Transverse Khovanov-Rozansky Homologies

Hao Wu

George Washington University
A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \ker \alpha$, $d\alpha|_{\xi} > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ.
A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \ker \alpha$, $d\alpha|_\xi > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ.

The standard contact structure ξ_{st} on S^3 is given by the contact form $\alpha_{st} = dz - ydx + xdy = dz + r^2d\theta$.
Transverse Links in the Standard Contact S^3

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \text{ker} \alpha$, $d\alpha|_{\xi} > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ.

The standard contact structure ξ_{st} on S^3 is given by the contact form $\alpha_{st} = dz - ydx + xdy = dz + r^2d\theta$.

An oriented smooth link L in S^3 is called transverse if $\alpha_{st}|_{L} > 0$.
Transverse Links in the Standard Contact S^3

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \ker \alpha$, $d\alpha|_\xi > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ.

The standard contact structure ξ_{st} on S^3 is given by the contact form $\alpha_{st} = dz - ydx + xdy = dz + r^2 d\theta$.

An oriented smooth link L in S^3 is called transverse if $\alpha_{st}|_L > 0$.

Theorem (Bennequin)

Every transverse link in the standard contact S^3 is transverse isotopic to a counterclockwise transverse closed braid around the z-axis.
Transverse Links in the Standard Contact S^3

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \ker \alpha$, $d\alpha|_{\xi} > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ.

The standard contact structure ξ_{st} on S^3 is given by the contact form $\alpha_{st} = dz - ydx + xdy = dz + r^2d\theta$.

An oriented smooth link L in S^3 is called transverse if $\alpha_{st}|_L > 0$.

Theorem (Bennequin)

Every transverse link in the standard contact S^3 is transverse isotopic to a counterclockwise transverse closed braid around the z-axis.

Clearly, any smooth counterclockwise closed braid around the z-axis can be smoothly isotoped into a transverse closed braid around the z-axis without changing the braid word.
The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
 - $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = \emptyset$,
 - $\sigma_i \sigma_j = \sigma_j \sigma_i$, when $|i - j| > 1$,
 - $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

- Conjugations: $\mu \leftrightarrow \eta^{-1} \mu \eta$.

- Positive stabilizations and destabilizations:
 $\mu \ (\in B_m) \leftrightarrow \mu \sigma_m \ (\in B_{m+1})$.
The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
 - $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = \emptyset$,
 - $\sigma_i \sigma_j = \sigma_j \sigma_i$, when $|i - j| > 1$,
 - $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

- Conjugations: $\mu \leftrightarrow \eta^{-1} \mu \eta$.

- Positive stabilizations and destabilizations:
 $\mu \ (\in B_m) \leftrightarrow \mu \sigma_m \ (\in B_{m+1})$.

Theorem (Orevkov, Shevchishin and Wrinkle)

Two transverse closed braids are transverse isotopic if and only if the two braid words are related by a finite sequence of transverse Markov moves.
The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
 - $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = \emptyset$,
 - $\sigma_i \sigma_j = \sigma_j \sigma_i$, when $|i - j| > 1$,
 - $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

- Conjugations: $\mu \leftrightarrow \eta^{-1} \mu \eta$.

- Positive stabilizations and destabilizations:
 $\mu \ (\in \mathbb{B}_m) \leftrightarrow \mu \sigma_m \ (\in \mathbb{B}_{m+1})$.

Theorem (Orevkov, Shevchishin and Wrinkle)

Two transverse closed braids are transverse isotopic if and only if the two braid words are related by a finite sequence of transverse Markov moves.

So there is a one-to-one correspondence between transverse isotopy classes of transverse links and closed braids modulo transverse Markov moves.
Contact Framing

ξ_{st} admits a nowhere vanishing basis $\{\partial_x + y\partial_z, \partial_y - x\partial_z\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.
Contact Framing

ξ_{st} admits a nowhere vanishing basis $\{\partial_x + y\partial_z, \partial_y - x\partial_z\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid B of a knot with writhe w and b strands, its contact framing is determined by its self linking number $sl(B) := w - b$.
Contact Framing

ξ_{st} admits a nowhere vanishing basis $\{\partial_x + y\partial_z, \partial_y - x\partial_z\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid B of a knot with writhe w and b strands, its contact framing is determined by its self linking number $sl(B) := w - b$.

If a smooth link type contains two transverse links that are isotopic as framed links but not as transverse links, then we call this smooth link type “transverse non-simple”.
Contact Framing

ξ_{st} admits a nowhere vanishing basis \(\{ \partial_x + y\partial_z, \partial_y - x\partial_z \} \). For each transverse link \(L \), this basis induces a contact framing of \(L \). If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid \(B \) of a knot with writhe \(w \) and \(b \) strands, its contact framing is determined by its self linking number \(sl(B) := w - b \).

If a smooth link type contains two transverse links that are isotopic as framed links but not as transverse links, then we call this smooth link type “transverse non-simple”.

An invariant for transverse links is called classical if it depends only on the framed link type of the transverse link. Otherwise, it is called non-classical or effective.
The Khovanov-Rozansky Homology

Khovanov and Rozansky introduced an approach to construct link homologies using matrix factorizations by:

1. Choose a base ring R and a potential polynomial $p(x) \in R[x]$.
2. Define matrix factorizations associated to MOY graphs using this potential $p(x)$.
3. Define chain complexes of matrix factorizations associated to link diagrams using the crossing information.
The Khovanov-Rozansky Homology

Khovanov and Rozansky introduced an approach to construct link homologies using matrix factorizations by:

1. Choose a base ring R and a potential polynomial $p(x) \in R[x]$.
2. Define matrix factorizations associated to MOY graphs using this potential $p(x)$.
3. Define chain complexes of matrix factorizations associated to link diagrams using the crossing information.

This approach has been carried out for the following potential polynomials:

- $x^{N+1} \in \mathbb{Q}[x]$ (the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology);
- $ax \in \mathbb{Q}[a, x]$ (the HOMFLYPT homology);
- $x^{N+1} + \sum_{i=1}^{N} \lambda_i x^i \in \mathbb{Q}[x]$ (deformed $\mathfrak{sl}(N)$ Khovanov-Rozansky homology);
- $x^{N+1} + \sum_{i=1}^{N} a_i x^i \in \mathbb{Q}[a_1, \ldots, a_N, x]$ (the equivariant $\mathfrak{sl}(N)$ Khovanov-Rozansky homology).
Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky’s matrix factorization construction to $ax^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex C_N. For each link diagram D, the homology $\mathcal{H}_N(D)$ of $C_N(D)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^3$-graded $\mathbb{Q}[a]$-module.
Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky’s matrix factorization construction to $ax^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex C_N. For each link diagram D, the homology $\mathcal{H}_N(D)$ of $C_N(D)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^3$-graded $\mathbb{Q}[a]$-module.

Theorem (W)

Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_N(B)$ preserving the $\mathbb{Z}_2 \oplus \mathbb{Z}^3$-graded $\mathbb{Q}[a]$-module structure.
Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky’s matrix factorization construction to $ax^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex C_N. For each link diagram D, the homology $\mathcal{H}_N(D)$ of $C_N(D)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Theorem (W)

Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_N(B)$ preserving the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module structure.

Therefore, by the Transverse Markov Theorem, \mathcal{H}_N is an invariant for transverse links in the standard contact S^3.
Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky’s matrix factorization construction to $ax^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex C_N. For each link diagram D, the homology $\mathcal{H}_N(D)$ of $C_N(D)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Theorem (W)

Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_N(B)$ preserving the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module structure.

Therefore, by the Transverse Markov Theorem, \mathcal{H}_N is an invariant for transverse links in the standard contact S^3.

Question

Is \mathcal{H}_N an effective invariant for transverse links?
Decategorification

\[\mathcal{P}_N(B) := \sum_{(\epsilon, i, j, k) \in \mathbb{Z}_2 \oplus \mathbb{Z} \oplus \mathbb{Z}^3} (-1)^i \tau^\epsilon \alpha^j \xi^k \dim_{\mathbb{Q}} \mathcal{H}_{N, \epsilon, i, j, k}(B) \in \mathbb{Z}[[\alpha, \xi]][\alpha^{-1}, \xi^{-1}, \tau]/(\tau^2 - 1) \]
Decategorification

\[\mathcal{P}_N(B) := \sum_{(\varepsilon, i, j, k) \in \mathbb{Z}_2 \oplus \mathbb{Z} \oplus 3} (-1)^i \tau^\varepsilon \alpha^j \xi^k \dim_{\mathbb{Q}} \mathcal{H}_{\varepsilon, i, j, k}^N(B) \in \mathbb{Z}[[\alpha, \xi]][\alpha^{-1}, \xi^{-1}, \tau]/(\tau^2 - 1) \]

Theorem (W)

1. \(\mathcal{P}_N \) is invariant under transverse Markov moves.

2. \(\alpha^{-1} \xi^{-N} \mathcal{P}_N(\begin{array}{c} \alpha \\ \xi \end{array}) - \alpha \xi^N \mathcal{P}_N(\begin{array}{c} \alpha \\ \xi \end{array}) = \tau(\xi^{-1} - \xi) \mathcal{P}_N(\begin{array}{c} \alpha \\ \xi \end{array}) \).

3. \(\mathcal{P}_N(U^{\uplus m}) = (\tau \alpha^{-1} [N])^m \left(\frac{1}{1 - \alpha^2} + \frac{\left(\frac{\tau \alpha \xi^{-1} + \xi^{-N}}{\xi^N - \xi^{-N}} \right)^m - 1}{\tau \alpha \xi^{-N} - \xi^{-N} + 1} \right) \), where \(U^{\uplus m} \) is the \(m \)-strand closed braid with no crossings and \([N] := \frac{\xi^{-N} - \xi^N}{\xi - 1 - \xi}\).

4. Parts 1–3 above uniquely determine the value of \(\mathcal{P}_N \) on every closed braid.
Decategorification

\[P_N(B) := \sum_{(\epsilon, i, j, k) \in \mathbb{Z}_2 \oplus \mathbb{Z} \oplus \mathbb{Z}^3} (-1)^i \tau^\epsilon \alpha^i \xi^k \dim_Q \mathcal{H}^{\epsilon, i, j, k}_N(B) \in \mathbb{Z}[[\alpha, \xi]][\alpha^{-1}, \xi^{-1}, \tau]/(\tau^2 - 1) \]

Theorem (W)

1. \(P_N \) is invariant under transverse Markov moves.

2. \(\alpha^{-1} \xi^{-N} P_N(\xleftarrow{\longrightarrow}) - \alpha \xi^N P_N(\xleftarrow{\longrightarrow}) = \tau(\xi^{-1} - \xi) P_N(\xleftarrow{\longrightarrow}) \).

3. \(P_N(U \sqcup^m) = (\tau \alpha^{-1} [N])^m \left(\frac{1}{1 - \alpha^2} + \frac{(\frac{\tau \alpha \xi^{-1} + \xi^{-N}}{\tau \alpha \xi^{-N} - \xi^{-N-1}})^m - 1}{\tau \alpha \xi^{-N} - \xi^{-N-1} + 1} \right) \), where \(U \sqcup^m \) is the \(m \)-strand closed braid with no crossings and \([N] := \frac{\xi^{-N} - \xi^N}{\xi^{-1} - \xi} \).

4. Parts 1–3 above uniquely determine the value of \(P_N \) on every closed braid.

It is not clear if \(P_N \) is effective. But \(P_N \) does not detect flype moves.

\((\mu \sigma_m^k \nu \sigma_m^\pm 1 \leftrightarrow \mu \sigma_m^\pm 1 \nu \sigma_m^k, \text{ where } \mu, \nu \in B_m) \).
Module Structure

Theorem (W)

Let $H_N(B)$ be the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology of a closed braid B, and $(\varepsilon, i, k) \in \mathbb{Z}_2 \oplus \mathbb{Z} \oplus \mathbb{Z}^2$.

1. $H_{N}^{\varepsilon, i, k}(B) \cong \mathcal{H}_{N}^{\varepsilon, i, *, k}(B)/(a - 1)\mathcal{H}_{N}^{\varepsilon, i, *, k}(B)$.
Module Structure

Theorem (W)

Let \(H_N(B) \) be the \(\mathfrak{sl}(N) \) Khovanov-Rozansky homology of a closed braid \(B \), and \((\varepsilon, i, k)\) \(\in \mathbb{Z}_2 \oplus \mathbb{Z}^2 \).

1. \(H^\varepsilon,i,k_N(B) \cong H^\varepsilon,i,\ast,k_N(B)/(a-1)H^\varepsilon,i,\ast,k_N(B) \).
2. As a \(\mathbb{Z} \)-graded \(\mathbb{Q}[a] \)-module,

\[
H^\varepsilon,i,\ast,k_N(B) \cong (\mathbb{Q}[a]\{sl(B)\}_a)^{\oplus l} \oplus (\mathbb{Q}[a]\{sl(B)+2\}_a)^{\oplus (\dim \mathbb{Q} H^\varepsilon,i,k_N(B)-l)} \oplus \left(\bigoplus_{q=1}^n \mathbb{Q}[a]/(a)\{s_q\} \right),
\]

where

- \{s\}_a \text{ means shifting the a-grading by } s,
- \(l \) and \(n \) are finite non-negative integers determined by \(B \) and the triple \((\varepsilon, i, k)\),
- \(\{s_1, \ldots, s_n\} \subset \mathbb{Z} \text{ is a sequence determined up to permutation by } B \) and the triple \((\varepsilon, i, k)\),
- \(\text{sl}(B) \leq s_q \leq c_+ - c_- - 1 \text{ and } (N-1)s_q \leq k - 2N + 2c_- \text{ for } 1 \leq q \leq n \), where \(c_\pm \text{ is the number of } \pm \text{ crossings in } B \).
Negative Stabilization

Theorem (W)

Let L be a transverse closed braid, and L_- a transverse closed braid obtained from L by a single negative stabilization. Then the chain complex $C_N(L_-)\{2,0\}$ is isomorphic to the mapping cone of the standard quotient map $\pi_0 : C_N(L) \to C_N(L)/aC_N(L)$.
Theorem (W)

Let L be a transverse closed braid, and L_- a transverse closed braid obtained from L by a single negative stabilization. Then the chain complex $C_N(L_-)\{2,0\}$ is isomorphic to the mapping cone of the standard quotient map $\pi_0 : C_N(L) \to C_N(L)/aC_N(L)$.

Thus, if $\mathcal{H}_N(L)$ is the homology of $C_N(L)/aC_N(L)$, there is a long exact sequence

\[\cdots \to \mathcal{H}^{\varepsilon,i-1}_N(L)[-2,0] \xrightarrow{\pi_0} \mathcal{H}^{\varepsilon,i-1}_N(L_-) \to \mathcal{H}^{\varepsilon,i}_N(L_-) \to \mathcal{H}^{\varepsilon,i}_N(L)[-2,0] \xrightarrow{\pi_0} \cdots \]
Negative Stabilization (cont’d)

Theorem (W)
Let B be a closed braid and B_- a stabilization of B. Set $s = sl(B)$. Then for any $(i, k) \in \mathbb{Z}^{\oplus 2}$, there are a long exact sequence of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules

$$
\cdots \rightarrow H_N^{s-1,i,*,k}(B_-) \rightarrow H_N^{s,i-1,*,k+N+1}(B)\{-1\}_a
\rightarrow H_N^{s,i-1,*,k+N+1}(B)\{-1\}_a \rightarrow 0
$$

and a short exact sequence of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules

$$
0 \rightarrow H_N^{s,i,k}(B) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{s\}_a \rightarrow H_N^{s,i,*,k}(B_-) \rightarrow H_N^{s-1,i-1,*,k+N+1}(B)\{-1\}_a \rightarrow 0.
$$
Transverse Unknots

- Bennequin’s inequality implies that the highest self linking number of a transverse unknot is \(-1\), which is attained by the 1-strand transverse closed braid.
Transverse Unknots

- Bennequin’s inequality implies that the highest self linking number of a transverse unknot is -1, which is attained by the 1-strand transverse closed braid.
- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.
Transverse Unknots

- Bennequin’s inequality implies that the highest self linking number of a transverse unknot is -1, which is attained by the 1-strand transverse closed braid.

- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.

- Denote by U_0 the transverse unknot with self linking -1 and by U_m the transverse unknot obtained from U_0 by m negative stabilizations.
Transverse Unknots

- Bennequin’s inequality implies that the highest self linking number of a transverse unknot is -1, which is attained by the 1-strand transverse closed braid.
- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.
- Denote by U_0 the transverse unknot with self linking -1 and by U_m the transverse unknot obtained from U_0 by m negative stabilizations.
- Then every transverse unknot is transverse isotopic to U_m for some $m \geq 0$.
Transverse Unknots (cont’d)

\[\mathcal{F} := \bigoplus_{l=0}^{N-1} \mathbb{Q}[a] \langle 1 \rangle \{-1, -N + 1 + 2l\}, \]

\[\mathcal{T} := \bigoplus_{l=0}^{\infty} \mathbb{Q}[a]/(a) \langle 1 \rangle \{-1, N + 1 + 2l\}, \]
Transverse Unknots (cont’d)

\[F := \bigoplus_{l=0}^{N-1} \mathbb{Q}[a] \langle 1 \rangle \{ -1, -N + 1 + 2l \}, \]

\[T := \bigoplus_{l=0}^{\infty} \mathbb{Q}[a]/(a) \langle 1 \rangle \{ -1, N + 1 + 2l \}, \]

\[\mathcal{H}_N(U_0) \cong F \oplus T, \]

\[\mathcal{H}_N(U_1) \cong F \oplus T \langle 1 \rangle \{ -1, -N - 1 \| 1 \|, \]
Transverse Unknots (cont’d)

\[\mathcal{F} := \bigoplus_{l=0}^{N-1} \mathbb{Q}[a] \langle 1 \rangle \{-1, -N + 1 + 2l\}, \]

\[\mathcal{T} := \bigoplus_{l=0}^{\infty} \mathbb{Q}[a]/(a) \langle 1 \rangle \{-1, N + 1 + 2l\}, \]

\[\mathcal{H}_N(U_0) \cong \mathcal{F} \oplus \mathcal{T}, \]

\[\mathcal{H}_N(U_1) \cong \mathcal{F} \oplus \mathcal{T} \langle 1 \rangle \{-1, -N - 1\} \|

\text{and, for } m \geq 2, \]

\[\mathcal{H}_N(U_m) \cong \mathcal{F}\{-2(m - 1), 0\} \oplus \mathcal{T} \langle m \rangle \{-m, -m(N + 1)\} \|

\bigoplus_{l=1}^{m-1} \mathcal{F}/a\mathcal{F} \langle l \rangle \{-2m + l, -l(N + 1)\} \|

\text{where } "\|l\|" \text{ means shifting the homological grading by } l. \]