SOLUTIONS TO MIDTERM \#1 MATH 455 SPRING 2005

(1) (10) Give a numerical value for $\frac{\binom{11}{4}}{P(11,2)}$.

$$
\frac{11 \cdot 10 \cdot 9 \cdot 8}{(4 \cdot 3 \cdot 2)(11 \cdot 10)}=\frac{9}{3}=3 .
$$

(2) (10) How many solutions to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=50$ are there in positive integers (i.e. each $\left.x_{i} \geq 1, i=1,2,3,4,5\right)$?

This is equivalent to how many ways to place 50 balls into 5 boxes so that there is at least one ball in each box. Put one ball in each box. You can distribute the remaining $50-5=45$ balls in $\binom{45+5-1}{45}$ ways. Thus there are $\binom{49}{45}$ solutions.
(3) (10) How many distinct arrangements of the letters in REVERSE start with an E and end with an R?

The number of arrangements that start with an E and end with an R is the number of all arrangements of EVERS, i.e. $\frac{5!}{2!}$ (since there are 2 letters E).
(4) (10) How many 5 -card hands from the standard 52 card deck have "three of a kind", i.e. three cards of the same denomination and two others of different denomination? (Caution: Do not include full-house hands!)

Choose one of 13 denominations for the three of a kind. Then there are $\binom{4}{3}$ choices for their suit. Now you should add the remaining two cards. There are 48 choices for the 4 th card (52 minus 4 of the first three cards' denomination) and 44 choices for the 5 th (48 minus 4 of the 4 th card's denomination). Since the order of the last two cards does not matter we have to divide by 2 . Total:

$$
13\binom{4}{3} \frac{48 \cdot 44}{2}
$$

Other correct answers:

$$
13\binom{4}{3}\binom{12}{2}\binom{4}{1}\binom{4}{1} \quad \text { or } \quad 13\binom{4}{3}\binom{48}{2}-13\binom{4}{3} 12\binom{4}{2}
$$

(5) (10) Count the number of ways 12 players can be split into 3 teams of four for a bridge tournament. (Assuming there is no order of the teams.)

Choose 4 players for team 1, 4 for team 2, and 4 for team 3. That is $\binom{12}{4}\binom{8}{4}\binom{4}{4}$. Since there is no order of the teams divide by 3 !, which is the number of all
permutations of the three teams. The answer is

$$
\frac{1}{3!}\binom{12}{4}\binom{8}{4}
$$

(6) (10) What is the number of 4 -letter words that either start or end with a vowel? (Note: "word" means a string letters, a vowel is one of the five letters $\{a, e, i, o, u\}$.)

The number of the words that begin with a vowel is $5 \cdot 26^{3}$. The number of the words that end with a vowel is $26^{3} \cdot 5$. The number of the words that begin and end with a vowel is $5 \cdot 26^{2} \cdot 5$. By inclusion/exclusion we have $5 \cdot 26^{3}+26^{3} \cdot 5-5 \cdot 26^{2} \cdot 5$.
(7) (10) What is the probability that a number between 1 and 100 (inclusive) chosen at random will be divisible by either 2,3 or 5 ?

The number of integers divisible by 2 is 50 , by 3 is 33 , and by 5 is 20 . The number of integers divisible by 2 and 3 (i.e. by 6) is 16 , by 2 and 5 (i.e. by 10) is 10 , and by 3 and 5 (i.e. by 15) is 6 . The number of integers divisible by all of them (i.e. by 30) is 3. By inclusion/exclusion formula we have $50+33+20-16-10-6+3=74$ numbers divisible by at least one of 2,3 or 5 . The probability is $74 / 100$.
(8) (20) Prove by induction that for any $n \geq 1$

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

Base: $n=1$.

$$
\frac{1}{1 \cdot 3}=\frac{1}{2+1}=\frac{1}{3} .
$$

Inductive step: assume true for $n=k$, i.e.

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1} .
$$

Need to prove for $n=k+1$, i.e.

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3} .
$$

By assumption the left hand side of the latter equality is equal to

$$
\begin{aligned}
& \frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}=\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
= & \frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)}=\frac{(k+1)(2 k+1)}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3},
\end{aligned}
$$

as required. By the PMI the statement is true for any $n \geq 1$.
(9) A rook is a chess piece that may move any number of unoccupied squares either vertically or horizontally.
a) How many ways to place 8 indistinguishable rooks on the chess board so that no rook is attacked by another?
It is impossible to have 2 rooks on the same row without them attacking each other. Since there are 8 rooks and 8 rows each row must have exactly one rook. The rook in the 1st row can take one of 8 places. The rook in the 2 nd row can take one of 7 places (it cannot be in the same column with the 1st one), etc. The answer is $8 \cdot 7 \cdot 6 \cdots 2 \cdot 1=8$!.
b) (Bonus.) How many ways to place 8 indistinguishable rooks on the chess board so that each unoccupied square is attacked by at least one rook?
Now either in every row there should be a rook or in every column there should be a rook. (Otherwise there is a row and a column where there are no rooks. But then the intersection of this row and this column is not attacked!) If in every row there is a rook that is 8^{8} possible placements (8 choices for the rook on the 1 st row, 8 for the rook in the 2 nd etc.) Similarly there are 8^{8} placements when there is a rook in every column. By inclusion/exclusion we need to subtract the number of placements when in every row and in every column there is a rook, which is 8 ! by part a). Therefore, the total number is $2 \cdot 8^{8}-8$!

