SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM \#2 MATH 455.2 SPRING 2005

(1) Show that the sequence $0,1,3,7, \ldots, 2^{n}-1, \ldots$ satisfies the recurrence relation $c_{n}=2 c_{n-1}+1$ for all $n \geq 1$.

Solution: 8.1 \#11
(2) Prove that $F_{n}=3 F_{n-3}+2 F_{n-4}$ for all $n \geq 4$, where F_{n} denotes the n-th Fibonacci number.

Solution: 8.1 \#26
(3) With each step you take when climbing a staircase, you can move up either one stair or two stairs. As a result, you can climb the entire staircase taking a combination of steps that are either one- or two-stair increments. Let c_{n} be the number of different ways to climb a staircase with n stairs $(n \geq 1)$. Find a recurrence relation for c_{n}. Find the general formula for c_{n}.

Solution: $8.1 \# 39$. For the general formula compare this sequence with the Fibonacci sequence.
(4) Use iteration method to guess an explicit formula for the sequence given recursively by $a_{k}=\frac{a_{k-1}}{2 a_{k-1}-1}$ for all $k \geq 1$ and $a_{0}=2$. Prove that your guess is correct using induction.

Solution: 8.2 \#43
(5) Solve the SOLHRRCC: $r_{k}=2 r_{k-1}-r_{k-2}$ for $k \geq 2$ and $r_{0}=1, r_{1}=4$.

Solution: $8.3 \# 13$
(6) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both 1-1, is $f+g: \mathbb{R} \rightarrow \mathbb{R}$ also 1-1? If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both onto, is $f+g: \mathbb{R} \rightarrow \mathbb{R}$ also onto? If $f: \mathbb{R} \rightarrow \mathbb{R}$ is 1-1 and $c>0$, is $c \cdot f: \mathbb{R} \rightarrow \mathbb{R}$ also 1-1?

Solution: $7.2 \# 32,33,34$
(7) How many integers must you pick to be sure that at least two of them have the same remainder when divided by 7 ?

Solution: 7.3 \#17
(8) There are 50 students in your class. All of them are known to be between 18 and 30 years old. You want to make a bet that the class contains at least k students of the same age. How large can you make k and yet be sure to win your bet?

Solution: 7.3 \#29
(9) On a square tray with side 1 meter you place 51 dimes. Prove that no matter how you place them there will be three dimes that can be covered with a plate of radius 15 cm .

Solution: Divide the square into 25 squares of side 20 cm each. By the PH principle there will be a square which contains 3 dimes. Cover this square with the plate (the diagonal of the square is about $20^{*} 1.4=28 \mathrm{~cm}$ and the diameter of the plate is 30 cm).
(10) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. If $g \circ f$ is 1-1 must f be 1-1? What about g ? Prove or give a counterexample.

Solution: $7.4 \# 18$. The function g may not be 1-1. For example: $X=\{1,2\}$, $Y=\{1,2,3\}, Z=X=\{1,2\}, f(1)=1, f(2)=2, g(1)=1, g(2)=g(3)=2$. Then the composition $g \circ f$ is identity on X, but g is not 1-1. Draw an arrow diagram!
(11) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. If $g \circ f$ is onto must f be onto? What about g ? Prove or give a counterexample.

Solution: $7.4 \# 19$. The function f may not be onto. See the above example.
(12) Prove that any infinite set contains a countable infinite subset.

Solution: 7.5 \#26.
(13) Show that the set of all finite sequences of 0 's and 1's is countable.

Solution: Here is how you can enumerate all finite sequences of 0 's and 1 's. Let the empty sequence be number 1 , length one sequences (0 and 1) be number 2 and 3 , length two sequences $(00,01,10,11)$ be number $4,5,6$, and 7 , and so on (in general, length n sequences will be enumerated by $\left.2^{n}, 2^{n}+1, \ldots, 2^{n+1}-1\right)$. Notice that this is equivalent to adding 1 in front of the sequence and taking the integer number whose binary representation is this augmented sequence.

