MATH 300 Practise Exam 3

April, 2007

The actual exam consists of two parts. In the first part, you will be asked to slove a recursive relation. In the second part of the exam, you will be asked to prove the following 3 theorems.

1. $X=\{1,2,3,4, \cdots, 2006,2007\}$. Find the least integer n so that every subset of X with n or more elements contains 3 consecutive integers, and justify your answer. (Hint. you need show: (i) There is a subset of X with $n-1$ elements that does not contain 3 consecutive integers; (ii) Every subset of X with n or more elements contains 3 consecutive integers.)
2. Prove that, for any $z, w \in \mathbb{C}$,

$$
|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)
$$

3. Let $\left\{F_{n}\right\}$ be the Fibonacci sequence. Prove that $F_{k+1}^{2}-F_{k}^{2}=F_{k-1} F_{k+2}$ for all integers $k \geq 1$.
