DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF MASSACHUSETTS
MATH 455 May 17, 2004
FINAL EXAM, DURATION 2 HOURS

Your Name: ________________________________

Your Section: ____________________________

This exam paper consists of 7 questions. It has 6 pages. Show your work: all your answers must be justified. No calculators, books or notes are allowed!

1. (15) __________
2. (15) __________
3. (15) __________
4. (15) __________
5. (15) __________
6. (20) __________
7. (15) __________

TOTAL (110)
1. (15 pts) Count the number of ways 33 players can be split into three soccer teams: Spartak, Dinamo, and Torpedo. (Note: Each soccer team has 11 players.)

2. (15 pts) Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by the formula $f(m, n) = 2^m 5^n$.

 (a) (10 pts) Is f one-to-one?

 (b) (5 pts) Is f onto?
3. (15 pts) Let B_4 denote the set of all length 4 binary strings. Consider the Hamming distance function $Hd : B_4 \times B_4 \rightarrow \mathbb{Z}$.

(a) (5 pts) What is the number of preimages of 0 under Hd?

(b) (5 pts) What is the number of preimages of 1 under Hd?

(c) (5 pts) What is the number of preimages of 5 under Hd?
4. (15 pts) Draw a finite state automaton for the input alphabet \(\{0, 1\} \) that accepts the set of all strings that end in 01. Clearly indicate the initial and accepting states.

5. (15 pts) Consider the error correcting code \(C = \{00000, 01011, 10101, 11110\} \). This is a \((5, 4, d)\) error correcting code.

 (a) (5 pts) Is \(C \) linear?

 (b) (5 pts) Find \(d \). How many errors can \(C \) correct? Explain.

 (c) (5 pts) Is \(C \) perfect?
6. (20 pts) Let G be a simple graph with n vertices.

(a) (10 pts) Prove that the number of edges of G is at most $n(n - 1)/2$.

(b) (10 pts) Is it possible that the degrees of the vertices of G are all different? Justify.
7. (15 pts) Recall that a simple graph is bipartite if it is possible to color its vertices into two different colors in such a way that no two vertices of the same color are connected with an edge. Prove that a graph is bipartite if and only if it does not contain circuits with an odd number of edges.