SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM \#1 MATH 455 SPRING 2004

(1) Give a numerical value for $\binom{10}{7}$.

$$
\binom{10}{7}=\frac{10 \cdot 9 \cdot 8}{3!}=120 .
$$

(2) Give a numerical value for $P(6,4)$.

$$
P(6,4)=6 \cdot 5 \cdot 4 \cdot 3=360 .
$$

(3) How many ways are there to place 5 identical balls into 3 distinct boxes?

$$
\binom{5+3-1}{5}=\binom{7}{5}=\frac{7 \cdot 6}{2}=21
$$

(4) How many ways can the 25 -member cooking club choose its President, Vice President, and Secretary?

$$
25 \cdot 24 \cdot 23 .
$$

(5) How many ways can 22 players be divided into two teams of 11 for a soccer game?

$$
\binom{22}{11}
$$

(Once 11 players are picked for one team the other 11 form the other team.)
(6) How many distinct arrangements of the letters in HIPPOPOTAMUS are there?

$$
\binom{12}{3}\binom{9}{2} 7!\text { or } \frac{12!}{3!\cdot 2!} .
$$

(7) How many numbers less than 800,000 can be formed by rearranging the digits in 219,338?

The first digit can only be 1,2 , or 3 . If it is 1 then there are $5!/ 2$ arrangements of the other digits. If it is 2 then again $5!/ 2$ arrangements. Finally, if it is 3 then there are 5 ! arrangements of the other digits. Summing up: $2 \cdot 5$!.

Another solution: Pretend the two " 3 " are different (3_{1} and 3_{2}). Then the answer would be $4 \cdot 5$! (the first digit is $1,2,3_{1}$ or 3_{2}; the rest is a permutation of the other five digits). But now we need to recall that 3_{1} is the same as 3_{2}, hence divide the answer by 2 . We get $2 \cdot 5$!.
(8) How many ways can you arrange the letters of the alphabet so that there are exactly 5 letters between the a and the b ?

If a is placed to the left of b then there are 20 ways to place a and b together. (a can take any place from 1 to 20). There are 24 ! ways to place the remaining letters to the remaining 24 places. We get $20 \cdot 24$!. The same if b is placed to the left of a. Total: $2 \cdot 20 \cdot 24$!.
(9) Count the number of 5 -card poker hands with 4 of the same denomination.

There are 13 ways to pick the denomination for the 4 cards, and $52-4=48$ ways to pick the 5 -th card. By multiplication rule the total number is $13 \cdot 48$.
(10) What is the probability that after a pair of dice is rolled the minimum of the two numbers showing is 4 ?

Total number of outcomes: $6 \cdot 6=36$. The number of outcomes in the event: 5 . (They are $(4,4),(4,5),(4,6),(5,4),(6,4)$.$) The probability is 5 / 36$.
(11) How many strings of 4 letters begin or end with one of the five vowels?

The number of the strings that begin with a vowel is $5 \cdot 26^{3}$. The number of the strings that end with a vowel is $26^{3} \cdot 5$. The number of the strings that begin and end with a vowel is $5 \cdot 26^{2} \cdot 5$. By inclusion/exclusion we have $5 \cdot 26^{3}+26^{3} \cdot 5-5 \cdot 26^{2} \cdot 5$.
(12) How many integers from 1 to 300 are divisible by 4 or by 14 ?

There are 75 divisible by 4,21 divisible by 14 and 10 divisible by both (i.e. divisible by 28). By inclusion/exclusion we have $75+21-10=86$ divisible by 4 or 14 .
(13) A bag has 3 red, 5 orange, 4 green, and 7 white balls. How many distinguishable collections of 3 balls can be drawn from the bag?

There are 4 types of balls. You need to choose 3 . Since there is a least 3 of each type these are 3-combinations on 4-element set with repetition allowed. The answer is

$$
\binom{3+4-1}{3}
$$

(14) Prove by induction that

$$
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Base of induction $(n=1)$:

$$
1=1^{3}=\left(\frac{1 \cdot 2}{2}\right)^{2}=1
$$

Inductive step: Suppose it is true for $n=k$, i.e.

$$
\sum_{i=1}^{k} i^{3}=\left(\frac{k(k+1)}{2}\right)^{2}
$$

We need to show it is true for $n=k+1$. We have

$$
\begin{gathered}
\sum_{i=1}^{k+1} i^{3}=\sum_{i=1}^{k} i^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}= \\
(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right)=(k+1)^{2} \frac{k^{2}+4 k+4}{4}=\left(\frac{(k+1)(k+2)}{2}\right)^{2}
\end{gathered}
$$

By PMI the statement follows for all n.
(15) Prove by induction that $(1+x)^{n} \geq 1+n x$ for any positive integer n and any $x \geq-1$. Base of induction $(n=1): 1+x \geq 1+x$ true for any x.
Inductive step: Suppose the statement is true for $n=k$:

$$
(1+x)^{k} \geq 1+k x \quad \text { for any } \quad x \geq-1
$$

Multiply both sides of the inequality by $1+x$ (this won't change the sign of the inequality since $1+x \geq 0)$. We obtain

$$
(1+x)^{k+1} \geq(1+k x)(1+x)=1+k x+x+x^{2}=1+(k+1) x+x^{2}
$$

Clearly $1+(k+1) x+x^{2} \geq 1+(k+1) x$ since $x^{2} \geq 0$. Therefore we have

$$
(1+x)^{k+1} \geq 1+(k+1) x
$$

i.e. the statement is true for $n=k+1$. By PMI the statement follows for all n.
(16) When a group of n businessmen arrives at a meeting each person shakes hands with all the other people present. Guess the number of handshakes occur. Prove your guess by induction.

Trying $n=2,3,4$ one can guess that the number of handshakes is $n(n-1) / 2$. Indeed, imagine one more businessman arrives. Then he has to shake hands with all the n businessmen present at the meeting. This adds n more handshakes. Therefore if we assume that the formula is true for n people, we get $n(n-1) / 2+n$ handshakes for $n+1$ people. An easy computation shows that $n(n-1) / 2+n=$ $(n+1) n / 2$, i.e. the formula is also true for $n+1$ people.

Another argument is to count the number of greetings. Each of the n people has to greet the other $n-1$ people at the meeting, which is $n(n-1)$ total greetings. But that's twice as many as the number of handshakes! (When Peter and Brian shake hands Peter greets Brian and also Brian greets Peter.)

