SOLUTIONS TO MIDTERM \#2 MATH 455.2 SPRING 2005

1. (20 pts) Consider the recurrence relation $4 a_{n}=4 a_{n-1}-a_{n-2}, n \geq 2$.
(a) (10 pts) Find the general form of the solution.

The characteristic equation is $4 t^{2}-4 t+1=0$ which has a double root $t=1 / 2$. Therefore the general form is

$$
a_{n}=L(1 / 2)^{n}+M n(1 / 2)^{n} .
$$

(b) (10 pts) Give a formula for a_{n} valid for $n \geq 0$ that satisfies the initial conditions $a_{0}=3, a_{1}=2$.

Now we solve for L and M using the initial conditions. We have $3=a_{0}=L$ and $2=a_{1}=L / 2+M / 2=3 / 2+M / 2$, which gives $M=1$. Therefore

$$
a_{n}=3(1 / 2)^{n}+n(1 / 2)^{n} .
$$

2. (20 pts) Suppose c_{1}, c_{2}, \ldots is a sequence with $c_{0}=1$ and, for $n \geq 1$, satisfying the recurrence relation $c_{n}=c_{n-1}+3 \cdot 2^{n-1}$.
(a) (5 pts) Compute c_{1}, c_{2}, c_{3}, and c_{4}.

$$
\begin{gathered}
c_{1}=1+3 \cdot 2^{0}=4, \quad c_{2}=1+3 \cdot 2^{0}+3 \cdot 2^{1}=10 \\
c_{3}=1+3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}=22, \quad c_{4}=1+3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+3 \cdot 2^{3}=46
\end{gathered}
$$

(b) (15 pts) Guess a formula for c_{n} valid for $n \geq 0$ and prove that your guess is correct using mathematical induction. Use words to explain your logic and process.

Notice

$$
c_{n}=1+3 \cdot 2^{0}+\cdots+3 \cdot 2^{n-1}=1+3\left(2^{0}+\cdots+2^{n-1}\right)=1+3\left(2^{n}-1\right)=3 \cdot 2^{n}-2 .
$$

Now let us prove this using PMI:
Base: If $n=0, c_{0}=3 \cdot 2^{0}-2=1$ which coincides with the initial condition.
Step: Assume that the formula is true for $n-1$, i.e. $c_{n-1}=3 \cdot 2^{n-1}-2$. We have

$$
c_{n}=c_{n-1}+3 \cdot 2^{n-1}=3 \cdot 2^{n-1}-2+3 \cdot 2^{n-1}=3 \cdot 2^{n}-2,
$$

i.e. the formula is true for n. By the PMI the formula is true for any $n \geq 1$.
3. (15 pts) How many one-to-one functions are there from the set of 5 elements to the set of 7 elements? Justify your answer, but do not attempt to write them all down.

The image of a one-to-one function consists of 5 distinct elements of the codomain. Each choice of 5 elements gives rise to 5 ! such functions. Therefore the total number of one-to-one functions is $5!\binom{7}{5}$ (or the number of 5 -permutations on the set of 7 elements $P(7,5)$).
4. (15 pts) Give an example of a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is onto, but not one-to-one.

For example you can take f to be $\lfloor n / 2\rfloor$, where $\lfloor x\rfloor$ is the floor function. There are many other examples. To show f is onto notice that for any integer m we have $f(2 m)=\lfloor 2 m / 2\rfloor=\lfloor m\rfloor=m$. But f is not one-to-one since, for example, $f(0)=f(1)=0$.
5. (10 pts) Prove that $2+4+6+\cdots+2 n$ is $\Theta\left(n^{2}\right)$. You may use limits.

First, find the sum using the formula for the arithmetic series: $2+4+6+\cdots+2 n=$ $n(n+1)=n^{2}+n$. Now use limits:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1 .
$$

Since the limit is a finite non-zero number, $n^{2}+n$ is $\Theta\left(n^{2}\right)$.
6. (15 pts) Show that in a group of 3 people whose sum of ages is 67 years there will always be two people whose sum of ages is at least 45 .

Here is one of possible solutions. Notice that there will always be a person whose age is at most 22 (otherwise, the sum of all ages would be at least $23 \cdot 3=69$, which is impossible). But then the sum of the ages of the other two people will be at least $67-22=45$.
7. (15 pts) Prove that a countable union of countable sets is countable, i.e. if $A_{1}, A_{2}, A_{3}, \ldots$ are countable sets then so is $A=\cup_{i=1}^{\infty} A_{i}$. (Hint: Let $a_{i j}$ be the j-th element in A_{i}. Recall the proof of the countability of $\mathbb{N} \times \mathbb{N}$.)

Construct a table (infinite down and to the right) whose i-th row is the list $a_{i 1}, a_{i 2}, a_{i 3}, \ldots$ of all the elements of A_{i}. Then enumerate the elements in the table using the zigzag path as in the proof of the countability of $\mathbb{N} \times \mathbb{N}$. This shows that the set of all elements in the table is countable. Notice that there could be repeated elements in the table since the A_{i} can have common elements. The union $A=\cup_{i=1}^{\infty} A_{i}$ is a subset of the set of all elements in the table and hence is countable.

