The actual exam consists of one combinatorial problem and the following four problems.

1. Prove by mathematical induction that $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n-1}{n!}=1-\frac{1}{n!}$ for all integers $n \geq 2$.
2. (a) State the definition of holomorphic functions.
(b) Define $f(z)=\frac{1}{2}\left(e^{z i}+e^{-z i}\right)$. Prove that $f(z)=\cos z$ if $z \in \mathbb{R}$.
(c) Prove by definition that the function $f(z)$ from part (b) is holomorphic.
3. (M, d) is a metric space.
(a) State the definition of open sets in (M, d).
(b) Prove the following statements.
(1) M and \emptyset are open.
(2) If U_{1}, \cdots, U_{n} are open sets in M, then $\cap_{k=1}^{n} U_{k}$ is also open.
(3) If \mathcal{F} is a family of open sets in M, then $\cup_{U \in \mathcal{F}} U$ is also open.
4. (a) State the definition of continuous functions from a metric space to a metric space.
(c) $\left(M, d_{1}\right)$ and $\left(N, d_{2}\right)$ are metric spaces. Prove that $f:\left(M, d_{1}\right) \rightarrow\left(N, d_{2}\right)$ is continuous if and only if the $f^{-1}(U)$ is an open subset of $\left(M, d_{1}\right)$ whenever U is an open subset of $\left(N, d_{2}\right)$.
