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A NONLINEAR FOURTH-ORDER PARABOLIC EQUATION WITH

NONHOMOGENEOUS BOUNDARY CONDITIONS∗
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Abstract. A nonlinear fourth-order parabolic equation with nonhomogeneous Dirichlet–Neu-
mann boundary conditions in one space dimension is analyzed. This equation appears, for instance,
in quantum semiconductor modeling. The existence and uniqueness of strictly positive classical
solutions to the stationary problem are shown. Furthermore, the existence of global nonnegative weak
solutions to the transient problem is proved. The proof is based on an exponential transformation
of variables and new “entropy” estimates. Moreover, it is proved by the entropy–entropy production
method that the transient solution converges exponentially fast to its steady state in the L1 norm as
time goes to infinity, under the condition that the logarithm of the steady state is concave. Numerical
examples show that this condition seems to be purely technical.
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1. Introduction. In recent years, the nonlinear fourth-order parabolic equation

(1.1) ut + (u(log u)xx)xx = 0, u(·, 0) = uI ≥ 0 in Ω, t > 0,

in a bounded interval Ω = (0, 1) with periodic or Dirichlet–Neumann boundary condi-
tions or in the whole space Ω = R, has attracted the interest of many mathematicians
since it possesses some interesting mathematical properties. For instance, the solu-
tions are nonnegative, there are several Lyapunov functionals, and related logarithmic
Sobolev inequalities can be derived [4, 10].

Equation (1.1) was first derived in the context of fluctuations of a stationary
nonequilibrium interface [9]. It also appears as an approximation of the so-called quan-
tum drift-diffusion model for semiconductors [1], which can be derived by a quantum
moment method from a Wigner-BGK (Bhatnagar–Gross–Krook) equation [8]. More
precisely, the quantum drift-diffusion model for the electron density u and the electron
current density J reads as

ut − Jx = 0, J = −ε2

2
u

(

(
√

u)xx√
u

)

x

+ Tux + uE,

where ε is the scaled Planck constant, T the temperature, and E = E(x, t) the
electric field. Then (1.1) follows from this equation for ε = 1, zero temperature, and
zero electric field since u((

√
u)xx/

√
u)x = 2(u(logu)xx)x.
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‡Dipartimento di Matematica, Università di Pavia, Via Ferrara 1, 27100 Pavia, Italy (giuseppe.
toscani@unipv.it).

1761



1762 M. P. GUALDANI, A. JÜNGEL, AND G. TOSCANI

The first analytical result for (1.1) has been presented in [4]; more precisely, the
existence of local-in-time positive classical solutions with periodic boundary conditions
has been proved. This result has been generalized to global nonnegative weak solutions
in [10]. The existence of global weak periodic solutions in several space dimensions
has been proved very recently employing Wasserstein space techniques [12].

In quantum semiconductor modeling, Dirichlet–Neumann boundary conditions of
the type

(1.2) u(0, t) = u(1, t) = 1, ux(0, t) = ux(1, t) = 0, t > 0,

have been employed to model resonant tunneling diodes in Ω = (0, 1) [14]. Here,
the function u(x, t) signifies the (nonnegative) electron density in the semiconductor
device. The existence of global weak solutions to (1.1)–(1.2) has been proved in [13].

The boundary conditions (1.2) simplify the analysis considerably. Indeed, one of
the main ideas of the existence proof is to employ an exponential transformation of
variables, u = ey. In the new variable y, the boundary conditions are homogeneous.
Thus, using, for instance, the test function y in the weak formulation of (1.1), no
integrals with boundary data appear.

The boundary conditions (1.2) follow from physical considerations like the charge
neutrality at the boundary contacts, i.e., u−C = 0 at x = 0, 1, where C = C(x) mod-
els fixed background charges. Numerical results show that the Neumann boundary
conditions for the density u should be nonhomogeneous for ultrasmall semiconductor
devices (see section 4 in [16]). Moreover, when the values of the doping profile C(x)
are different at the contacts, the Dirichlet boundary conditions satisfy u(0, t) 6= u(1, t).
Therefore, we wish to study the more general nonhomogeneous boundary conditions

(1.3) u(0, t) = u0, u(1, t) = u1, ux(0, t) = w0, ux(1, t) = w1, t > 0,

where u0, u1 > 0 and w0, w1 ∈ R. The treatment of the nonhomogeneities is also
interesting from a mathematical point of view. Indeed, almost all results for (1.1)
(and for related fourth-order equations like the thin-film model [3]) are shown only
for periodic or no-flux boundary conditions or for whole-space problems, in order
to avoid integrals with boundary data. In this paper, we show how to deal with
nonhomogeneous boundary conditions for (1.1).

More precisely, we show (i) the existence and uniqueness of a classical positive
solution u∞ to the stationary problem corresponding to (1.1), (ii) the existence of
global nonnegative weak solutions u(·, t) to the transient problem (1.1), (1.3), and
(iii) the exponential convergence of u(·, t) to its steady state u∞ as t → ∞ in the L1

norm, under the assumption that the boundary data is such that log u∞ is concave.
The long-time behavior is illustrated by numerical experiments. Notice that this is
the first result of the stationary problem corresponding to (1.1) in the literature (if
(1.2) or periodic boundary conditions are assumed, the steady state is constant). We
also remark that the Wasserstein techniques of [12] cannot be applied to (1.1), (1.3)
since this technique relies on the conservation of the L1 norm which is not the case
here.

The long-time behavior of solutions to (1.1) has been studied for periodic bound-
ary conditions [5, 10] and for the boundary conditions (1.2) [15]. In particular, it
could be shown that the solutions converge exponentially fast to their (constant)
steady states. The decay rate has been numerically computed in [6]. No results are
available up to now for the case of the nonhomogeneous boundary conditions (1.3).



A NONLINEAR FOURTH-ORDER PARABOLIC EQUATION 1763

Our first main result is the existence and uniqueness of stationary solutions needed
in the existence proof for the transient problem.

Theorem 1.1. Let u0, u1 > 0 and w0, w1 ∈ R. Then there exists a unique

classical solution u ∈ C∞([0, 1]) to

(u(log u)xx)xx = 0 in (0, 1), u(0) = u0, u(1) = u1,(1.4)

ux(0) = w0, ux(1) = w1,

satisfying u(x) ≥ m > 0 for all x ∈ [0, 1], and the constant m > 0 depends only on

the boundary data.

The existence proof is based on a fixed-point argument and appropriate a priori
estimates, using the structure of the equation and the one-dimensionality heavily.
More precisely, we perform the exponential transformation u = ey and write the
equation in (1.4) as yxx = (ax + b)e−y for some a, b ∈ R. The key point is to
derive uniform bounds on a and b. This implies a uniform H1 bound for y and, in
view of the one-dimensionality, a uniform L∞ bound for y = log u, hence showing the
positivity of u. For the uniqueness we employ a monotonicity property of the operator√

u 7→ −(u(log u)xx)xx/(2
√

u) for suitable functions u (the monotonicity property was
first observed in [13]).

The second main result is the existence of solutions to the transient problem. For
simplicity, we consider time-independent boundary data only.

Theorem 1.2. Let u0, u1 > 0 and w0, w1 ∈ R. Let uI(x) ≥ 0 be integrable

such that
∫ 1

0 (uI − log uI)dx < ∞. Then there exists a weak solution u to (1.1), (1.3)
satisfying u(x, t) ≥ 0 in (0, 1) × (0,∞) and

u ∈ L
5/2
loc (0,∞; W 1,1(0, 1)) ∩ W

1,10/9
loc (0,∞; H−2(0, 1)), log u ∈ L2

loc(0,∞; H2(0, 1)).

For the proof of this theorem we semidiscretize (1.1) in time and solve at each time
step a nonlinear elliptic problem. The main difficulty is to obtain uniform estimates.
The idea of [13] is to derive these estimates from a special Lyapunov functional,

E1(t) =

∫ 1

0

(

u

u∞
− log

u

u∞

)

dx,

which is also called an “entropy” functional. Indeed, a formal computation (made
precise in section 3) shows that

(1.5)
dE1

dt
+

∫ 1

0

(log u)2xxdx =

∫ 1

0

u(log u)xx

(

1

u∞

)

xx

dx,

implying that E1 is nonincreasing if (1/u∞)xx = 0, which is the case in [13] where
u∞ = const holds. However, in the general case (1/u∞)xx 6= 0, the right-hand side of
(1.5) still needs to be estimated.

The key idea is to employ the new “entropy”

E2(t) =

∫ 1

0

(
√

u −√
u∞)2dx.

A formal computation yields

(1.6)
dE2

dt
+ 2

∫ 1

0

(

4

√

u∞

u
(
√

u)xx − 4

√

u

u∞
(
√

u∞)xx

)2

dx = 0.
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With this estimate the right-hand side of (1.5) can be treated. Indeed, the above
entropy production integral allows us to find the bound

(1.7)

∫ 1

0

(√
u(log u)2xx + ( 8

√
u)4x
)

dx ≤ c

for some constant c > 0 depending only on the boundary data; see Lemma 3.2 for
details. (Here and in the following, the notation (f(u))4x means [(f(u))x]4.) Then,
using Young’s inequality, the right-hand side of (1.5) is bounded from above by

∫ 1

0

√
u(log u)2xxdx + ‖1/u2

∞‖W 2,∞(0,1)

∫ 1

0

u3/2dx,

which is bounded in view of (1.7). We stress the fact that this idea is new in the
literature.

The above estimates are only valid if u is nonnegative. However, no maximum
principle is generally available for fourth-order equations. We prove the nonnegativity
property by employing the same idea as in the stationary case: after introducing an
exponential variable u = ey, we obtain a uniform H2 bound by (1.5) and (1.7) and
hence an L∞ bound for y = log u, which shows that u is positive. Letting the
parameter of the time discretization tend to zero, we conclude the nonnegativity of u.

We notice that, interestingly, the new entropy E2 is connected with the mono-
tonicity property of

√
u 7→ −(u(log u)xx)xx/(2

√
u) since the proof of this property

also relies on the estimate (1.6) (see Lemma 2.3 in [13] and (2.7) below).
The physical (relative) entropy

E3(t) =

∫ 1

0

(

u log
u

u∞
− u + u∞

)

dx

is still another Lyapunov functional. It is used in the proof of the long-time behavior
of solutions, which is our final main result.

Theorem 1.3. Let the assumptions of Theorem 1.2 hold and let
∫ 1

0 uI(log uI −
1)dx < ∞. Let u be the solution to (1.1), (1.3) constructed in Theorem 1.2 and let

u∞ be the unique solution to (1.4). We assume that the boundary data is such that

log u∞ is concave. Then there exist constants c, λ > 0 depending only on the boundary

and initial data such that for all t > 0,

‖u(·, t) − u∞‖L1(0,1) ≤ ce−λt.

In order to prove this result, we take formally the time derivative of the rela-
tive entropy E3. It can be shown (see section 4 for details) that the assumption
(log u∞)xx ≤ 0 allows us to derive

dE3

dt
+ P ≤ 0,

where P ≥ 0 denotes the entropy production term involving second derivatives of u.
This term can be estimated similarly as in [15] in terms of the entropy yielding

dE3

dt
+ 2λE3 ≤ 0

for some λ > 0. Gronwall’s inequality implies the exponential convergence in terms
of the relative entropy. A Csiszar–Kullback-type inequality then gives the assertion.
The assumption on the concavity of log u∞ can be slightly relaxed (see Remark 4.4).
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The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1. Then the existence of transient solutions (Theorem 1.2) is shown in section 3.
Theorem 1.3 is proved in section 4, and finally in section 5, some numerical results
are presented.

2. Existence and uniqueness of stationary solutions. In this section we
will prove Theorem 1.1. First, we perform the transformation of variables y = log u
and consider the problem

(2.1) (eyyxx)xx = 0 in (0, 1), y(0) = y0, y(1) = y1, yx(0) = α, yx(1) = β,

where y0 = log u0, y1 = log u1, α = w0/u0, and β = w1/u1. Clearly, any classical
solution of (2.1) is a positive classical solution of (1.4). We show first some a priori
estimates for the solution of (2.1).

Lemma 2.1. Let y be a classical solution to (2.1). Then

(2.2) y(x) ≤ M := max{y0, y1} + |α| + |β|.

Proof. First we observe that there exist constants a, b ∈ R such that y solves the
equation yxx = (ax + b)e−y. This implies that yxx can change its sign at most once.
In the following we consider several cases for the sign of yxx(0) and yxx(1).

First case. Let yxx(0) ≥ 0 and yxx(1) ≥ 0. Since yxx can change the sign at most
once it follows that yxx ≥ 0 in (0, 1). We conclude that y(x) ≤ max{y0, y1} for all
x ∈ [0, 1].

Second case. Let yxx(0) ≥ 0 and yxx(1) < 0. There exists x1 ∈ [0, 1) such that
yxx(x1) = 0. Therefore, ax+ b ≥ 0 for all x ∈ [0, x1] and ax+ b ≤ 0 for all x ∈ [x1, 1].
A Taylor expansion gives for all x ∈ [x1, 1]

y(x) = y(1) + yx(1)(x − 1) +

∫ 1

x

(s − x)yxx(s)ds

= y1 + β(x − 1) +

∫ 1

x

(s − x)(as + b)e−y(s)ds ≤ max{y0, y1} + |β|.

We claim that y(x) ≤ max{y0, y1}+|β| holds for all x ∈ [0, x1]. For this, let x2 ∈ [0, x1]
be such that y(x2) = max{y(x) : x ∈ [0, x1]}. Suppose that y(x2) > max{y0, y1} +
|β|. Then x2 ∈ (0, x1) and, since y(x) reaches a maximum at the interior point x2,
yxx(x2) ≤ 0. Since x2 ∈ (0, x1), we have yxx(x2) = (ax2 + b)e−y(x2) ≥ 0. This shows
that yxx(x2) = 0. But then yxx(x2) = (ax2 +b)e−y(x2) implies that ax2 +b = 0. Since
also ax1 + b = 0, it follows that a = b = 0 and thus yxx(x) = 0 for all x ∈ [0, 1]; this
is a contradiction to yxx(1) < 1. Hence, y(x) ≤ max{y0, y1} + |β| for all x ∈ [0, 1].

Third case. Let yxx(0) < 0 and yxx(1) ≥ 0. By similar arguments as in the second
case, it can be shown that y(x) ≤ max{y0, y1} + |α| for all x ∈ [0, 1].

Fourth case. Let yxx(0) < 0 and yxx(1) < 0. This implies that ax + b < 0 for all
x ∈ [0, 1] and, by a Taylor expansion,

y(x) = y0 + αx +

∫ x

0

(x − s)(as + b)e−y(s)ds ≤ y0 + |α|, x ∈ [0, 1].

The lemma is proved.
Lemma 2.2. Let y be a classical solution to (2.1). Then there exists a constant

K > 0 depending only on y0, y1, α, and β such that

‖y‖H2(0,1) ≤ K.
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Proof. There exist constants a, b ∈ R such that y solves the equation

(2.3) yxx = (ax + b)e−y in (0, 1),

and b = ey0yxx(0), a = ey1yxx(1) − ey0yxx(0). In order to obtain a uniform estimate
for yxx we first have to find uniform estimates for a and b. For this, we multiply (2.3)
by y2

x and integrate over (0, 1):

∫ 1

0

(ax + b)e−yy2
xdx =

∫ 1

0

yxxy2
xdx =

1

3

∫ 1

0

(y3
x)xdx =

1

3
(β3 − α3).

Next we multiply (2.3) by yxx, integrate over (0, 1), integrate by parts, and use the
above equality:

∫ 1

0

y2
xxdx =

∫ 1

0

(ax + b)e−yyxxdx

=

∫ 1

0

(ax + b)e−yy2
xdx − a

∫ 1

0

e−yyxdx + [(ax + b)e−y(x)yx(x)]10

=
1

3
(β3 − α3) + a(e−y1 − e−y0) + (a + b)e−y1β − be−y0α.

By Young’s inequality this becomes

(2.4)

∫ 1

0

y2
xxdx ≤ C +

1

60
e−2Ma2 +

1

12
e−2Mb2,

where C := (β3−α3)/3+15e2M((1+β)e−y1 −e−y0)2 +3e2M(βe−y1 −αe−y0)2. Taking
the square of (2.3) and integrating over (0, 1) yields, by Lemma 2.1,

∫ 1

0

y2
xxdx =

∫ 1

0

(ax + b)2e−2ydx ≥ e−2M

∫ 1

0

(ax + b)2dx

=
1

3
e−2M (a2 + 3ab + 3b2) ≥ 1

3
e−2M

(

a2

10
+

b2

2

)

,(2.5)

where we have used the Young inequality 3ab ≥ −9a2/10 − 5b2/2. Putting together
(2.4) and (2.5), we obtain

(2.6)
a2

10
+

b2

2
≤ 3e2M

∫ 1

0

y2
xxdx ≤ 3e2MC +

a2

20
+

b2

4
.

Therefore, a and b are bounded by a constant which depends only on y0, y1, α, and
β. By (2.4) this gives a uniform estimate for ‖yxx‖L2(0,1) and, employing Poincaré’s
inequality, also for ‖y‖H2(0,1).

Proof of Theorem 1.1. We wish to employ the Leray–Schauder fixed-point the-
orem. For this let σ ∈ [0, 1] and z ∈ H1(0, 1) and let y ∈ H2(0, 1) be the unique
solution of

(ezyxx)xx = 0 in (0, 1), y(0) = σy0, y(1) = σy1, yx(0) = σα, yx(1) = σβ.

This defines a fixed-point operator S : H1(0, 1) × [0, 1] → H1(0, 1), S(z, σ) = y.
Clearly, S(z, 0) = 0 for all z. Moreover, by standard arguments, S is continuous and
compact, since the embedding H2(0, 1) →֒ H1(0, 1) is compact. It remains to show
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that there exists a constant K > 0 such that for all σ ∈ [0, 1] and for any fixed point y
of S(·, σ), the estimate ‖y‖H1(0,1) ≤ K holds. Lemma 2.2 settles the case σ = 1. For
σ < 1, a similar proof as in Lemma 2.2 shows the existence of a constant K > 0 such
that ‖y‖H2(0,1) ≤ K holds. By the Leray–Schauder theorem, this proves the existence
of a solution y ∈ H2(0, 1) to (2.1).

Actually, the solution y is a classical solution. Indeed, y satisfies yxx = (ax +
b)e−y ∈ H2(0, 1) for some a, b ∈ R, and hence, y ∈ H4(0, 1). By bootstrapping,
y ∈ Hn(0, 1) for all n ∈ N and y is a classical solution.

In order to prove the uniqueness of solutions, we extend an idea of [13]. Let
u1 and u2 be two positive classical solutions to (1.4). We multiply (1.4) for u1 by
1 −

√

u2/u1 and (1.4) for u2 by
√

u1/u2 − 1, integrate, and take the difference. This
yields, by integrating by parts,

0 =

∫ 1

0

[

(u1(log u1)xx)xx(1 −
√

u2/u1) − (u2(log u2)xx)xx(
√

u1/u2 − 1)
]

dx(2.7)

= 2

∫ 1

0

[

(
√

u1)xxxx − 1√
u1

(
√

u1)
2
xx − (

√
u2)xxxx

+
1√
u2

(
√

u2)
2
xx

]

(
√

u1 −
√

u2)dx

= 2

∫ 1

0

[

((
√

u1)xx − (
√

u2)xx)(
√

u1 −
√

u2)xx

− (
√

u1)
2
xx

(

1 −
√

u2

u1

)

+ (
√

u2)
2
xx

(
√

u1

u2
− 1
)]

dx

= 2

∫ 1

0

(

4

√

u2

u1
(
√

u1)xx − 4

√

u1

u2
(
√

u2)xx

)2

.

Therefore,

0 = 4

√

u2

u1
(
√

u1)xx − 4

√

u1

u2
(
√

u2)xx in (0, 1).

Writing u1 = ey1 and u2 = ey2, this identity is equal to

0 = e(y2−y1)/4(ey1/2)xx − e(y1−y2)/4(ey2/2)xx

=
1

2
e(y2+y1)/4

(

y1,xx +
1

2
y2
1,x

)

− 1

2
e(y1+y2)/4

(

y2,xx +
1

2
y2
2,x

)

,

and hence

(2.8) y1,xx − y2,xx = −1

2
(y2

1,x − y2
2,x) in (0, 1).

We integrate this equation over (0, x0), use the boundary condition y1x(0) = y2x(0),
and take the supremum,

‖(y1 − y2)x‖L∞(0,x0) ≤
∫ x0

0

|(y1 + y2)x| · |(y1 − y2)x|dx ≤ x0L‖(y1 − y2)x‖L∞(0,x0),

where L = ‖y1,x‖L∞(0,1)+‖y2,x‖L∞(0,1). Choosing x0 = 1/2L gives (y1−y2)x = 0 and
hence y1 − y2 = 0 in [0, x0]. In particular, (y1 − y2)x(x0) = 0. Therefore, integrating
(2.8) over (x0, 2x0) we obtain by the same arguments that y1 − y2 = 0 in [x0, 2x0].
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After a finite number of steps we achieve y1 − y2 = 0 in [0, 1]. This proves the
uniqueness of solutions.

Remark 2.3. Equation (2.3) with y(0) = y(1) and yx(0) = −yx(1) ≤ 0 is formally
related to a combustion problem. Indeed, the boundary conditions imply that y is
symmetric around x = 1

2 and that y(x) ≤ y(0) = y0 holds for any x ∈ [0, 1]. The
symmetry implies further a = ey0(yxx(1)−yxx(0)) = 0 and moreover, b = ey0yxx(0) ≥
0. Thus we can write (2.3) as yxx = be−y or, introducing z(x) = −y(x),

zxx + bez = 0 in (0, 1), z(0) = z(1) = −y0.

This is the solid fuel ignition model of [2]. It is well known that there exists b∗ > 0
such that this problem has exactly two solutions if b ∈ (0, b∗), it has exactly one
solution if b = b∗, and it has no solution if b > b∗ [2, 11]. This relation provides
a better bound for b (for the above special boundary conditions) than the estimate
(2.6). Indeed, a = 0 and b is uniformly bounded by a number b∗ > 0 independently of
the boundary conditions (and depending only on the domain (0, 1)).

3. Existence of transient solutions. In order to prove Theorem 1.2 we again
perform the exponential change of unknowns and we semidiscretize (1.1) in time. For
this, we divide the time interval (0, T ] for some T > 0 into N subintervals (tk−1, tk],
with k = 1, . . . , N , where 0 = t0 < · · · < tN = T . Define τk = tk − tk−1 > 0 and
τ = max{τk : k = 1, . . . , N}. We assume that τ → 0 as N → ∞.

Let u∞ > 0 be the unique classical solution to (1.4) and set y∞ = log u∞.
We perform the transformation z = log(u/u∞) and z0 = log(uI/u∞). For given
k ∈ {1, . . . , N} and zk−1 we first solve the semidiscrete problem

(3.1)
ey∞

τk
(ezk − ezk−1) = −

(

ezk+y∞(zk + y∞)xx

)

xx
, zk ∈ H2

0 (0, 1).

Proposition 3.1. For each k = 1, . . . , N , there exists a unique weak solution

zk ∈ H2
0 (0, 1) to (3.1).

For the proof of this proposition we first show some a priori estimates.
Lemma 3.2. Let zk ∈ H2

0 (0, 1) be a weak solution to (3.1). Then there exists a

constant c > 0 depending only on T, uI, and u∞ such that

‖ezk/2‖L2(0,1) ≤ c,(3.2)

N
∑

i=1

τi

∫ 1

0

ezi/2
(

(zi + y∞)2xx + (zi + y∞)4x
)

≤ c,(3.3)

N
∑

i=1

τi‖ezi‖L∞(0,1) ≤ c.(3.4)

Proof. Similarly as in the uniqueness proof of Theorem 1.1 we use the test func-
tions 1 − e−zk/2 ∈ H2

0 (0, 1) in the weak formulation of the semidiscretized equation
(3.1) and ezk/2−1 ∈ H2

0 (0, 1) in the weak formulation of the stationary equation (1.4)
and take the sum of the corresponding equations:

1

τk

∫ 1

0

ey∞(ezk − ezk−1)(1 − e−zk/2)dx =

∫ 1

0

ezk+y∞(zk + y∞)xx(e−zk/2)xxdx

+

∫ 1

0

ey∞y∞,xx(ezk/2)xxdx.(3.5)
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The right-hand side is equal to the first integral in (2.7) with u1 = ezk+y∞ and
u2 = ey∞ . Therefore, the right-hand side is equal to the expression

−2

∫ 1

0

(

e−zk/4(e(zk+y∞)/2)xx − ezk/4(ey∞/2)xx

)2

dx.

For the left-hand side of (3.5) we write

1

τk

∫ 1

0

ey∞(ezk − ezk−1)(1 − e−zk/2)dx

=
1

τk

∫ 1

0

ey∞((ezk/2 − 1)2 − (ezk−1/2 − 1)2)dx +
1

τk

∫ 1

0

ey∞(ezk/4 − ezk−1/2−zk/4)2dx

≥ 1

τk

∫ 1

0

ey∞

(

(ezk/2 − 1)2 − (ezk−1/2 − 1)2
)

dx.

Therefore, we conclude from (3.5), for all k = 1, . . . , N ,

1

τk

∫ 1

0

ey∞(ezk/2 − 1)2dx + 2

∫ 1

0

(

e−zk/4(e(zk+y∞)/2)xx − ezk/4(ey∞/2)xx

)2

dx

≤ 1

τk

∫ 1

0

ey∞(ezk−1/2 − 1)2dx.(3.6)

This yields

(3.7)

∫ 1

0

ey∞(ezk/2 − 1)2dx ≤
∫ 1

0

ey∞(ez0/2 − 1)2dx =

∫ 1

0

(
√

uI −
√

u∞)2dx < ∞

and thus (3.2). Moreover, after summing up (3.6),

2
k
∑

i=1

τi

∫ 1

0

(

e−zi/4(e(zi+y∞)/2)xx − ezi/4(ey∞/2)xx

)2

dx ≤
∫ 1

0

ey∞(ez0/2 − 1)2dx.

Young’s inequality gives

4
k
∑

i=1

τi

∫ 1

0

e−zi/2
(

e(zi+y∞)/2
)2

xx
dx ≤ c + c

k
∑

i=1

τi

∫ 1

0

ezi/2dx,

where here and in the following, c > 0 denotes a generic constant depending only on
T , uI , and u∞. In view of (3.7), the right-hand side is uniformly bounded. Hence

k
∑

i=1

τi

∫ 1

0

e−(zi+y∞)/2
(

e(zi+y∞)/2
)2

xx
dx

≤ ‖ey∞/2‖L∞(0,1)

k
∑

i=1

τi

∫ 1

0

e−zi/2
(

e(zi+y∞)/2
)2

xx
dx ≤ c.

Now the assertion (3.3) follows since, by integration by parts,

∫ 1

0

eu/2u2
xuxxdx = −1

6

∫ 1

0

eu/2u4
x +

1

3
(eu(1)/2ux(1)3 − eu(0)/2ux(0)3)



1770 M. P. GUALDANI, A. JÜNGEL, AND G. TOSCANI

for all u ∈ H2(0, 1), and hence,

∫ 1

0

e−(zi+y∞)/2
(

e(zi+y∞)/2
)2

xx
dx

=
1

4

∫ 1

0

e(zi+y∞)/2

(

(zi + y∞)2xx +
1

4
(zi + y∞)4x + (zi + y∞)xx(zi + y∞)2x

)

dx

=
1

4

∫ 1

0

e(zi+y∞)/2

(

(zi + y∞)2xx +
1

12
(zi + y∞)4x

)

dx +
1

12
(ey1/2β3 − ey0/2α3).

Finally, (3.4) is a consequence of (3.3) and the Poincaré–Sobolev inequality since

∫ 1

0

ezi/2(zi)
4
xdx = 84

∫ 1

0

(ezi/8)4x ≥ c‖ezi/8‖4
L∞(0,1).

This shows the lemma.
Lemma 3.3. Let zk ∈ H2

0 (0, 1) be a weak solution to (3.1). Then there exists a

constant c > 0 depending only on T , uI , and u∞ such that

(3.8)

∫ 1

0

(ezk − zk)dx +

k
∑

i=1

τi

∫ 1

0

(zi + y∞)2xxdx ≤ c.

Proof. We choose the test function e−y∞(1− e−zk) ∈ H2
0 (0, 1) in the weak formu-

lation of (3.1). Then, by Young’s inequality,

∫ 1

0

(ezk − ezk−1)(1 − e−zk)dx

= −τk

∫ 1

0

ezk(zk + y∞)xx(y2
∞,x − y∞,xx)dx − τk

∫ 1

0

(zk + y∞)2xxdx

+ τk

∫ 1

0

(zk + y∞)2x(zk + y∞)xxdx

≤ τk

∫ 1

0

ezk/2(zk + y∞)2xxdx + τk

∫ 1

0

e3zk/2(y2
∞,x − y∞,xx)2dx

− τk

∫ 1

0

(zk + y∞)2xxdx +
τk

3
(β3 − α3).

In view of (3.3) and (3.4), the right-hand side is uniformly bounded. The left-hand
side can be estimated by

∫ 1

0

(ezk − ezk−1)(1 − e−zk)dx ≥
∫ 1

0

(ezk − zk)dx −
∫ 1

0

(ezk−1 − zk−1)dx,

which is a consequence of the elementary inequality ex − 1 ≥ x for all x ∈ R. Thus,
(3.8) is proved.

Proof of Proposition 3.1. The existence of a solution to (3.1) is shown by the
Leray–Schauder fixed-point theorem. For this, let k ∈ {1, . . . , N} and zk−1 be given.
Furthermore, let w ∈ H1(0, 1) and σ ∈ [0, 1], and define the linear forms

a(z, φ) =

∫ 1

0

ew+y∞zxxφxxdx,

F (φ) = − 1

τk

∫ 1

0

ey∞(ew − ezk−1)φdx −
∫ 1

0

ew+y∞y∞,xxφxxdx,



A NONLINEAR FOURTH-ORDER PARABOLIC EQUATION 1771

where φ ∈ H2
0 (0, 1). Consider the linear problem

a(z, φ) = σF (φ) for all φ ∈ H2
0 (0, 1).

By the Lax–Milgram lemma, there exists a unique solution z ∈ H2
0 (0, 1) to this prob-

lem. This defines the fixed-point operator S : H1(0, 1)×[0, 1] → H1(0, 1), S(w, σ) = z.
It is not difficult to show that S is continuous and compact, since the embedding
H2

0 (0, 1) →֒ H1(0, 1) is compact. Moreover, S(w, 0) = 0 for all w ∈ H1(0, 1). It re-
mains to prove that any fixed point of S satisfies a uniform bound in H1(0, 1). In fact,
Lemma 3.3 shows that any fixed point z ∈ H2

0 (0, 1) is uniformly bounded if σ = 1.
The estimate for σ < 1 is similar (and, in fact, independent of σ). This provides the
wanted bound in H1(0, 1), and the Leray–Schauder theorem can be applied to yield
the existence of a solution to (3.1).

For the proof of Theorem 1.2 we need some more uniform estimates. Let z(N) be
defined by z(N)(x, t) = zk(x) if t ∈ (tk−1, tk], x ∈ (0, 1).

Lemma 3.4. The following estimates hold:

‖z(N)‖L∞(0,T ;L1(0,1)) + ‖z(N)‖L2(0,T ;H2(0,1)) ≤ c,(3.9)

‖z(N)‖L5/2(0,T ;W 1,∞(0,1)) + ‖ez(N)‖L5/2(0,T ;W 1,1(0,1)) ≤ c,(3.10)

where c > 0 depends only on uI and the boundary data.

Proof. The inequality ex − x ≥ |x| for all x ∈ R and the estimate (3.8) imply
that z(N) is uniformly bounded in L∞(0, T ; L1(0, 1)) which, together with (3.8), shows
(3.9). Then, using the Poincaré and Gagliardo–Nirenberg inequalities, we obtain from
(3.8)

‖z(N)‖L5/2(0,T ;W 1,∞(0,1)) ≤ c‖z(N)
x ‖L5/2(0,T ;L∞(0,1))

≤ c‖z(N)‖1/5
L∞(0,T ;L1(0,1))‖z

(N)‖4/5
L2(0,T ;H2(0,1)) ≤ c.

This estimate, (3.2), and the first bound in (3.9) imply (3.10) since

‖ez(N)‖L5/2(0,T ;W 1,1(0,1)) ≤ c
(

‖ez(N)‖L5/2(0,T ;L1(0,1)) + ‖(ez(N)

)x‖L5/2(0,T ;L1(0,1))

)

≤ c‖ez(N)‖L5/2(0,T ;L1(0,1))

+ c‖ez(N)‖L∞(0,T ;L1(0,1))‖z(N)
x ‖L5/2(0,T ;L∞(0,1))

≤ c.

The lemma is proved.
We also need an estimate for the discrete time derivative. For this, introduce the

shift operator (σN (z(N)))(·, t) = zk−1 for t ∈ (tk−1, tk].
Lemma 3.5. The following estimate holds:

(3.11) ‖ez(N) − eσN (z(N))‖L10/9(0,T ;H−2(0,1)) ≤ cτ,

where c > 0 depends only on uI and u∞.

Proof. From (3.1) and Hölder’s inequality we obtain

1

τk
‖ez(N) − eσN (z(N))‖L10/9(0,T ;H−2(0,1)) ≤ ‖ez(N)+y∞(z(N) + y∞)xx‖L10/9(0,T ;L2(0,1))

≤ ‖ez(N)+y∞‖L5/2(0,T ;L∞(0,1))‖(z(N) + y∞)xx‖L2(0,T ;L2(0,1))
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and the right-hand side is uniformly bounded by (3.9) and (3.10) since W 1,1(0, 1) →֒
L∞(0, 1).

Proof of Theorem 1.2. For any N ∈ N, there exists a solution z(N) ∈ L2(0, T ;
H2

0 (0, 1)) to the sequence of recursive equations (3.1) satisfying z(N)(·, 0) = z0. The
uniform bounds (3.10) and (3.11) and the compact embedding W 1,1(0, 1) →֒ L1(0, 1)
allow us to apply Theorem 5 of [17] (Aubin’s lemma) yielding the existence of a subse-

quence of ez(N)

(not relabeled) such that ez(N) → ρ strongly in L1(0, T ; L1(0, 1)) and
hence also in L1(0, T ; H−2(0, 1)). The above results give, using (3.2) and L1(0, 1) →֒
H−2(0, 1),

‖ez(N) − ρ‖2
L2(0,T ;H−2(0,1)) ≤ ‖ez(N) − ρ‖L∞(0,T ;H−2(0,1))‖ez(N) − ρ‖L1(0,T ;H−2(0,1))

≤ c
(

‖ez(N)‖L∞(0,T ;L1(0,1)) + ‖ρ‖L∞(0,T ;L1(0,1))

)

× ‖ez(N) − ρ‖L1(0,T ;H−2(0,1))

≤ c‖ez(N) − ρ‖L1(0,T ;H−2(0,1)) → 0 as N → ∞.(3.12)

Moreover, the estimate (3.9) provides the existence of a subsequence, also denoted by
z(N), such that

(3.13) z(N) ⇀ z weakly in L2(0, T ; H2(0, 1)) as N → ∞.

We claim now that ez = ρ. For this, let w be a smooth function. Letting N → ∞
in

0 ≤
∫ T

0

〈ez(N) − ew, z(N) − w〉H−2 ,H2
0
dt

and using the convergence results (3.12) and (3.13) yield

0 ≤
∫ T

0

∫ 1

0

(ρ − ew)(w − z)dxdt.

The strict monotonicity of x 7→ ex then implies that ez = ρ.

Thus, ez(N) → ez strongly in L1(0, T ; L1(0, 1)) and (maybe for a subsequence) a.e.

The uniform bound (3.10) implies that (after extracting a subsequence) ez(N)

⇀ ez

weakly* in L5/2(0, T ; L∞(0, 1)) since W 1,1(0, 1) →֒ L∞(0, 1). Therefore, we conclude
via Lebesgue’s convergence theorem that

(3.14) ez(N) → ez strongly in L2(0, T ; L2(0, 1)).

Finally, the uniform estimate (3.11) gives for a subsequence

(3.15)
1

τ
(ez(N) − eσN (z(N))) ⇀ (ez)t weakly in L10/9(0, T ; H−2(0, 1)).

The convergence results (3.13)–(3.15) allow us to pass to the limit N → ∞ in the
weak formulation of (3.1) to obtain a weak solution z ∈ L2(0, T ; H2

0(0, 1)) to

ey∞(ez)t = −(ez+y∞(z + y∞)xx)xx in (0, 1), t > 0,

such that z(·, 0) = z0 = log(uI/u∞) in the sense of H−2(0, 1). Transforming back to
the variable u = ez+y∞ gives the assertion.
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4. Long-time behavior of the solutions. This section is devoted to the proof
of Theorem 1.3. The proof is based on the entropy–entropy production method. For
this we need the following lemma for lower and upper estimates for the entropy

E3 =

∫ 1

0

ey∞(ez(z − 1) + 1)dx.

Lemma 4.1. Let z, y∞ ∈ L∞(0, 1). Then

(4.1) c1

(
∫ 1

0

ey∞ |ez − 1|dx

)2

≤ E3 ≤ c2‖ez/2 − 1‖2
L∞(0,1),

where c1, c2 > 0 depend on ‖ey∞‖L∞(0,1) and ‖ez‖L1(0,1).

The lower bound for E3 is a Csiszar–Kullback-type inequality. A similar version
of this lemma is shown in [15].

Proof. The upper bound is proved by expanding the function f(x) = x2(log x2 −
1) + 1 around x = 1,

f(ez/2) = f(1) + f ′(1)(ez/2 − 1) +
1

2
f ′′(θ)(ez/2 − 1)2

= 2(log θ + 1)(ez/2 − 1)2 ≤ 2(ez/2 + 1)(ez/2 − 1)2,

where θ lies between ez/2 and 1, and using the inequality log θ ≤ θ−1 ≤ max{ez/2, 1}−
1 ≤ ez/2. Then

E3 ≤ 2

∫ 1

0

ey∞(ez/2+1)(ez/2−1)2dx ≤ 2‖ey∞‖L∞(0,1)(‖ez‖1/2
L1(0,1)+1)‖ez/2−1‖2

L∞(0,1),

and we set c2 = 2‖ey∞‖L∞(0,1)(‖ez‖1/2
L1(0,1) + 1).

For the lower bound we observe that a Taylor expansion of f(x) = x(log x−1)+1
around x = 1 yields

e2y∞ (ez(z − 1) + 1) =
e2y∞

2θ
(ez − 1)2,

and θ = θ(z) lies between ez and 1. Then, by the Cauchy–Schwarz inequality,

∫ 1

0

ey∞ |ez − 1|dx ≤
∫

{z<0}

ey∞(1 − ez)dx +

∫

{z>0}

ey∞(ez − 1)dx

≤
∫

{z<0}

ey∞

1 − ez

θ(z)1/2
dx +

∫

{z>0}

ey∞

ez − 1

θ(z)1/2
θ(z)1/2dx

≤ meas{z < 0}1/2

(

∫

{z<0}

e2y∞

(1 − ez)2

θ(z)
dx

)1/2

+

(

∫

{z>0}

e2y∞

(ez − 1)2

θ(z)
dx

)1/2(
∫

{z>0}

θ(z)dx

)1/2

≤ (1 + ‖ez‖1/2
L1(0,1))

(
∫ 1

0

e2y∞

(ez − 1)2

θ(z)
dx

)1/2

≤
√

2‖ey∞‖1/2
L∞(0,1)(1 + ‖ez‖1/2

L1(0,1))E
1/2
3 ,
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and the assertion follows with c−1
1 = 2‖ey∞‖L∞(0,1)(1 + ‖ez‖1/2

L1(0,1))
2.

Proof of Theorem 1.3. The idea is to differentiate the entropy E3 of the intro-
duction with respect to time and to use the differential equation (1.1). Since we do
not have enough regularity for the solution u to (1.1), we need to regularize. We set
as in the proof of Theorem 1.2 u∞ = ey∞ , where u∞ is the unique solution to (1.4).
There exist numbers a, b ∈ R such that ey∞y∞,xx = ax + b ≤ 0 for all x ∈ (0, 1) since
y∞ = log u∞ is assumed to be concave. This implies that y∞ ≥ min{y∞(0), y∞(1)}
and hence ey∞ ≥ min{u0, u1} in (0, 1). Furthermore, let zk ∈ H2

0 (0, 1) be a solution
to (3.1) for given zk−1. We assume for simplicity that τ = τk for all k ∈ N.

Using zk as a test function in the weak formulation of (3.1), we obtain, after
integrating by parts,

1

τ

∫ 1

0

ey∞(ezk − ezk−1)zkdx = −
∫ 1

0

ezk+y∞(zk + y∞)xxzk,xxdx

= −
∫ 1

0

ezk+y∞z2
k,xxdx −

∫ 1

0

ezkzk,xx(ax + b)dx

= −
∫ 1

0

ezk+y∞z2
k,xxdx +

∫ 1

0

ezkz2
k,x(ax + b)dx + a

∫ 1

0

ezkzk,xdx(4.2)

≤ −min{u0, u1}
∫ 1

0

ezkz2
k,xxdx,

since ax + b ≤ 0 in (0, 1) and ezk(x) = 1 for x = 0, 1. The left-hand side is estimated
from below by employing the elementary inequality ex ≥ x + 1 for all x ∈ R:

1

τ

∫ 1

0

ey∞(ezk − ezk−1)zkdx

=
1

τ

∫ 1

0

ezk+y∞(zk − 1)dx − 1

τ

∫ 1

0

ezk−1+y∞(zk−1 − 1)dx

+
1

τ

∫ 1

0

ezk−1+y∞(ezk−zk−1 + zk−1 − zk − 1)dx

≥ 1

τ

∫ 1

0

ezk+y∞(zk − 1)dx − 1

τ

∫ 1

0

ezk−1+y∞(zk−1 − 1)dx.(4.3)

This shows that the sequence E(k) =
∫ 1

0
ey∞(ezk(zk − 1) + 1)dx is nonincreasing and

bounded from below by E(0) =
∫ 1

0 (uI(log(uI/u∞) − 1) + 1)dx, which is finite.

We relate the entropy production term on the right-hand side of (4.2) to the
entropy itself. We first claim that

(4.4)

∫ 1

0

ezkz2
k,xxdx ≥ 4

∫ 1

0

(ezk/2)2xxdx.

To see this we set u = ezk and observe that an integration by parts yields

∫ 1

0

uxxu2
x

u2
dx =

2

3

∫ 1

0

u4
x

u3
dx.
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Then

∫ 1

0

ezkz2
k,xxdx =

∫ 1

0

(

u2
xx

u
− 1

3

u4
x

u3

)

dx ≥
∫ 1

0

(

u2
xx

u
− 5

12

u4
x

u3

)

dx(4.5)

= 4

∫ 1

0

(
√

u)2xxdx = 4

∫ 1

0

(ezk/2)2xxdx.

We need the Poincaré inequalities

‖u‖L2(0,1) ≤
1

π
‖ux‖L2(0,1), ‖u‖L∞(0,1) ≤ ‖ux‖L2(0,1)

for all u ∈ H1
0 (0, 1). Therefore, using Lemma 4.1, we infer

(4.6)

∫ 1

0

ezkz2
k,xxdx ≥ 4π2

∫ 1

0

(ezk/2 − 1)2xdx ≥ 4π2‖ezk/2 − 1‖2
L∞(0,1) ≥

4π2

c2
E(k).

Setting γ = 4π2 min{u0, u1}/c2, we obtain from (4.2) the difference inequality

E(k) ≤ E(k−1) − γτE(k),

from which

(4.7) E(k) ≤ (1 + γτ)−1E(k−1) ≤ (1 + γτ)−kE(0) ≤ (1 + γτ)−t/τE(0)

follows. The parameter γ depends on ‖ezk‖L1(0,1) through c2. However, since ez(N)

is
uniformly bounded in L∞(0, T ; L1(0, 1)) in view of Lemma 3.3, γ is bounded uniformly
in k. We have shown in the proof of Theorem 1.2 that ezk → ez a.e. Then the uniform
boundedness of ezk and zk and Lebesgue’s dominated convergence theorem imply that

E(k) → E3(t) =

∫ 1

0

ey∞(ez(·,t)(z(·, t) − 1) + 1)dx.

Hence, after letting τ → 0, we conclude from (4.7) that E3(t) ≤ E3(0)e−γt. The first
inequality in (4.1) gives the assertion with λ = γ/2.

Remark 4.2. The decay rate λ is not optimal. For instance, we neglected the

term
∫ 1

0 u4
x/12u3dx in (4.5) and the constants in (4.1) are not the best ones. For

optimal constants in logarithmic Sobolev inequalities related to (1.1) with periodic
boundary conditions, we refer the reader to [10].

Remark 4.3. It is not easy to find conditions on the boundary data for which
log u∞ is concave. An example is u0 = u1 and w0 = −w1 ≥ 0. Indeed, if y = log u∞,
we have y(0) = y(1) and yx(0) = −yx(1) ≥ 0 and therefore, y is symmetric around
x = 1

2 . Thus (see Remark 2.3) a = ey0(yxx(1) − yxx(0)) = 0 and b = ey0yxx(0) ≤ 0.
This implies (log u∞)xx = yxx = be−y ≤ 0 in (0, 1).

Remark 4.4. The assumption on the concavity of log u∞ can be slightly relaxed.
Indeed, we claim that the assertion of Theorem 1.3 also holds if ((log u∞)xx)+ is small
enough in the sense

(4.8) 4
max{u∞(x) : 0 ≤ x ≤ 1}
min{u∞(x) : 0 ≤ x ≤ 1}

∫ 1

0

((log u∞)xx)
+

dx ≤ 1 − δ
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for some δ > 0, where (x)+ = max{0, x}. We prove this result by deriving a bound on
the second integral in (4.2) in terms of the first one, employing the weighted Poincaré
inequality [7, Thm. 1.4]

∫ 1

0

u2
xµ(x)dx ≤ K

∫ 1

0

u2
xxdx

for all u ∈ H2(0, 1) satisfying u(0) = u(1) (which implies that
∫ 1

0
uxdx = 0). The

function µ is assumed to be nonnegative and measurable. The best constant K > 0

is not explicit but can be bounded by K ≤ 4
∫ 1

0
µ(x)dx [7, Rem. 1.10.4]. We choose

µ(x) = (ax + b)+ = (u∞(log u∞)xx)+. Then the weighted Poincaré inequality and
(4.4) give

∫ 1

0

ezk+y∞z2
k,xxdx ≥ 4m

∫ 1

0

(ezk/2)2xxdx ≥ 4m

K

∫ 1

0

(ezk/2)2xµ(x)dx

=
m

K

∫ 1

0

(ax + b)+ezkz2
k,xdx,

where m = min{u∞(x) : 0 ≤ x ≤ 1}. Inserting this inequality into (4.2) and using
(4.3), we obtain

1

τ

(

E(k) − E(k−1)
)

≤ −
∫ 1

0

ezk+y∞z2
k,xxdx +

∫ 1

0

(ax + b)+ezkz2
k,xdx

≤
(

K

m
− 1

)
∫ 1

0

ezk+y∞z2
k,xxdx.

Assumption (4.8) shows that K/m ≤ 1 − δ and hence, by (4.6),

1

τ

(

E(k) − E(k−1)
)

≤ −δ

∫ 1

0

ezk+y∞z2
k,xxdx ≤ −4π2δm

c2
E(k).

Now proceed as in the proof of Theorem 1.3. The convergence rate in the L1 norm is
given by λ = 2π2δm/c2.

5. Numerical examples. In this section we show by numerical examples that
the assumption of concavity of log u∞ (or the assumption (4.8)), where u∞ is the
solution to (1.4), seems to be only technical. Equation (1.1) is solved numerically in
the formulation

(5.1) ut = −uxxxx +

(

u2
x

u

)

xx

in (0, 1).

We use a uniform grid (xi, tj) = (△x · i,△t · j) with spatial mesh size △x = 10−3

and time step △t = 10−6. With the approximation uij of u(xi, tj), the fully implicit
discretization reads as

1

△t
(uij − ui,j−1) = −D+D−D+D−uij + D+D−

(

(D+uij)
2

uij

)

,

where D+ and D− are the forward and backward difference operators on the spatial
mesh (see [13]). The nonlinear equations are solved on each time level by Newton’s
method where the initial guess is chosen to be the solution of the previous time level.
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For the first example we use the boundary conditions

u(0, t) = u0, u(1, t) = u1,(5.2)

ux(0, t) = w0 = 2
√

u0(
√

u1 −
√

u0), ux(1, t) = w1 = 2
√

u1(
√

u1 −
√

u0),(5.3)

with u0 ≤ u1. The advantage of these conditions is that the stationary problem (1.4)
has the exact solution

u∞(x) = ((
√

u1 −
√

u0)x +
√

u0)
2
, x ∈ (0, 1).

We choose the initial condition uI(x) = e−x sin(3πx)+3x+1 and the boundary values
u0 = 1 and u1 = 4. The numerical solution at various times is displayed in Figure 5.1.
The discrete solution seems to converge to the exact solution u∞ as t → ∞. Figure
5.2 shows the exponential decay of the relative entropy

E3(t) =

∫ 1

0

u(·, t)((log(u(·, t)/u∞) − 1) + u∞)dx

and of the L1 deviation ‖u(·, t) − u∞‖L1(0,1). As predicted by the proof of Theorem
1.3, the decay rate of the L1 deviation is half of the rate of the relative entropy. Notice
that the function log u∞ is concave; i.e., the assumptions of Theorem 1.3 are satisfied.
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4.5

x

u(
x,

t)

t = 0
t = 10−5

t = 10−4

t = +∞

Fig. 5.1. Numerical solution to (5.1)–(5.3) with u0 = 1, u1 = 4, w0 = 2, and w1 = 4 at various
times.

In the second example we show by a numerical example that the solution to (1.1)
decays exponentially fast even if the function log u∞ is convex. For this we choose
the boundary conditions u0 = 1.5, u1 = 0.8, w0 = −4.6127, and w1 = 2.0618. The
stationary solution u∞ is computed numerically from the equation

u∞(log u∞)xx = ax + b, x ∈ (0, 1),

where a = 1 and b = 3. Then, log u∞ is strictly convex in (0, 1) and the assumption
(4.8) is not satisfied. We choose the initial function uI(x) = −e−x sin(2πx)− 7

10x+ 3
2 .

Figure 5.3 shows the discrete solution for various times. In this case, the relative
entropy and the L1 deviation are also exponentially decaying (Figure 5.4) although the
condition of Theorem 1.3 is not satisfied. This suggests that the concavity hypothesis
is purely technical.
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Fig. 5.2. Logarithmic plot of the relative entropy E3(t) (left) and the L1 deviation ‖u(·, t) −
u∞‖L1(0,1) (right) for the solution to (5.1)–(5.3) with u0 = 1, u1 = 4.
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Fig. 5.3. Numerical solution to (5.1), (1.3) with u0 = 1.5, u1 = 0.8, w0 = −4.6127, and
w1 = 2.0618 at various times.
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Fig. 5.4. Logarithmic plot of the relative entropy E3(t) (left) and the L1 deviation ‖u(·, t) −
u∞‖L1(0,1) (right) for the solution to (5.1), (1.3) with u0 = 1.5, u1 = 0.8, w0 = −4.6127, and
w1 = 2.0618.
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