The actual exam consists of one combinatorial problem and the following four problems.

1. Prove by mathematical induction that $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n-1}{n!} = 1 - \frac{1}{n!}$ for all integers $n \geq 2$.

- **2.** (a) State the definition of holomorphic functions.
- (b) Define f(z) = ¹/₂(e^{zi} + e^{-zi}). Prove that f(z) = cos z if z ∈ ℝ.
 (c) Prove by definition that the function f(z) from part (b) is holomorphic.
- **3.** (M, d) is a metric space.
- (a) State the definition of open sets in (M, d).
- (b) Prove the following statements.
- (1) M and \emptyset are open.
- (2) If U_1, \dots, U_n are open sets in M, then $\bigcap_{k=1}^n U_k$ is also open.
- (3) If \mathcal{F} is a family of open sets in M, then $\bigcup_{U \in \mathcal{F}} U$ is also open.

4. (a) State the definition of continuous functions from a metric space to a metric space.

(c) (M, d_1) and (N, d_2) are metric spaces. Prove that $f: (M, d_1) \to (N, d_2)$ is continuous if and only if the $f^{-1}(U)$ is an open subset of (M, d_1) whenever U is an open subset of (N, d_2) .