
SOLUTIONS TO MIDTERM #2

MATH 455.2 SPRING 2005

1. (20 pts) Consider the recurrence relation 4an = 4an−1 − an−2 , n ≥ 2.

(a) (10 pts) Find the general form of the solution.

The characteristic equation is 4t2−4t+1 = 0 which has a double root t = 1/2.

Therefore the general form is

an = L(1/2)n + Mn(1/2)n.

(b) (10 pts) Give a formula for an valid for n ≥ 0 that satisfies the initial conditions

a0 = 3, a1 = 2.

Now we solve for L and M using the initial conditions. We have 3 = a0 = L and

2 = a1 = L/2 +M/2 = 3/2 +M/2, which gives M = 1. Therefore

an = 3(1/2)n + n(1/2)n.

2. (20 pts) Suppose c1, c2, . . . is a sequence with c0 = 1 and, for n ≥ 1, satisfying the

recurrence relation cn = cn−1 + 3 · 2n−1 .

(a) (5 pts) Compute c1 , c2 , c3 , and c4 .

c1 = 1 + 3 · 20 = 4, c2 = 1 + 3 · 20 + 3 · 21 = 10,

c3 = 1 + 3 · 20 + 3 · 21 + 3 · 22 = 22, c4 = 1 + 3 · 20 + 3 · 21 + 3 · 22 + 3 · 23 = 46.

(b) (15 pts) Guess a formula for cn valid for n ≥ 0 and prove that your guess

is correct using mathematical induction. Use words to explain your logic and

process.

Notice

cn = 1 + 3 · 20 + · · ·+ 3 · 2n−1 = 1 + 3(20 + · · ·+ 2n−1) = 1 + 3(2n − 1) = 3 · 2n − 2.

Now let us prove this using PMI:

Base: If n = 0, c0 = 3 · 20 − 2 = 1 which coincides with the initial condition.

Step: Assume that the formula is true for n− 1, i.e. cn−1 = 3 · 2n−1− 2. We have

cn = cn−1 + 3 · 2n−1 = 3 · 2n−1 − 2 + 3 · 2n−1 = 3 · 2n − 2,

i.e. the formula is true for n . By the PMI the formula is true for any n ≥ 1.
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3. (15 pts) How many one-to-one functions are there from the set of 5 elements to the

set of 7 elements? Justify your answer, but do not attempt to write them all down.

The image of a one-to-one function consists of 5 distinct elements of the co-

domain. Each choice of 5 elements gives rise to 5! such functions. Therefore the

total number of one-to-one functions is 5!
(

7
5

)

(or the number of 5-permutations on

the set of 7 elements P (7, 5)).

4. (15 pts) Give an example of a function f : Z → Z which is onto, but not one-to-one.

For example you can take f to be bn/2c , where bxc is the floor function. There

are many other examples. To show f is onto notice that for any integer m we

have f(2m) = b2m/2c = bmc = m . But f is not one-to-one since, for example,

f(0) = f(1) = 0.

5. (10 pts) Prove that 2 + 4 + 6 + · · ·+ 2n is Θ(n2). You may use limits.

First, find the sum using the formula for the arithmetic series: 2+4+6+· · ·+2n =

n(n+ 1) = n2 + n . Now use limits:

lim
n→∞

n2 + n

n2
= lim

n→∞

(

1 +
1

n

)

= 1.

Since the limit is a finite non-zero number, n2 + n is Θ(n2).

6. (15 pts) Show that in a group of 3 people whose sum of ages is 67 years there will

always be two people whose sum of ages is at least 45.

Here is one of possible solutions. Notice that there will always be a person whose

age is at most 22 (otherwise, the sum of all ages would be at least 23 ·3 = 69, which

is impossible). But then the sum of the ages of the other two people will be at least

67− 22 = 45.

7. (15 pts) Prove that a countable union of countable sets is countable, i.e. if

A1, A2, A3, . . . are countable sets then so is A = ∪∞i=1Ai . (Hint: Let aij be the

j -th element in Ai . Recall the proof of the countability of N× N .)

Construct a table (infinite down and to the right) whose i-th row is the list

ai1, ai2, ai3, . . . of all the elements of Ai . Then enumerate the elements in the table

using the zigzag path as in the proof of the countability of N × N . This shows

that the set of all elements in the table is countable. Notice that there could be

repeated elements in the table since the Ai can have common elements. The union

A = ∪∞i=1Ai is a subset of the set of all elements in the table and hence is countable.


