MATH 300 Final Practice Exam

1. H_1 and H_2 are subgroups of \mathbb{Z} . Prove that $H_1 + H_2$ is also a subgroup of \mathbb{Z} .

2. Prove Cantor's Theorem. That is, for every set A, $|A| < |\mathcal{P}(A)|$.

- **3.** (M, d) is a metric space.
- (a) State the definition of open sets in (M, d).
- (b) Prove the following statements.
- (1) M and \emptyset are open.
- (2) If U_1, \dots, U_n are open sets in M, then $\bigcap_{k=1}^n U_k$ is also open.
- (3) If \mathcal{F} is a family of open sets in M, then $\cup_{U \in \mathcal{F}} U$ is also open.

4. (M, τ) is a topological space. $A \subset M$.

(a) State the definition of interior points of A and the definition of Int(A).

- (b) Prove that Int(A) is a subset of A and an open subset of M.
- (c) Prove that, if X is a subset of A and an open subset of M, then $X \subset Int(A)$.

5. (a) State the definition of continuous functions from a metric space to a metric space.

(b) State the definition of continuous functions from a topological space to a topological space.

(c) (M,d) is a metric space, and τ_d is the topology of M induced by d. Prove that $f : (M,d) \to (M,d)$ is continuous if and only if $f : (M,\tau_d) \to (M,\tau_d)$ is continuous.