
SOLUTIONS TO THE FINAL EXAM

MATH 455.2 SPRING 2005

1. (15 pts) On a square n×n grid how many ways to get from the bottom left corner

to the top right corner if the only moves allowed are up or to the right?

Every such way contains exactly 2n moves, n of which are “up” and n are “to

the right”. Thus each way can be represented by a length 2n string containing n

letters “U” and n letters “R” in some order. The number of all such strings is
(

2n
n

)

.

2. (15 pts) Let an be the number of subsets of the set {1, 2, . . . , n} that do not contain

two consecutive numbers. For example, a2 = 3 (the subsets are ∅ , {1}, and {2}).

(a) (5 pts) Compute a3 and a4 by listing the corresponding subsets.

a3 = 5 (∅ , {1}, {2}, {3},{1,3}) and a4 = 8 (∅ , {1}, {2}, {3}, {4},{1,3},

{2,4},{1,4}).

(b) (10 pts) Give a recurrence relation for the numbers an . Explain your answer.

(Hint: How many subsets do not contain the number n? How many do contain

n?)

The answer is an = an−1 + an−2 . Clearly, all subsets of {1, . . . , n} that do not

contain two consecutive numbers split into two groups: those that contain n

and those that don’t. The number of those that don’t contain n is clearly an−1 .

The number of those that do contain n is an−2 . Indeed, each such subset cannot

contain n − 1, thus is obtained from a subset of {1, . . . , n− 2} not containing

two consecutive numbers by adding one extra element n .

3. (15 pts) Let A be a finite set and f, g, h function from A to itself such that f is

onto and f ◦ g = f ◦ h . Is it true that g = h necessarily? If yes give a proof, if no

provide a counterexample.

This is true. Indeed, any onto function f : A → A is also one-to-one (since

A is finite). Therefore, for any x ∈ A the equality f(g(x)) = f(h(x)) implies

g(x) = h(x), i.e. g is the same as h .
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4. (15 pts) Draw a finite state automaton for the input alphabet {0, 1} that ends up

in an accepting state for those and only those strings that begin with (end in1) 101.

Clearly indicate the initial and accepting states.

1 0 1

0 1

0

10

01

11 0

0 1

0

1

0

5. (15 pts) Define an error-correcting code with 3 bits for the message and 3 check bits

by setting x4 = (x1 + x2 +1) mod 2, x5 = (x1 + x3 +1) mod 2, x6 = (x2 + x3 +1)

mod 2.

(a) (5 pts) List all codewords. Is the code linear? Explain.

C = {000111, 001100, 010010, 011001, 100001, 101010, 110100, 111111} . The

code is not linear, e.g. 000111 + 001100 = 001011 which is not a codeword.

(b) (5 pts) The minimal distance between any two codewords is 3 (you do not have

to check that). How many errors can the code correct? Explain.

It can correct up to one error: (d − 1)/2 = 1.

(c) (5 pts) Show that the code is not perfect by counting the number of words that

can be corrected. Give an example of a word that cannot be corrected.

The number of words C can correct is 8+ 6 · 8 = 56. The total number of words

is 26 = 64. Therefore C is not perfect, e.g. 111000 cannot be corrected.

1There were two versions of this question
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6. (20 pts) Let Km,n denote the complete bipartite graph.

(a) (10 pts) For what values of m and n does the graph have an Euler circuit?

Explain.

A graph has an Euler circuit if and only if the degree of every vertex is even.

Since the only degrees that appear in Km,n are m and n , the graph has an

Euler circuit if and only if both m and n are even.

(b) (10 pts) For what values of m and n does the graph have a Hamiltonian

circuit? Explain.

A Hamiltonian circuit must visit every vertex exactly once and alternate visit-

ing vertices of each type. Thus we need m = n . Since there is an edge between

any two vertices of different types this is the only necessary condition.

7. (15 pts)

(a) (5 pts) Give the definition of a tree.

A tree is a simple connected graph without non-trivial circuits.

(b) (10 pts) Does there exist a tree with 10 leaves (vertices of degree 1) and 5

vertices of degree 4 (and no other vertices)? Explain.

No. By Euler’s formula the number of edges in any tree is one smaller than the

number of vertices. Here the total degree is 10 + 4 · 5 = 30, hence the number

of edges is 15 which is the same as the number of vertices.


