Incidence Relations and Directed Cycles

Hao Wu

George Washington University
Directed graphs and directed cycles

A **directed graph** is a pair \(G = (V(G), E(G)) \) of finite sets, where

1. \(V(G) \) is the set of vertices of \(G \),
2. \(E(G) \) is the set of edges, each of which is directed.
A **directed graph** is a pair $G = (V(G), E(G))$ of finite sets, where

1. $V(G)$ is the set of vertices of G,
2. $E(G)$ is the set of edges, each of which is directed.

A **directed cycle** in G is a closed directed path, that is, a sequence $v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n, x_n, v_{n+1} = v_0$ satisfying

1. v_0, v_1, \ldots, v_n are pairwise distinct vertices of G,
2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1}.

Two such sequences represent the same directed cycle if one is a circular permutation of the other.
Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.
Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- $\alpha(G) := \text{maximal number of pairwise edge-disjoint directed cycles in } G$,
- $\tilde{\alpha}(G) := \text{maximal number of pairwise disjoint directed cycles in } G$,

$\alpha(G)$ is known as the **cycle packing number** of G. We call $\tilde{\alpha}(G)$ the **strong cycle packing number** of G.
Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- $\alpha(G) :=$ maximal number of pairwise edge-disjoint directed cycles in G,
- $\tilde{\alpha}(G) :=$ maximal number of pairwise disjoint directed cycles in G,

$\alpha(G)$ is known as the **cycle packing number** of G. We call $\tilde{\alpha}(G)$ the **strong cycle packing number** of G.

Our goal is to determine $\alpha(G)$ and $\tilde{\alpha}(G)$ using elementary projective algebraic geometry.
Directed trials, paths and circuits

Given a directed graph \(G \), a **directed trail** in \(G \) from a vertex \(u \) to a different vertex \(v \) is a sequence

\[u = v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n = v \]

such that

1. \(x_0, x_1, \ldots, x_{n-1} \) are pairwise distinct edges of \(G \),
2. each \(x_i \) is an edge of \(G \) with initial vertex \(v_i \) and terminal vertex \(v_{i+1} \).
Directed trials, paths and circuits

Given a directed graph G, a **directed trail** in G from a vertex u to a different vertex v is a sequence

$u = v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n = v$ such that

1. $x_0, x_1, \ldots, x_{n-1}$ are pairwise distinct edges of G,
2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1}.

If, in addition, we require v_0, v_1, \ldots, v_n to be pairwise distinct, then the above sequence is a **directed path**.
Directed trials, paths and circuits

Given a directed graph G, a **directed trail** in G from a vertex u to a different vertex v is a sequence $u = v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n = v$ such that

1. $x_0, x_1, \ldots, x_{n-1}$ are pairwise distinct edges of G,
2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1}.

If, in addition, we require v_0, v_1, \ldots, v_n to be pairwise distinct, then the above sequence is a **directed path**.

A **directed circuit** in G is a closed trial, that is, a sequence $v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n, x_n, v_{n+1} = v_0$ satisfying

1. x_0, x_1, \ldots, x_n are pairwise distinct edges of G,
2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1}.

Two such sequences represent the same directed circuit if one is a circular permutation of the other.
Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\deg_{\text{in}} v = n$ and $\deg_{\text{out}} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.
Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\deg_{\text{in}} v = n$ and $\deg_{\text{out}} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

1. l_v of these new vertices have in-degree 1 and out degree 1.
2. $k_v - l_v$ of these new vertices have degree 1 such that
 - if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - if $m < n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0.
Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

1. l_v of these new vertices have in-degree 1 and out degree 1.
2. $k_v - l_v$ of these new vertices have degree 1 such that
 - if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - if $m < n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0.

To disassemble G is to disassemble G at all vertices of G.
Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

1. l_v of these new vertices have in-degree 1 and out-degree 1.
2. $k_v - l_v$ of these new vertices have degree 1 such that
 - if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - if $m < n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0.

To disassemble G is to disassemble G at all vertices of G.

We call each graph resulted from disassembling G a **disassembly** of G and denote by $\text{Dis}(G)$ the set of all disassemblies of G.
Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D) = E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D) = E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
3. Under the above natural homomorphism,
 - each directed path in D is mapped to a directed trail in G,
 - each directed cycle in D is mapped to a directed circuit in G,
 - the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint circuits in G.
Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D) = E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
3. Under the above natural homomorphism,
 - each directed path in D is mapped to a directed trail in G,
 - each directed cycle in D is mapped to a directed circuit in G,
 - the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint directed cycles in G.
4. $\alpha(D) \leq \alpha(G)$ and $\alpha(D) = \alpha(G)$ if and only if the collection of all directed cycles in D is mapped to a collection of $\alpha(G)$ pairwise edge-disjoint directed cycles in G.

Incidence relations, special case

Incidence relations:

\[y \rightarrow x \Rightarrow y = x, \]
\[x \rightarrow \Rightarrow 0 = x, \]
\[y \rightarrow \Rightarrow y = 0. \]
Incidence relations, special case

Incidence relations:

\[y \rightarrow x \implies y = x, \]
\[x \rightarrow x \implies 0 = x, \]
\[y \rightarrow y \implies y = 0. \]

Let \(G \) be a directed graph, and \(D \) a disassembly of \(G \). Recall that \(E(D) = E(G) \). Define the **incidence set** of \(D \) by

\[P(D) = \{ p \in \mathbb{P}^{E(G)^{-1}} \mid p \text{ satisfies all incidence relations in } D. \} \]
Incidence relations, special case

Incidence relations:

- $y \Rightarrow y = x,$
- $x \Rightarrow 0 = x,$
- $y \Rightarrow y = 0.$

Let G be a directed graph, and D a disassembly of G. Recall that $E(D) = E(G)$. Define the **incidence set** of D by

$$P(D) = \{ p \in \mathbb{C}P_{|E(G)|-1} | \text{ } p \text{ satisfies all incidence relations in } D. \}$$

Clearly, $P(D)$ is a linear subspace of $\mathbb{C}P_{|E(G)|-1}$.
Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D) - 1$ of $\mathbb{CP}^{|E(G)|-1}$.
Incidence sets of disassemblies

Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D) - 1$ of $\mathbb{C}P^{|E(G)|-1}$.

2. For any two disassemblies D_1 and D_2 of G, $P(D_1) = P(D_2)$ as linear subspaces of $\mathbb{C}P^{|E(G)|-1}$ if and only if, under the natural homomorphisms from D_1 and D_2 to G, the collections of all directed cycles in D_1 and D_2 are mapped to the same collection of pairwise edge-disjoint circuits in G.
Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D) - 1$ of $\mathbb{C}P^{\left|E(G)\right|-1}$.

2. For any two disassemblies D_1 and D_2 of G, $P(D_1) = P(D_2)$ as linear subspaces of $\mathbb{C}P^{\left|E(G)\right|-1}$ if and only if, under the natural homomorphisms from D_1 and D_2 to G, the collections of all directed cycles in D_1 and D_2 are mapped to the same collection of pairwise edge-disjoint circuits in G.
The set of incidence relations at v is

$$\Delta_v := \{ e_l(x_1, \ldots, x_m) = e_l(y_1, \ldots, y_n) \mid 1 \leq l \leq \max\{n, m\}, \}$$

where e_l is the degree-l elementary symmetric polynomial.
Incidence relations, general case

The set of *incidence relations* at \(v \) is

\[
\Delta_v := \{e_l(x_1, \ldots, x_m) = e_l(y_1, \ldots, y_n) \mid 1 \leq l \leq \max\{n, m\}\},
\]

where \(e_l \) is the degree-\(l \) elementary symmetric polynomial.

For a directed graph \(G \), its set of incidence relations is

\[
\Delta(G) := \bigcup_{v \in V(G)} \Delta_v.
\]

The *incidence set* of \(G \) is

\[
P(G) = \{p \in \mathbb{CP}^{|E(G)|-1} \mid p \text{ satisfies all incidence relations in } G\}.
\]
The incidence set

Proposition

As subsets of $\mathbb{CP}^{E(G)-1}$, $P(G) = \bigcup_{D \in \text{Dis}(G)} P(D)$.
The incidence set

Proposition
As subsets of $\mathbb{C}P^{|E(G)|-1}$, $P(G) = \bigcup_{D \in \text{Dis}(G)} P(D)$.

Lemma
Let x_1, \ldots, x_n and y_1, \ldots, y_n be two sequences of complex numbers. Then the following statements are equivalent.

1. $e_k(x_1, \ldots, x_n) = e_k(y_1, \ldots, y_n)$ for $k = 1, \ldots, n$, where e_k is the k-th elementary symmetric polynomial.

2. There is a bijection $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that $x_i = y_{\sigma(i)}$ for $i = 1, \ldots, n$.
Proposition

Let G be a directed graph.

1. For every maximal\(^1\) collection \mathcal{C} of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_\mathcal{C}$ of G such that \mathcal{C} is the collection of images of directed cycles in $D_\mathcal{C}$ under the natural homomorphism.

\(^1\)with respect to the partial order of sets given by inclusion.
Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal\(^1\) collection C of pairwise edge-disjoint directed cycles in G, there is a disassembly D_C of G such that C is the collection of images of directed cycles in D_C under the natural homomorphism.

2. For any disassembly D of G, $P(D)$ is not a proper subset of $P(D')$ for any $D' \in \text{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.

\(^1\)with respect to the partial order of sets given by inclusion.
Proposition

Let G be a directed graph.

1. For every maximal\(^1\) collection C of pairwise edge-disjoint directed cycles in G, there is a disassembly D_C of G such that C is the collection of images of directed cycles in D_C under the natural homomorphism.

2. For any disassembly D of G, $P(D)$ is not a proper subset of $P(D')$ for any $D' \in \text{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.

3. The set of irreducible components of $P(G)$ is $\{P(D_C) \mid C$ is a maximal collection of pairwise edge-disjoint directed cycles in $G\}$.

\(^1\)with respect to the partial order of sets given by inclusion.
The incidence set determines the cycle packing number

Theorem

Let G be any directed graph. Then:

1. $\dim P(G) = \alpha(G) - 1$;
The incidence set determines the cycle packing number

Theorem

Let G be any directed graph. Then:

1. $\dim P(G) = \alpha(G) - 1$;

2. $\deg P(G) =$ the number of distinct collections of $\alpha(G)$ edge-disjoint cycles in G;
The incidence set determines the cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\dim P(G) = \alpha(G) - 1$;

2. $\deg P(G) =$ the number of distinct collections of $\alpha(G)$ edge-disjoint cycles in G;

3. There is a bijection between the set of irreducible components of $P(G)$ of dimension $n - 1$ and the set of maximal collections of pairwise edge-disjoint directed cycles in G containing exactly n directed cycles.
Collections of pairwise disjoint directed cycles, a stretch
Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.
Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G;
For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

1. *There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G;*

2. *A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_G is pairwise edge-disjoint;*
For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G;
2. A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_G is pairwise edge-disjoint;
3. $\tilde{\alpha}(G) = \alpha(B_G)$.
The strong incidence set

The set of strong incidence relations at v is

$$\tilde{\Delta}_v := \{ e_1(x_1, \ldots, x_m) = e_1(y_1, \ldots, y_n) \} \cup \{ e_l(x_1, \ldots, x_m) = 0 \mid 2 \leq l \leq m \} \cup \{ e_l(y_1, \ldots, y_n) = 0 \mid 2 \leq l \leq n \}.$$
The strong incidence set

The set of **strong incidence relations** at v is

$$\tilde{\Delta}_v := \{e_1(x_1, \ldots, x_m) = e_1(y_1, \ldots, y_n)\} \cup \{e_l(x_1, \ldots, x_m) = 0 \mid 2 \leq l \leq m\} \cup \{e_l(y_1, \ldots, y_n) = 0 \mid 2 \leq l \leq n\}.$$

For a directed graph G, its set of **strong incidence relations** is $\tilde{\Delta}(G) := \bigcup_{v \in V(G)} \tilde{\Delta}_v$. The **strong incidence set** of G is

$$\tilde{P}(G) = \{p \in \mathbb{C}^{|E(G)|-1} \mid p \text{ satisfies all strong incidence relations in } G\}.$$
The strong cycle packing number

Theorem

Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$.
The strong cycle packing number

Theorem

Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$;

2. $\dim \tilde{P}(G) = \tilde{\alpha}(G) - 1$;
The strong cycle packing number

Theorem

Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{\mid E(G)\mid - 1}$;
2. $\dim \tilde{P}(G) = \tilde{\alpha}(G) - 1$;
3. $\deg \tilde{P}(G) =$ the number of distinct collections of $\tilde{\alpha}(G)$ disjoint cycles in G;
The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{C}^{\left|E(G)\right|-1}$;

2. $\dim \tilde{P}(G) = \tilde{\alpha}(G) - 1$;

3. $\deg \tilde{P}(G) = \text{the number of distinct collections of } \tilde{\alpha}(G) \text{ disjoint cycles in } G$;

4. There is a bijection between the set of irreducible components of $\tilde{P}(G)$ of dimension $n - 1$ and the set of maximal collections of pairwise disjoint directed cycles in G containing exactly n directed cycles.
Irreducible incidence sets
Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:
 1.1 $P(G)$ is irreducible;
 1.2 $P(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.
Irreducible incidence sets

Theorem

Let G be a directed graph.

1. The following statements are equivalent:
 1.1 $P(G)$ is irreducible;
 1.2 $P(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.

2. The following statements are equivalent:
 2.1 $\tilde{P}(G)$ is irreducible;
 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.
Irreducible incidence sets

Theorem

Let G be a directed graph.

1. The following statements are equivalent:
 1.1 $P(G)$ is irreducible;
 1.2 $P(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.

2. The following statements are equivalent:
 2.1 $\tilde{P}(G)$ is irreducible;
 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.

3. If $\tilde{P}(G)$ is irreducible, then $P(G) = \tilde{P}(G)$.
Theorem

Let G be a directed graph.

1. The following statements are equivalent:
 1.1 $P(G)$ is irreducible;
 1.2 $P(G)$ is a linear subspace of $\mathbb{CP}^{\vert E(G)\vert - 1}$;
 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.

2. The following statements are equivalent:
 2.1 $\tilde{P}(G)$ is irreducible;
 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{\vert E(G)\vert - 1}$;
 2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.

3. If $\tilde{P}(G)$ is irreducible, then $P(G) = \tilde{P}(G)$.

See arXiv:1508.07337 for more related results.