeness, we build a presentation for a group Ge that is nilpotent if and

only if We is cofinite.

Let {Hn}n2! be a sequence of uniformly recursively presented nilpotent groups

such that for each n, Hn+1 has nilpotency class greater than that of Hn. For example,

we can take Hn to be Zpn o Zpn , the wreath product of the group of integers modulo

the nth prime by itself.

The full definition of the wreath product can be found in Definition 2.4. It is

known that for any prime p the regular wreath product Zp o Zp is isomorphic to the

Sylow p-subgroup of Sym(p2) and has nilpotency class p [25]. Since these groups are

finite, they have finite presentations. Thus for each n we can take a finite presentation

for Hn, namely

Hn = hxn,1, . . . , xn,kn | Rn,1, . . . , Rn,jni for some kn, jn 2 N.

We use these finite presentations in the proof of theorem 2.4.

Proof of Theorem 2.4. Detecting nilpotency is ⌃0
3 by the computable infinitary ⌃3

defining formula given above. To show completeness we reduce COF to detecting

nilpotency.

Construction.

Stage 0. For all e 2 N, begin with

Ge,0 =
M

n2!
Hn

given by the following recursive presentation, for all j, k,m, n 2 N,

ham,k for k  km | Rm,j for j  jm; [an,k, am,j] for n 6= mi.
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Stage s+1. Consider each e  s + 1. When n 2 We,s+1 � We,s, enumerate all the

generators of Hn into the relators of Ge,s and take that as the presentation for Ge,s+1.

If We,s+1 �We,s = ;, do nothing.

End of construction.

Let Ge = lims!1 Ge,s.

The construction yields a recursive presentation of group Ge. If e 2 COF , Ge

is the direct product of finitely many nilpotent groups, and thus itself nilpotent. If

e /2 COF , we have a group that is residually nilpotent but not nilpotent since it

contains subgroups of arbitrarily large nilpotency class.

The following corollary follows directly from the proof.

Corollary 2.4.1. Detecting a nilpotent group is ⌃0
3-complete in the class of recursively

presented residually nilpotent groups.

Corollary 2.4.2. Determining whether a recursively presented group is finitely

presentable is ⌃0
3-complete.

Proof. ⌃0
3-hardness follows immediately from the proof of Theorem 2.4, since Ge is

finitely presentable if and only if e 2 COF .

For a characterization of being finitely presentable, let

G = hx1, x2, . . . | R1, R2, . . .i.

We write g(x) for a finite sequence of words in the generators and their inverses,

{x±
i }i2N, w(g) for a word on the elements of g and their inverses, and w(g) for a

sequence of such words.

Then group G is finitely presentable if and only if the following ⌃0
3 formula holds.

(9g(x) 2 F<!
G )(9w(g) 2 Fg)(8h 2 FG)(8u, v 2 FG)(8s, t 2 N)(9s0, t0 2 N)
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[(h =G v) ^ (u 2 1G,s =) u 2 1g,s0) ^ (v 2 1g,t =) v 2 1G,t0)]

The result follows.

Theorem 2.5. Detecting a solvable group is ⌃0
3-complete in the class of recursively

presented groups.

Proof. A group G is solvable if its derived series is finite. That is, there is an n 2 N

such that

G = G0 � G1 � · · · � Gn = {1G},

where Gi+1 = [Gi, Gi] for each i < n. In the first-order logic, this can be expressed as

!
n2N

8~g 2 G2n [[. . . [[g1, g2], [g3, g4]], . . .], [. . . , [[g2n�3, g2n�2], [g2n�1, g2n ]] . . .]] =G 1G.

This is an infinitary ⌃3 formula (as the equality of the iterated commutator is ⌃0
1).

The (unique) length of the derived series for any group is called the solvability

class of the group.

To show completeness, we follow the construction in Theorem 2.4. We enumerate

a presentation of group Ge, which is isomorphic to a direct product of finitely many

solvable groups, and thus itself solvable, when e 2 COF . If e /2 COF , Ge will contain

subgroups of arbitrarily large solvability class.

For each n 2 N, let Hn be the free solvable group of rank 2 and solvability class

n. That is, Hn will be the quotient of the free group F2 by its nth derived subgroup.

Then Hn is uniformly computable in n [42], and so has a recursive presentation.

As in the construction for Theorem 2.4, for each e 2 N we begin with a presentation

of the direct sum

Ge,0 =
M

n2N

Hn.

Whenever n 2 We,s+1 �We,s, we enumerate the generators of Hn into the relators of

our presentation of Ge.
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If e 2 COF , Ge has solvability class max(We), and is otherwise residually solvable

but not solvable.

This corollary follows immediately from the proof.

Corollary 2.5.1. Detecting a solvable group is ⌃0
3-complete in the class of recursively

presented residually solvable groups.

2.3.4 The Word Problem

We have predominantly considered algebraic properties of groups. That is, those

properties that are concerned with the group operation. Let us turn our attention

to more general Markov properties. Here we consider the Dehn’s Word Problem and

Conjugacy Problem, which are decision problems concerned with equality rather than

an operation. (The Isomorphism Problem, the third of Dehn’s group theory decision

problems, is not always easily described in the first-order logic and since we have not

developed the necessary machinery it will not be analyzed here.) The detection of

both of these properties falls at the ⌃0
3 level.

Theorem 2.6. Detecting a group with a decidable word problem is ⌃0
3-complete in

the class of recursively presented groups.

Proof. Let G be a recursively presented group. The property G has a decidable word

problem is characterized by the computable infinitary ⌃3 formula:

!
e2N

8w 2 FG

!
s2N

['e,s(w) # ^ ('e,s(w) = 1 () w =G 1G)].

For completeness, consider

Ge = ha, b, c, d | akbak =G ckdck, k 2 Wei.
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If the predicate k 2 We is decidable, then Ge has a decidable word problem since

the set of relators is a computable set. Similarly, if k 2 We is not a decidable predicate,

then Ge does not have a decidable word problem. Since the predicate k 2 We being

decidable is equivalent to We being a computable set we can instead say that the

group Ge has a decidable word problem if and only if e is in the ⌃0
3-complete set

REC = {e 2 N | We is computable}.

2.3.5 Future Work

Our results on the detecting Markov properties in the class of recursively presented

groups are summarized in Figure 2.3.

Theorem 2.7. Detecting a group with a decidable conjugacy problem is ⌃0
3 in the

class of recursively presented groups.

Proof. The conjugacy problem can be characterized most naturally as follows:

!
e2N

8u, v 2 FG

!
s2N

['e,s(u, v) # ^('e,s(u, v) = 1 () 9w 2 FG(wuw
�1 =G v))].

Rewriting in prenex normal form yields an equivalent formula which is clearly ⌃0
3:

!
e2N

8u, v 2 FG !
t22N

8w2 2 FG

!
t12N

9w1 2 FG

!
s2N

h
('e,s(u, v) #)^

('e,s(u, v) = 1 =) w1uw
�1
1 =G,t1 v) ^ ('e,s(u, v) 6= 1 =) w2uw

�1
2 =G,t2 v)

i

where we write “w =G,s v” for “wv�1
2 1G,s.”

This is only a partial characterization of detecting a decidable conjugacy problem

in the class of recursively presented groups. A sharp result would follow from the
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following argument. Theorem 2.6 gives us the exact complexity of picking computable

groups out of the recursively presented groups, since the property of having a decidable

word problem is equivalent to having a computable atomic diagram and is, in fact,

often what is taken as the definition of the latter. The complexity of detecting a group

with a decidable conjugacy problem from the class of computable groups is also ⌃0
3 as

the complexity of the defining relation does not decrease in the class of computable

groups. Thus, if we were to obtain a sharp result in the class of computable groups,

it would follow for the class of recursively presented groups. This follows because the

intersection of two ⌃0
3-complete sets is ⌃0

3-complete.
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Property Class of r.p. groups

Markov property ⇧0
2-hard

Abelian ⇧0
2-complete

torsion-free ⇧0
2-complete

trivial ⇧0
2-complete

divisible ⇧0
2-complete

torsion ⇧0
2-complete

totally left-orderable [5] ⇧0
2-complete

totally bi-orderable [5] ⇧0
2-complete

finite ⌃0
3-complete

decidable word problem ⌃0
3-complete

cyclic ⌃0
3-complete

nilpotent ⌃0
3-complete

solvable ⌃0
3-complete

Figure 2.3: Results in the class of recursively presented groups

36



Chapter 3

The Class of Computable Groups

3.1 Preliminaries

As was discussed in Chapter 2, recursively presented groups are a subset of the

class of groups. Specifically, they are the groups that have a presentation with

a computable set of generators and a set of relators that can be enumerated by

a computable function. In other words, they are c.e. groups. Further tightening

the computability restriction of the group descriptions gives a smaller subset: the

computable groups.

Definition 3.1. A group is computable if its domain is a computable set and the

group operation is computable.

Note that any computable group has a recursive presentation: you simply take

the computable domain as the set of generators and the computable atomic diagram

as the set of relators. The converse does not always hold.

Theorem 3.1 (Rabin, 1958). [43] A group has a computable copy if and only if it

has a recursive presentation and a decidable word problem.

Note that this means Theorem 2.6 determines the exact complexity of detecting

groups that are computable within the class of recursively presented groups.

37



We now turn to restructuring our question for the class of computable groups. We

once again ask:

Given a “nice” description of a group, how hard is it to determine if the

group has a property P?

In this chapter, the nice description of a group will be a computable copy and the

types of properties we consider will again be Markov properties, but for the class of

computable groups.

Definition 3.2. A property, P , of groups is Markov for the class of computable

groups if there is a computable group G+ so that G+ |= P , and there is a computable

group G� so that for any computable group H, if G� ,! H then H 6|= P . Note that

this implies G� 6|= P .

We call G+ a positive witness for the Markov property and G� a negative witness

for the Markov property.

As before, the hardness of property detection will be captured by the many-one

reducibility of the index sets for groups with the property. In computable structure

theory, recursive recognizability of a property amounts to the index set of groups

that exhibit that property being a computable set relative to the set of indices of all

computable groups.

Definition 3.3. Let � be a complexity class (say in the arithmetical hierarchy), C

the class of computable groups, and A an index set for the collection of computable

groups with (Markov) property P . That is, A ✓ I(C). We say detecting P is

1. � within the class of computable groups, if there is a set C in the complexity

class � such that A = C \ I(C).

2. �-hard in the class of computable groups, if for any set S in �, there is a

computable function f : ! ! B such that f(n) 2 A if and only if n 2 S.
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3. �-complete in the class of computable groups if P is � and �-hard in the class

of computable groups.

The same group theory which was used in Chapter 2 applies in this context, we

will not repeat it, but the reader is referred to Section 2.1.1.

3.2 General Results and Applications

Theorem 3.2. Let P be a Markov property for computable groups. Let G+ be an

infinite witness and G� a negative witness that P is Markov, as in Definition 3.2.

Then detection of P is ⇧0
1-hard in the class of computable groups.

Proof. Note that we can assume G� is infinite as it is a subgroup of the direct product

of itself with the (computable) additive group of integers, G� ⇥ Z; this product is

necessarily computable and fails to have property P by the definition of a Markov

property.

We use the computable atomic diagrams of G+ and G� to build, uniformly in e,

a computable atomic diagram of a group Ge such that

Ge
⇠=

8
>><

>>:

G+ if 'e(e) runs forever,

G+ ⇥G� if 'e(e) eventually halts.

If this strategy can be fulfilled, we will have

e 2 K () Ge ✏ P.

Since K is a ⇧0
1-complete set, it follows that detecting P is ⇧0

1-hard.

Take enumerations

G+ = hg0 = 1+, g1, . . .i
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and

G� = hh0 = 1�, h1, . . .i

without repetitions of the groups witnessing that P is Markov. The universe of Ge

will be N. We give a coding map h·i, and enumerate the atomic diagram in stages

below.

Construction.

Stage 0. Let h(g0, h0)i = 0 and add (0, 0, 0) to the atomic diagram, a triple of codes

indicating that

(g0, h0) ⇤ (g0, h0) = (g0, h0)

in the group Ge that we are constructing, for all e 2 N.

Stage s+1. Consider e  s + 1. This stage begins with the range of the coding map

for Ge,s being an initial segment of the natural numbers and a finite set of triples in

the atomic diagram of Ge,s. There are three cases.

1. 'e,s+1(e) ". Let i be the least index of an element of G+ for which (gi, h0) has

not yet been assigned a code, and assign to it the least available code. Then let

j be the least index of an element of G+ for which there exists a k  j such that

there is no tuple in the diagram of Ge,s indicating the product (gj, h0)⇤ (gk, h0).

For each such k  j, assign both (gjgk, h0) and (gkgj, h0) codes if necessary, and

add the corresponding triples to the diagram.

2. 'e,s+1(e) # but 'e,s(e) ". This is the exact stage at which e enters the halting

set. After we have executed this stage once, all subsequent stages will be of

case (3) type.

So far we have a partial diagram of a copy of G+ ⇥ {h0 = 1�}.

Now we begin to build G� in the second coordinate. Assign previously unused

natural number codes systematically to h(gi, h1)i for all i > 0 for which (gi, h0)
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has been assigned a code, and add triples to the diagram accordingly.

3. 'e,s(e) #. Here e entered the halting set at some previous stage. Let i and j

be the least indices for which (gi, h0) and (g0, hj) have not been assigned codes,

and assign them codes. Add all tuples of the form

(h(gu, hv)i, h(gx, hy)i, h(gugx, hvhy)i)

for u, x  i and v, y  j, where codes are assigned as needed, to the diagram of

Ge.

End of construction.

Let Ge = lims!1 Ge,s.

It is clear from the construction that the group is computable and that when

e 2 K, Ge
⇠= G+, and so has property P . If e 2 K, Ge

⇠= G+ ⇥ G�, and will fail to

satisfy P .

Corollary 3.2.1. Detection of the following properties is ⇧0
1-complete in the class of

computable groups.

• Being abelian.

• Being torsion-free.

Proof. The characterizing formulae of these properties as given in the proof of Corollary

2.1.1 become ⇧0
1, since equality (and inequality) is computable in the class of

computable groups. We need only verify that the witnesses to each property are

computable witnesses. Since both finite groups and free groups have computable

copies and free groups are infinite, we can take computable instances of the same

witnesses as in Corollary 2.1.1 and apply Theorem 3.2.
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Notice that not all the group-theoretic properties which follow from Theorem

2.1 in Corollary 2.1.1 hold in the class of computable groups. Being trivial is not

a Markov property in the class of computable groups; there is no infinite positive

witness to being a trivial group. Being divisible and being a torsion group are

still Markov properties; however, even without the ⌃0
1 equality predicate, they are

properties which can only be described by ⇧0
2 defining formulae, so Theorem 3.2 does

not apply. We will determine the exact complexity of detecting these properties in

the class of computable groups in the next section.

3.3 Results at Higher Levels

3.3.1 Torsion Groups

Theorem 3.3. The set of indices of torsion groups is ⇧0
2-complete in the class of

computable groups.

Proof. The formula:

8g 2 G
!
n�1

gn = 1G

is a computable infinitary ⇧2 formula characterizing torsion groups.

To show completeness, we reduce the ⌃0
2-complete set FIN of indices of finite sets

to the index sets of non-torsion groups. We construct for each e 2 !, a computable

abelian group Ge that is non-torsion if and only if We is finite. At each stage s, we

give a set Ge,s = {0, x±1, x±2, . . . , x±ks} of natural numbers indexed by integers as

the sth approximation of Ge. In the end, the universe of the group will be N.

The group we build will be isomorphic to a group of the form

Zn1 ⇥ Zn2 ⇥ · · ·⇥ Znk
⇥ · · ·
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if We is infinite, or of the form

Zn1 ⇥ Zn2 ⇥ · · ·⇥ Znk
⇥ Z

ifWe is finite, where Zm denotes Z/mZ. The values ni will be determined by the stages

that elements appear in the enumeration of We. For example, if the m-th element

appears at stage s and (m+ 1)-st element appears at stage t, then nm+1 = 2(t�s)+1.

Each of the xi’s will behave like a tuple of integers under coordinate-wise addition.

We will arrange that the inverse of xi is x�i for each i. To simplify discussion, we will

denote the tuple (the behavior of which is) assigned to the natural number xi by [xi].

So, for example, if the 17th and 18th elements added to the group are to “behave

like” (0, 1, 2) and (0,�1,�2), we would have [17] = [xj] = (0, 1, 2) and [18] = [x�j] =

(0,�1,�2) for some j, and observe that in our group, 17 + 18 = 0, since we will set

[0] = (0).

When we speak of computing sums of tuples of di↵erent lengths, we will assume

appended padding zeros at the end of the shorter tuple as necessary, i.e., (2, 3, 4) +

(1, 3, 0, 5, 6) = (3, 6, 4, 5, 6), modulo ni in the ith component. The length of a

tuple is the length of the sequence up to the last non-zero entry (e.g., the length

of (0, 2, 45,�11, 0, 0, . . .) is 4).

At any given moment in the construction, we will have an element x that has

not been assigned a finite order, so has the potential to wind up being a non-torsion

element in the end. Whenever a new element enters We,s, we assign a finite order to x

by declaring a multiple of it to be the identity in such a way that we do not interfere

with any sums previously declared. Any time we add a new element to the group, we

will assign it and its inverse names xi for some i 2 Z.

Let e 2 N, and assume the approximating sets We,s have |We,s+1 �We,s|  1.

Construction.
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Stage 0: For all e, we will use x0 = 0 as the identity for our groups, and begin the

construction with

Ge,0 = {x0 = 0, x1 = 1, x�1 = 2}

where [x0] = [0] = (0), [x1] = [1] = (1), and [x�1] = [2] = (�1). In what follows, we

generally conflate xi and [xi], and so speak of tuples “in” Ge,s.

Stage s+ 1: Consider all e  s. We begin this stage with

Ge,s = {x0, x±1, x±2, . . . x±ks},

and each of these is mapped to some finite tuple of integers via the square bracket

function. Let ne be the length of the longest tuples in Ge,s, and let me be the largest

positive value of the ne-th components of elements of Ge,s. There are two cases:

Case 1: We,s+1 �We = ;.

In this case, we extend Ge,s to Ge,s+1 by computing the coordinate-wise sums of

all pairs of tuples in Ge,s, and assign fresh xi’s to sums that are not already in Ge,s

as needed. Note that the value in the neth component of the resulting sums will be

no more than 2me and no less than �2me.

Case 2: We,s+1 �We 6= ;.

When this is the case, we need to introduce torsion. To do this, we extend Ge,s

to Ge,s+1 by adding sums of pairs of tuples in Ge,s using modulo 4me addition in the

neth component, but “shifted” by 2me from the usual notation. So, for example, if

me is 4, then we shall perform additions modulo 16, but shifted by 8 (so 5+7 is -4

rather than 12) to avoid having to change the square bracket function. In the end,

we have the values in the neth components between �2me and 2me � 1 only, and all

subsequent additions in this component will be carried out modulo 4me in the same

manner.

In Case 2, we also add two new tuples of length ne+1, (0, . . . , 0, 1) and (0, . . . , 0,�1)
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to Ge,s+1.

End of construction.

Let Ge =
S

s Ge,s.

We finish the proof of the theorem with a sequence of lemmas.

Lemma. Ge is a computable group.

Proof. It is clear that Ge is a group. To compute the sum of xj and xk, execute the

construction to the stage s where both values have been added to Ge,s. At stage s+1,

their sum will be defined (and will not be changed later).

Lemma. If e 2 FIN , then Ge has a non-torsion element.

Proof. If e 2 FIN , then there is a stage s so that We,s = We,s0 for all stages s0 � s.

From that stage on, only Case 1 in the construction will be executed, and the result

is a group isomorphic to

Zn1 ⇥ Zn2 ⇥ · · ·⇥ Znk
⇥ Z

for some {n1, . . . , nk} ⇢ N where k is the cardinality of We.

Lemma. If e 2 INF , then Ge is a torsion group.

Proof. If e 2 INF , then there are infinitely many stages s for which We,s 6= We,s+1

so the construction will execute Case 2 infinitely often.

Let x be a natural number that enters the group at stage s and [x] = (x1, x2, . . . , xn)

be of length n (so xn 6= 0). Note that for each i < n, the order of (0, . . . , 0, xi, 0, . . . , 0)

is determined by the stages t and t0, at which the (i� 1)-st and i-th elements entered

We; in particular, the order divides oi = 2(t
0�t)+1.
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Now let s0 > s be the least so that We,s 6= We,s0 . In this stage, Case 2 will be

executed, so the element (0, . . . , 0, xn) will have finite order that divides 2(s
0�s00)+1,

where s00 < s is the largest so that We,s00 6= We,s.

At the end of stage s0, the element x has finite order that divides o1o2 · · · on.

We have shown that e 2 INF if and only if Ge is a torsion group, and the proof

is complete.

3.3.2 Divisible Groups

Theorem 3.4. Detecting divisibility is ⇧0
2-complete in the class of computable groups.

Proof. For computable groups, the characterizing formula for divisibility is computable

infinitary ⇧2:

8g 2 G !
n�1

9h 2 G(g = 1G _ hn = g).

For completeness, we reduce INF, the ⇧0
2-complete set of indices of infinite

c.e. sets, to the index set of divisible groups. For each e we construct the atomic

diagram Me of a group Ge isomorphic to (Q,+) if e 2 INF, and isomorphic to some

non-divisible additive subgroup of Q otherwise.

The domain of the groupGe will be a computable copy of N, here labeled {g0, g1, . . .},

where each gi is the name assigned to some rational number [gi]. The atomic diagram

Me will be a set of triples (gi, gj, gk) where gk is the name assigned to the rational

number [gi] + [gj]. We construct the coding function [·] and the atomic diagram Me

in stages.

Construction.

Stage 0. For all e, assign names g0, g1, g2 to the rational numbers: [g0] = 0, [g1] = 1

and [g2] = �1. Begin the construction of the atomic diagram with all triples (gi, gj, gk)
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for which no new names must be defined. That is, Me,0 is the set of triples

{(g0, g0, g0), (g0, g1, g1), (g1, g0, g1), (g0, g2, g2), (g2, g0, g2), (g1, g2, g0), (g2, g1, g0)}.

Stage s+1. We begin this stage with

dom(Me,s) = {g0, g1, . . . , gns}

and some set of triples Me,s, for all e  s. Regardless of the enumeration of We,

extend Me,s to Me,s+1 by adding the triples (gi, gj, gk) for all gi, gj already in the

domain of Me,s, assigning new names, gk, as needed.

If We,s+1 �We,s = ;, do nothing.

If We,s+1 � We,s 6= ;, assign the least name gn which has yet to appear in the

construction to the rational 1
m+1 , where m = |We,s+1|. Proceed to the next stage.

End of construction.

Observe, by the construction Me and dom(Me) are computable.

If e 2 INF , the resulting group is a computable copy of (Q,+), a divisible group.

If e /2 INF , no element of the group is divisible by any n > ne = |We| and we have

a computable copy of the subgroup of Q generated by {1, 12 , . . . ,
1

ne+1}. The result

follows.

3.3.3 Nilpotent and Solvable Groups

We use nilpotency to mean that a group has the property of being nilpotent.

Theorem 3.5. Detecting nilpotency is ⌃0
2-complete in the class of computable groups.

Proof. For computable groups the characterizing formula for nilpotency is computable

infinitary ⌃2: !
n�2

8g 2 Gn [[. . . [[g0, g1], g2] . . .], gn] =G 1G,
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where [x, y] denotes the commutator x�1y�1xy.

For completeness, we reduce FIN , the ⌃0
2-complete set of indices of finite c.e. sets,

to the index set of the nilpotent computable groups. For each e we construct the

atomic diagram, Me, of a group Ge which is nilpotent if and only if e 2 FIN .

Let W (n) = Zpn oZpn , where o denotes the wreath product and pn is the n-th prime

number. Note that W (n) has nilpotency class pn and that it is finite. For a more

complete description of the wreath products of finite abelian groups see Definition

2.4 and the subsequent examples.

Our construction will yield a computable group Ge that is a direct product of the

additive group of integers and W (n)’s so that

Ge
⇠=

8
>><

>>:

Z⇥W (1)⇥ · · ·⇥W (n), if |We| = n,

Z⇥W (1)⇥ · · ·⇥W (n)⇥ · · · , if |We| = !.

If e 2 FIN , Ge will be nilpotent of class pn, and residually nilpotent otherwise.

The domain of the group Ge we construct will be {g0, g1, . . .}, a computable copy

of N, and we will approximate its diagram Me by finite extension. Simultaneously,

we build the isomorphism and, denoted by [gi], the tuple to which it corresponds. For

each n � 1, we write 1n for the identity in W (n).

Construction.

Stage 0. For all e, set g0 as the identity of Ge, that is, [g0] = (0, 11, 12, . . .). To begin

building a computable copy of the integers in the first component set

[g1] = (1, 11, 12, . . .) and [g2] = (�1, 11, 12, . . .). Begin the construction of the atomic

diagram with the set of triples for which no new names must be assigned. So Me,0 is

the set

{(g0, g0, g0), (g0, g1, g1), (g1, g0, g1), (g0, g2, g2), (g2, g0, g2), (g1, g2, g0), (g2, g1, g0)}.
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Stage s+1. We begin this stage with

dom(Me,s) = {g0, g1, . . . , gns}

and some set of triples Me,s. Consider all e  s.

First, extend Me,s with triples of the form (gi, gj, gk) for all gi, gj 2 dom(Me,s),

assigning new names, gk, as needed.

If We,s+1 �We,s = ;, do nothing.

IfWe,s+1�We,s 6= ;, let n = |We,s+1|. Assign fresh names, gj, to (0, 11, 12, . . . , w, 1n+1, . . .)

for each w 2 W (n), and add them to the domain. Note that there will be ppn+1
n � 1

such elements.

End of construction.

Let Me =
S

s Me,s.

The group Ge is computable by the construction and if e 2 FIN ,

Ge
⇠= Z⇥W (1)⇥ · · ·⇥W (n)

where n = |We|, and is a group of nilpotency class pn.

Otherwise, if e /2 FIN ,

Ge
⇠= Z⇥W (1)⇥ · · ·⇥W (n)⇥ · · · ,

which is a residually nilpotent, but not nilpotent group.
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Theorem 3.6. Detecting a solvable group is ⌃0
2-complete in the class of computable

groups.

Proof. First note that the description of being a solvable group from the proof of

Theorem 2.5 is a computable infinitary ⌃2 formula in the class of computable groups

as equality is a computable predicate.

The proof of completeness is essentially identical to the proof of Theorem 3.5

except that rather than using the finite groups W (n) in the construction, we use the

uniformly computable free solvable groups Hn = F2/F
(n)
2 , where F2 is the free group

on two generators, and F (n)
2 is the n-th group in its derived series. These groups are

infinite, so the construction involves routine dovetailing.

3.3.4 Cyclic Groups

Theorem 3.7. Detecting a cyclic group is 3-⌃0
2-complete in the class of computable

groups.

The following is easy to check.

Lemma. The 3-⌃0
2 sets are those of the form S1 [ (S2 � S3) where all Si are ⌃0

2.

Proof of Theorem 3.7. First we show the index set of cyclic groups is 3-⌃0
2 within the

class of computable groups. The usual characterization of a cyclic group (a group

generated by a single element) is not optimal in this context. Instead, we recall that

a group is cyclic if and only if one of the following things is true:

1. the group is generated by a single element of some finite order, or

2. the group is free and abelian.

The property of being a finite cyclic group can be expressed by the infinitary ⌃2

formula:
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!
n>0

9g 2 FG 8h 2 FG 9m  n(h =G 1g _ gm =G h).

An optimal sentence expressing the property of a computable group being free and

abelian was given by Carson et. al. in [9] to be d-⌃0
2.

The disjunction of these two formulas gives us a 3-⌃0
2 description of being cyclic.

For completeness, take any 3-⌃0
2 set S, where S = S1 [ (S2 � S3) and all Si are

⌃0
2. We will build a sequence of computable groups {Ge}e2! so that Ge is cyclic if and

only if e 2 S.

Our construction will result in a computable copy of (Q,+) if e /2 S. Otherwise

we build

h1,
1

2
, . . . ,

1

m
i  (Q,+),

which is a cyclic group isomorphic to (Z,+).

For each natural number e we will construct a map [·] : Q ! N assigning names in a

computable copy of N to elements of the additive group of rationals, and a computable

atomic diagram Me, consisting of triples which encode the group operation.

Any triple ([qi], [qj], [qk]) 2 Me will correspond to qi + qj = qk holding true for the

rationals qi, qj, qk.

For ease of discussion we introduce set D to keep track of which denominators

of rationals are introduced at each stage of the construction. Note: D is a set of

rationals, not of their names in our copy of Ge.

Construction.

Stage 0. Initialize the domain of the group as Ge,0 = {g0, g1, g2} where

[0] = g0, [1] = g1, and [�1] = g2.

Begin the construction of the atomic diagram with the set of triples for which no
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new names must be assigned. So Me,0 is the set

{(g0, g0, g0), (g0, g1, g1), (g1, g0, g1), (g0, g2, g2), (g2, g0, g2), (g1, g2, g0), (g2, g1, g0)}.

Then set D = {1}.

Stage s+1. We begin this stage with an initial segment Ge,s = {g0, g1, . . . , gm}, some

finite collection of triples Me,s, and the set D = {1, d1, . . . , dM}.

Regardless of the approximations of the component sets of S, assign names

gm+1 = [s+ 1] and gm+2 = [�(s+1)]. Assign codes to all the triples (gi, gj, gk) where

each of gi, gj, and gk are already in Ge,s+1 and the corresponding equality holds true.

Assign these codes in lexicographic order on the indices; for example, if (g7, g2, g12),

(g6, g12, g2), and (g7, g2, g6) first appear in this stage, and the next available code is N

we would assign h(g6, g12, g2)i = N , h(g7, g2, g6)i = N + 1, and h(g7, g2, g12)i = N + 2.

For every d1, d2 2 D, not necessarily distinct, add d1d2 to D. (For example, if

D = {1, 2, 3} we add 4, 6, and 9 to D.) Then there is a collection of p
q 2 Q, call it

K, so that:

1. p
q has yet to appear in the construction,

2. s < p
q < s+ 1 or �(s+ 1) < p

q < �s,

3. gcd(p, q) = 1, and

4. q is in the set D.

We define an ordering on these fractions so that p1
q1

�
p2
q2

if and only if

1. q1 < q2, or

2. q1 = q2, |p1| < |p2|, or

3. q1 = q2, |p1| = |p2|, p1 > 0 and p2 < 0.
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We then assign names gi to all these rationals, assigning the next available name

to the least fraction under this ordering, and so on. Finally, before turning to the set

S, we define all the triples (gi, gj, gk) so that gi, gj, gk have already been assigned and

if [ai] = gi, [aj] = gj, [ak] = gk then ai+aj = ak holds true in the rationals. We assign

names to these triples again in lexicographic order on the indices.

Then consider the computable approximations of the component sets of S; a

method of approximation for these sets is given in [3]. There are four cases:

1. e /2 S1,s+1 and e /2 S2,s+1.

2. e 2 S1,s+1.

3. e /2 S1,s+1 and e 2 S2,s+1 and e /2 S3,s+1.

4. e /2 S1,s+1 and e 2 S2,s+1 and e 2 S3,s+1.

At this point we have a collection of named elements {g0, g1, . . . , gN}.

If case 2 or 3 : take Ge,s+1 to be Ge,s union all new names assigned at this stage

and Me,s+1 to be Me,s union all the new triples. Proceed to the next stage.

If case 1 or 4 : assign names gN+i for 1  i  pl for
i
pl

2 Q where pl is the

smallest prime that has yet to appear in the construction. Assign names gN+pl�1+i

for 1  i  pl � 1 for �i
pl

2 Q. Then for all d 2 D and pl add dpl to D.

There is now a new collection of rational numbers that satisfy the conditions of

set K. Assign names to them in the ordering defined by �.

Yet again define all triples (gi, gj, gk) that correspond to true sums in the rationals

that have been assigned names. Do this in the lexicographic order on the indices.

Let Ge,s+1 be Ge,s union all the new names, and Me,s+1 be Me,s union all new

triples. Proceed to the next stage.

End of construction.

Take Ge =
S

s Ge,s and Me =
S

s Me,s.
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If e /2 S, eventually only case 1 or case 4 will be implemented and 1
p for every

prime p is added to the generators of group Ge. Thus Ge is isomorphic to the non-

cyclic group Q.

If e 2 S, after some stage M only case 2 or case 3 will be implemented. Some

collection of fractions {1, . . . , 1
pn
} for n  M will have been enumerated into the

group, but no others will be added. Thus Ge is a copy of h1, . . . , 1
pn
i, a cyclic group

isomorphic to Z.

3.3.5 Future Work

The results from the previous two chapters are summarized in Figure 3.1. It would

be remiss to discuss Markov properties and not mention the conjugacy problem for

groups. At present, the exact complexity of this property is unknown for the class of

computable groups, but we have an upper bound.

Theorem 3.8. Detecting that a group has a decidable conjugacy problem is ⌃0
3 in the

class of computable groups.

Proof. See Section 2.7.
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Property Class of r.p. groups Class of computable groups

Markov property ⇧0
2-hard ⇧0

1-hard (with infinite G+)

Abelian ⇧0
2-complete ⇧0

1-complete
torsion-free ⇧0

2-complete ⇧0
1-complete

trivial ⇧0
2-complete n/a

divisible ⇧0
2-complete ⇧0

2-complete
torsion ⇧0

2-complete ⇧0
2-complete

totally left-orderable [5] ⇧0
2-complete ⇧0

1-complete
totally bi-orderable [5] ⇧0

2-complete ⇧0
1-complete

finite ⌃0
3-complete n/a

decidable word problem ⌃0
3-complete n/a

cyclic ⌃0
3-complete 3-⌃0

2-complete
nilpotent ⌃0

3-complete ⌃0
2-complete

solvable ⌃0
3-complete ⌃0

2-complete

Figure 3.1: Results in classes of groups
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Chapter 4

Other Classes of Computable

Structures

4.1 Preliminaries

Our main result from the previous chapter relies only on the notion of embedding

and finite direct product. Thus any class of structures where these two concepts are

well-defined can withstand similar investigation. We extend the notion of a Markov

property to the class of computable relational structures, extract conditions from our

proofs in Chapters 2 and 3 that yield similar general results, and then apply them to

a few interesting classes of relational structures.

A relational structure is any structure which only has relational symbols (that is,

no function symbols and no constant symbols) in its signature. Examples of relational

structures include graphs, trees, equivalence relations, partially ordered sets, and so

on. We restrict ourselves to studying relational structures with only finitely many

relation symbols. A relational structure, A = (A,RA
1 , . . . , R

A
n ) is computable when

its domain, A, is a computable set and the interpretation of each relation symbol, Ri,

is a computable relation.
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Definition 4.1. For a class, C, of computable relational structures, a property, P , of

the structures is Markov for C if there is a A+ 2 C which exhibits the property, and

there is a A� 2 C so that for any B 2 C if there is an injective homomorphism from

A� into B, B fails to have property P .

We call A+ a positive witness for the Markov property and A� a negative witness

for the Markov property.

We will be tailoring proof techniques from the previous two chapters to fit this

context. However, unlike in algebraic structures, relational structures do not

necessarily have a well-defined notion of a direct product. The disjoint union will

replace the functionality of the direct product in much of what follows.

Relational structures are as much a source of computability-theoretic study as

algebraic structures. Computable equivalence structures have been studied extensively.

Namely, Calvert, Cenzer, Harizanov, and Morozov studied the complexity of

isomorphisms between computable equivalence structures in [8]. This was extended

to the study of structures within the Ershov di↵erence hierarchy by Khoussainov,

Stephan, and Yang in [27], and by Cenzer, LaForte, and Remmel in [10]. Cenzer,

Harizanov, and Remmel studied ⌃0
1 and ⇧0

1 equivalence structures in [11], and the

properties of injection structures in [12]. Marshall extended this study to partial

injection structures and nested equivalence classes in [37].

Marshall also studied these properties in classes of trees in [37]. Lempp, McCoy,

Miller, and Solomon characterized computably categorical trees of finite height in

[32], while Miller showed that no computable well-founded tree of infinite height

is computably categorical in [41]. S.S. Goncharov was the first to give examples of

graphs with finite computable dimension higher than one in [21]. Csima, Khoussainov,

and Liu [16] gave conditions for certain classes of graphs to be computably categorical.

We present here the study of Markov properties for some of these classes of

relational structures. This is not the only extension of the concept of a Markov
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property beyond the class of groups. Ha showed some preliminary results in this

direction when studying Markov properties of computable magmas [22].

4.2 General Results for Relational Structures

Theorem 4.1. Let P be a Markov property for a class, C, of computable relational

structures which is closed under the usual disjoint union for relations. Given an

infinite positive witness A+ and any negative witness A� to P , detecting P is ⇧0
1-

hard in the class C.

Proof. Assume the signature of structures in C is LC = {R0, R1, . . . , Rn} where each

Ri is an ni-ary relation symbol (ni a natural number).

Let A+ be an infinite positive witness to P in C, and A� be a (possibly finite)

negative witness. Since these are computable structures, there are computable

enumerations without repetitions of each of their domains: |A+| = {a0, a1, a2, . . .} and

|A�| = {b0, b1, . . .}. We can assume A� is infinite because it can always be embedded

into the disjoint union of itself with a computable copy of A+.

In the following construction we will use the atomic diagrams of A+ and A� to

build Ae 2 C so that Ae
⇠= A+ if '(e) runs forever, and Ae

⇠= A+ t A� if '(e)

eventually halts. That is,

Ae |= P () e 2 K.

Since K = {e : 'e(e) "} is a ⇧0
1-complete set, it follows that detecting P is

⇧0
1-hard.

The universe of Ae will be N. We give a coding map h·i : A+ t A� �! N and

enumerate the atomic diagram in stages below. We do not provide the explicit coding

of the atomic diagram, since the usual coding scheme is used.

Throughout the construction we will use the following notation: for n-tuple

x = (x1, . . . , xn) and singleton y, the tuple ((x1, y), (x2, y), . . . , (xn, y)) will be denoted
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(x,y).

Construction.

Stage 0. Let h(a0, 0)i = 0 and proceed to the next stage.

Stage s+1. We begin this stage with a domain Ae,s, which is an initial segment of the

natural numbers, namely {0, 1, . . . , ns}, and some finite atomic diagram.

There are three cases.

1. 'e,s+1(e) " . Let h(as+1, 0)i = ns + 1.

Consider all the n-ary relation symbols Ri where i  s + 1 and n  s. For

each such Ri there may be some n-tuples a 2 {a0, a1, a2, . . . , as+1}
n, such that

A+ |= Ri(a) is true and has not yet appeared in the construction. For all these,

add R((a,0)) to the atomic diagram of Ae, according to the lexicographic order

of the indices. For all n-tuples a 2 {a0, a1, a2, . . . , as+1}
n such that A+ 6|= Ri(a)

holds and has yet to appear, add ¬Ri((a,0)) to the atomic diagram of Ae, again

following the lexicographic order of the indices.

Proceed to the next stage.

2. 'e,s+1(e) # but 'e,s(e) " . This is the exact stage at which e enters the halting

set. After we have executed this stage once, all subsequent stages will be of

case (3) type.

In this case we begin by assigning and adding new codes, h(as+1, 0)i = ns + 1

and h(bi, 1)i = ns + i+ 2 for 0  i  s+ 1, to Ae.

Repeat the expansion of the atomic diagram exactly as in case (1), to deal with

any statements made newly true by the addition of as+1. Then we mimic case

(1) for the bi, as follows.

Consider all the n-ary relation symbols Ri where i  s + 1 and n  s. For

each such Ri there may be some n-tuples b 2 {b0, b1, b2, . . . , bs+1}
n, such that
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A� |= Ri(b) is true and has not yet appeared in the construction. For all these,

add R((b,1)) to the atomic diagram of Ae, again respecting the lexicographic

order of the indicies. For all n-tuples b 2 {b0, b1, b2, . . . , bs+1}
n such that A� 6|=

Ri(b) is true and has yet to appear, add ¬Ri((b,1)) to the atomic diagram of

Ae, in the lexicographic order of the indices.

Proceed to the next stage.

3. 'e,s(e) # and e entered the halting set at some previous stage.

Let h(as+1, 0)i = ns + 1 and h(bs+1, 1)i = ns + 2. Repeat the addition of newly

true sentences for Ri to the atomic diagram of Ae while maintaining the well-

defined component-wise direct product as in case (2).

End of construction.

Let Ae = [sAe,s.

It is clear from the construction that the structure is computable and that

Ae =

8
>><

>>:

A+ ⇥ {0} ⇠= A+, if e 2 K,

(A+ ⇥ {0}) [ (A� ⇥ {1}) ⇠= A+ t A�, if e 2 K.

Thus if e /2 K, Ae has property P and if e 2 K, Ae fails to exhibit property P .

Theorem 4.2. Let P be a Markov property of some class, C, of computable relational

structures, which is closed under the usual disjoint union. Suppose there is an infinite

positive witness to P , A+, and a sequence (Ai)i2N where for each i 2 N: Ai 2 C and

(i) Ai is a substructure of Ai+1, (ii) A+ t Ai |= P , and (iii) A� 6|= P where

A� ⇠=
[

i

Ai.

Then detecting P in the class C is ⌃0
2-hard.
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Proof. The strategy here is to use the computable atomic diagrams of A+ and the Ai’s

to build, uniformly in e, a computable atomic diagram for Be, so that Be
⇠= A+ tAn

if |We| = n, and Be
⇠= A+ t A� if e 2 INF . Accomplishing this gives us

Be |= P () e 2 FIN.

Since FIN = {e : |We| < !} is a ⌃0
2-complete set, it follows that detecting P is

⌃0
2-hard.

Let A+ = {a0, a1, . . .} and for every i 2 N, let Ai = {b0, b1 . . .} be the domains of

the structures enumerated without repetition of elements. The domains of A+ and

Ai are disjoint, for each i, but as the Ai’s are nested substructures, the domain of Ai

is a subset of the domain of Ai+1. It should be noted, some or even all the Ai’s may

be finite and while we never explicitly call on the computable atomic diagram of A�,

we will build a copy of it in the following construction.

For n-tuple x = (x1, . . . , xn) and singleton y, the tuple ((x1, y), (x2, y), . . . , (xn, y))

will be denoted (x,y).

The universe of Be will be a computable copy of N, and we give a coding map h·i

and enumerate the atomic diagram, a set of triples Me, in stages below.

Construction.

Stage 0. Add h(a0, 0)i = 0 to the domain of Be,0. Proceed to the next stage.

Stage s+1. We begin this stage with an initial segment of the natural numbers, Be,s,

and some finite segment of the atomic diagram, Me,s. We have partially enumerated

a copy of A+ [ Am�1 by this stage where m = |We,s|. We begin by extending the

copies of A+ and Am�1.

First, add codes to the domain of Be,s+1 for (as+1, 0) and for (bs+1, 1) that exists

in Am�1 (recalling that some of the Ai’s may be finite), assigning the least available

code to as+1 and the next one to bs+1.
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Then we extend the atomic diagram of Be,s+1. For every n-ary relation Ri where

n < s + 1 and 0  i  s + 1, add Ri(a, 0) to the atomic diagram of Be,s+1 if

RA+

i (a) |= P for some a 2 {a0, . . . , as+1}
n which has not already appeared. Do this

in lexicographic order on the indices of the a’s. Similarly add ¬Ri(a, 0) to the atomic

diagram of Be,s, if ¬R
A+

i (a) |= P and a has not already appeared.

Repeat this procedure for Am�1.

Finally, consider the enumerations of We: if no new elements are enumerated into

We,s+1, proceed to the next stage.

If We,s+1 �We,s 6= ;, we want to begin attaching a copy of Am.

To do so, extend the domain of Be,s+1 by adding a code for (bk, 1), for the least

bk 2 Bm � Bm�1.

Then for every n-ary relation Ri, where n < s+ 1 and 0  i  s+ 1, add R(b,1)

to the atomic diagram of Be,s+1 if RAm
i (b) for some b 2 {b0, . . . , bs+1, bk}n which has

not already appeared. Do this in the lexicographic order on the indices of the b’s.

Similarly, add ¬Ri(b,1), if ¬R
Am
i (b) |= P holds true and it has not already appeared.

Do this in the lexicographic order on the indices of b.

Proceed to the next stage.

End of construction.

Let Be =
S

s Be,s.

It is clear from the construction that the structure is computable, and that when

e 2 FIN , Be
⇠= A+ t Am, and so has the property P . If e /2 FIN , Be

⇠= A+ t A�,

and will fail to exhibit P .

It should be noted that the results in this section do not apply to all classes

of computable relational structures, only to those that share a common signature.

However, this is a general enough restriction to allow for application of these results

to the classes of computable partial orders, equivalence structures, trees, and graphs.
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An analysis of properties in those classes follows.

4.3 Applications

4.3.1 Graphs

Definition 4.2. A graph is a structure G = (V,E), where V ✓ N is a set of vertices,

and E ✓ V ⇥ V is a set of edges, which is symmetric, and so can be viewed as a set

of unordered pairs of vertices.

A graph is computable when the set of vertices, V , is a computable set, and there

is an algorithm for deciding whether or not (v1, v2) 2 E for any pair of vertices

v1, v2 2 V . The disjoint union for two graphs is defined in the usual way and it

is clear that the class of computable graphs is closed under this union, and even a

disjoint union of countably many computable graphs. Thus, Theorems 4.1 and 4.2

apply.

Corollary 4.2.1. The property of having no cycles is ⇧0
1-complete in the class of

computable graphs.

Proof. A graph G = (V,E) having no edges can be expressed by the infinitary formula:

!
n2N

8v1, v2, . . . , vn 2 V (9i  n� 1)((vi, vi+1) /2 E).

Notice that the existential quantifier in this formula is bounded, and thus we have

an infinitary ⇧1 formula. A graph having no cycles is ⇧0
1. For completeness we only

need to give witnesses that this property is Markov for the class of computable graphs

and then apply Theorem 4.1

An acceptable positive witness, G+, that is, an infinite computable graph with

no cycles, is an infinite chain graph. So we take G+ = (V+, E+) where V+ = N and
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0 1 2 n-1 n n+1

Figure 4.1: Corollary 4.2.1 postive witness, G+

a0 a1

a2

Figure 4.2: Corollary 4.2.1 negative witness, G�

E+ = {(n, n+ 1) : n 2 N}, as in Figure 4.1. An acceptable negative witness is the

(always computable) triangle graph: G� = (V�, E�) where V� = {a0, a1, a2} and

E� = {(a0, a1), (a1, a2), (a2, a0)}, as seen in Figure 4.2.

Corollary 4.2.2. Detecting a complete graph is ⇧0
1-complete in the class of computable

graphs.

Proof. A graph G = (V,E) being a complete graph can be expressed by the ⇧0
1

formula:

8v1, v2 2 V
�
(v1, v2) 2 E

�
.

For completeness we need only give witnesses that this property is Markov for the

class of computable graphs and apply Theorem 4.1. An acceptable positive witness is

the computable complete graph on countably many vertices. That is, G+ = (V+, E+)

where V+ = N and E+ = {(a, b) : a, b 2 V+}. An acceptable negative witness is the

infinite chain graph, G� = (V�, E�) where V� = N and E� = {(n, n+ 1) : 8n 2 N}.

Corollary 4.2.3. Detecting a connected graph is ⇧0
2-complete in the class of com-
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putable graphs.

Proof. A graph G = (V,E) being connected can be expressed by the infinitary ⇧2

formula:

8v1, v2 2 V
!
n2N

9v3, . . . , vn 2 V ((v1, v3), (v3, v4), . . . , (vn, v2) 2 E)

To show completeness we must show that the negation of this property, not being

a connected graph, has an infinite positive witness, a negative witness, and a sequence

of positive witnesses as required by the conditions of Theorem 4.2.

Let G+ = (V+, E+), where V+ = {a0, a1, . . .}, and E+ = {(a2i, a2i+1) : for i 2 N}.

The sequence of positive witness are: G0 = G+, and Gi = (Vi, Ei), where Vi = Vi�1

and Ei = Ei�1 [ {(2i� 1, 2i)}. The resulting negative witness is G� = [iGi.

The graphs are shown in Figure 4.3.1.
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a0 a1 a2 a3 a4 a5 a2n�1 a2n a2n+1 a2n+1

Figure 4.3: Corollary 4.2.3 positive witness, G+ = G0, a disconnected graph

a0 a1 a2 a3 a4 a5 a2n�1 a2n a2n+1 a2n+1

Figure 4.4: Corollary 4.2.3 positive witness, G1, a disconnected graph

a0 a1 a2 a3 a4 a5 a2n�1 a2n a2n+1 a2n+1

Figure 4.5: Corollary 4.2.3 positive witness, G2, a disconnected graph

a0 a1 a2 a3 a4 a5 a2n�1a2n a2n+1 a2n+1

Figure 4.6: Corollary 4.2.3 positive witness, Gn, a disconnected graph

a0 a1 a2 a2n�1 a2n a2n+1 a2n+1

Figure 4.7: Corollary 4.2.3 negative witness, G� =
S

n Gn, a connected graph
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4.3.2 Nested Equivalence Structures

Definition 4.3. A set A ✓ N and a binary relation E on A is an equivalence

structure if E is reflexive, symmetric, and transitive.

Definition 4.4. For two equivalence relations E and R on a set A, we say E is nested

inside R if each equivalence class under E sits inside a corresponding equivalence class

under R. That is,

[a]E ✓ [a]R for all a 2 A.

We say, R is coarser and E is finer.

Definition 4.5. A nested equivalence structure is a tuple A = (A,E1, . . . , En) where

the domain A ✓ N and for each i, Ei is an equivalence relation and Ei�1 ✓ Ei for

2  i  n.

A nested equivalence structure is computable if its domain is a computable set and

the atomic diagram of the structure is computable. A useful property of a computable

equivalence structure, A is that we can computably enumerate all of its equivalence

classes without repetition.

Corollary 4.2.4. Detecting the property of having finitely many equivalence classes

is ⌃0
2-complete in the class of computable equivalence structures.

Proof. For an equivalence structure (A,E) having finitely many equivalence classes

can be expressed by the infinitary ⌃2 formula:

!
n2N

9a1, . . . , an 2 A 8b 2 B
⇣
b 2 [a1] _ · · · _ b 2 [an]

⌘
.

To show completeness we call on Theorem 4.2 by giving an infinite computable

witness, A+, to the property and a sequence of nested equivalence classes, {Ai}i,

in which the property holds but so that A� ⇠=
S

i Ai is a negative witness to the
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property. For all the witnesses E will be interpreted as the equivalence relation on

pairs:

(a, b) ⇠ (c, d) () b = d.

With this relation, there are computable copies of the equivalence structures

A+ = (A+, E) and Ai = (Ai, E) on the domains:

A+ = {(n, 0) : n 2 N}

Ai = Ai�1 [ {(n, i) : n 2 N} for all i 2 N�1.

Note that A+ has one equivalence class, Ai has i equivalence classes, but A� ⇠=
S

i Ai,

which has a computable copy, has countably many equivalence classes.

The property of a nested equivalence structure (A,E1, . . . , En) having finitely

many equivalence classes for each equivalence relation is still expressible by an

infinitary ⌃2 formulas, as it only di↵ers from the non-nested version by a finite

conjunction:

n̂

i=1

!
k2N

9a1, . . . , ak 2 A 8b 2 B(b 2 [a1] _ · · · _ b 2 [ak]).

Similarly, property of a nested equivalence structure (A,E1, . . . , En) having finitely

many equivalence classes for any equivalence relation is expressible by an infinitary

⌃2 formulas, as it only di↵ers from the non-nested version by a finite disjunction:

n_

i=1

!
k2N

9a1, . . . , ak 2 A 8b 2 B(b 2 [a1] _ · · · _ b 2 [ak]).

Thus the following two corollaries hold, with the same (mutatis mutandis) proof as

Corollary 4.2.4.
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Corollary 4.2.5. Detecting the property of having finitely many equivalence classes

for every equivalence relation is ⌃0
2-complete in the class of computable nested

equivalence structures with a fixed number of relations.

Corollary 4.2.6. Detecting the property of having finitely many equivalence classes

for some equivalence relation is ⌃0
2-complete in the class of computable nested

equivalence structures.

The negation of each of the properties also holds.

Corollary 4.2.7. Detecting the property of having infinitely many equivalence classes

for some equivalence relation, is ⇧0
2-complete in the class of computable nested

equivalence structures with a fixed number of relations.

Detecting the property of having infinitely many equivalence classes for every

equivalence relation, is ⇧0
2-complete in the class of computable nested equivalence

structures with a fixed number of relations.

4.3.3 Future Work

A natural extension of our work in the class of relational structures is to more

varied classes. In particular, it would be interesting to study partial injection structures

as Cenzer, Harizanov, Remmel, and Marshall have in [12] and [37]. Our Theorems

4.1 and 4.2 do apply to both injection structures and partial injection structures, but

finding properties that are Markov and of ⇧0
1 or ⌃0

3 complexity will be worthwhile.

Another future project is extending the results of Chapter 2 into the class of

relational structures. That is, we can ask:

If we are using a description of a relational structure that is computably

enumerable (rather than computable) what is the complexity of detecting

a Markov property?
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