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tionIn semi
ondu
tor devi
e simulation, the modeling of quantum e�e
ts be
omes more and moreimportant as the 
hara
teristi
 devi
e lengths 
an nowadays be smaller than about 100 nm.Usually, quantum e�e
ts are modeled by using mi
ros
opi
 equations, like the S
hr�odinger orWigner equation [16, 22℄. In re
ent years, ma
ros
opi
 quantum equations have been developedand used in quantum devi
e simulation [1, 8, 11, 13, 17, 24, 27℄. There are several advantagesof a ma
ros
opi
 des
ription of semi
ondu
tors. First, the Wigner or S
hr�odinger equation is
omputationally very expensive, whereas for 
uid-type models eÆ
ient numeri
al algorithmsare available. Se
ond, as semi
ondu
tor devi
es are modeled in bounded domains, it is easier to�nd physi
ally relevant boundary 
onditions for the ma
ros
opi
 variables than for the Wignerfun
tion or the wave fun
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It is well known sin
e 1927 that there exists a 
uiddynami
al formulation of the S
hr�odingerequation [21℄. In fa
t, by separating the real and the 
omplex part of the single-state S
hr�odingerequation, the ele
tron density n(x; t) and 
urrent density J(x; t) are satisfying (formally) thes
aled Madelung equations �tn+ div J = 0;�tJ + div�J 
 Jn �� nrV � "22 nr��pnpn � = 0;where V (x; t) is the ele
trostati
 potential, satisfying the Poisson equation�2�V = n� C(x);with the 
on
entration of �xed ba
kground 
harges C(x). The physi
al 
onstants are the(s
aled) Plan
k 
onstant " and the Debye length �. The symbol J 
 J denotes the tensorwith 
omponents JiJk. The Madelung equations 
an be also derived from the Wigner equationby a moment method [11℄. This allows to in
orporate temperature e�e
ts (for many-ele
tronensembles) and a relaxation-time term. Temperature e�e
ts 
an be also obtained from a mixed-state S
hr�odinger approa
h [12℄. This yields the equation�tJ + div�J 
 Jn � + Trn� nrV � "22 nr��pnpn � = �J� ;where T is the (s
aled) temperature and � the (s
aled) momentum relaxation time. Thisequation, together with the equation for the ele
tron density and the Poisson equation, is
alled the quantum hydrodynami
 model. For vanishing s
aled Plan
k 
onstant " = 0 (andvanishing relaxation-time term), the above equation is equal to the 
lassi
al Euler momentumequation for 
harged parti
les. The relaxation term models intera
tions of the ele
trons withthe phonons of the semi
ondu
tor 
rystal latti
e.A more pre
ise model of the ele
tron-phonon intera
tions is obtained by using a (quantum)Fokker-Plan
k s
attering operator in the Wigner equation [3, 4℄. This operator, whi
h a
tsboth in the position and velo
ity (more pre
isely: wave va
tor) spa
e, yields additional termsin the quantum hydrodynami
 equations when applying a moment method (see the appendixfor details): �tn + divJ = ��n; (1)�tJ + div�J 
 Jn �+ Trn� nrV � "22 nr��pnpn � = �J� + ��J; (2)where � > 0 is a vis
osity-type 
onstant. We 
all the equations, 
oupled to the Poisson equation,the vis
ous quantum hydrodynami
 model. We refer to the appendix for details on the derivation(and s
aling) of this model.Some remarks on the additional terms in (1)-(2) are in order. We stress the fa
t thatthe vis
ous terms ��n and ��J are formally derived from the Wigner-Fokker-Plan
k model;they do not des
ribe an ad-ho
 regularization of the quantum hydrodynami
 model. The abovevis
ous regularization is di�erent from the vis
ous terms in the 
lassi
al Navier-Stokes equationssin
e it models the intera
tions of ele
trons and phonons in a semi
ondu
tor 
rystal. Usually,2



when applying a moment method to the Boltzmann equation, one would expe
t the 
ontinuityequation �tn + div eJ = 0instead of (1). However, writing (1) as�tn + div (J � �rn) = 0;we 
an interpret J��rn as the (e�e
tive) 
urrent density. The additional term ��n 
omes fromthe position-spa
e dependen
y of the Fokker-Plan
k operator (see the appendix for details). Wenoti
e that the Fokker-Plan
k operator is a very simple model for the intera
tions of ele
tronsand phonons but up to now, no �nal theory for quantum 
ollisions exists. The Fokker-Plan
kmodel has the advantage that it 
an be formally derived in the sense of Caldeira and Leggett[7℄. For vanishing s
aled Plan
k 
onstant " = 0, we obtain a paraboli
 regularization of the hy-perboli
 hydrodynami
 equations. This regularization has been employed to prove the existen
eof solutions to the one-dimensional Euler equations [19℄.The obje
tive of this paper is to analyze the one-dimensional stationary version of thevis
ous quantum hydrodynami
 model: Jx = �nxx; (3)�J2n �x + Tnx � nVx � "22 n�(pn)xxpn �x = �J� + �Jxx; (4)�2Vxx = n� C(x) in (0; 1): (5)We 
hoose the physi
ally motivated boundary 
onditionsn(0) = n(1) = 1; nx(0) = nx(1) = 0; V (0) = V0; J(0) = J0; (6)V0 = ��2�2 + "22 � (pn)xx(0) + J202 : (7)The last boundary 
ondition 
an be interpreted as a Diri
hlet 
ondition for the Bohm potentialat x = 0. Indeed, as the ele
trostati
 potential is only de�ned up to an additive 
onstant, this
onstant 
an be 
hoosen su
h that (pn)xx(0) = � holds for any � 2 R (often � = 0, see, e.g.,[17℄).Noti
e that we pres
ribe the 
urrent density but not the applied voltage V (1)�V (0). GivenJ0, the applied voltage 
an be 
omputed from the solution of the above boundary-value problem,whi
h gives a well-de�ned 
urrent-voltage 
hara
teristi
.Con
erning the mathemati
al analysis of the (invis
id) quantum hydrodynami
 model, onlypartial results are available. It has been shown (in one or several spa
e dimensions) that thereexists a weak solution to (3)-(5) with � = 0 (and for various 
hoi
es of the boundary 
onditions),if a subsoni
-type 
ondition of the formJ0n <rT + "24 in (0; 1) (8)is satis�ed, i.e., if the 
urrent density is small enough [10, 14, 15, 26℄. (Re
all that an Euler
ow is 
alled subsoni
 if J0=n < pT .) Moreover, for spe
ial boundary 
onditions, it has been3



proved [10℄ that the quantum hydrodynami
 equations do not possess a weak solution if the
urrent density is suÆ
iently large. The main diÆ
ulty in the existen
e analysis (besides of themathemati
al treatment of the third-order quantum term) is the 
onve
tion term (J2=n)x. Infa
t, in [10℄ it has been shown that this term for
es the parti
le density to 
avitate if the 
urrentdensity is large enough. Without this term, the stationary equations (still with � = 0) be
omethe quantum drift-di�usion model for whi
h a solution exists for any data [5℄. The third-order quantum term possesses a regularizing e�e
t sin
e the 
ondition (8) allows for slightly\supersoni
" 
ows [14℄.The question arises if, as in the 
ase of the 
lassi
al hydrodynami
 equations, the vis
ousterms regularize the equations in su
h a way that the existen
e of solutions 
an be proved forall values of the 
urrent densities. In this paper we give a partial answer to this question.More pre
isely, we prove the existen
e of 
lassi
al solutions if the following \weakly super-soni
" 
ondition holds: J0n < 1p2rT + "216 + �� in (0; 1): (9)Thus, the 
urrent density is allowed to be large if either the vis
osity � is large or the (s
aled)relaxation time is small enough. The reason for this restri
tion 
omes from the fa
t that,roughly speaking, the vis
ous term �Jxx 
an be reformulated (up to a fa
tor) as the third-orderquantum term. In fa
t, integrating (3) and using the boundary 
ondition for J(0) we obtainJ = �nx + J0;whi
h gives �J2n �x � �Jxx = �2�2n�(pn)xxpn �x + �J20n �x + 2�J0(logn)xx;and therefore, we 
an reformulate equation (4) formally as�J20n �x + �T + �� �nx � nVx � �2�2 + "22 �n�(pn)xxpn �x = �J0� � 2J0�(logn)xx: (10)This formulation shows that the vis
ous terms indeed regularize the equations (as the 
oeÆ
ientof the quantum term be
omes larger) but there is still a 
onve
tion term whi
h may for
e thesolutions to 
avitate for large values of the 
urrent density J0. (Unfortunately, the method in[10℄ 
annot be applied to prove this 
onje
ture rigorously.) Thus we expe
t a similar restri
tionon the 
urrent density as (8), but allowing for larger 
urrent densities.We noti
e that the fa
tor 1=p2 in (9) is needed in order to estimate the last term in (10).However, for suÆ
iently large �=� , we 
an allow for \supersoni
" 
urrent densities J0=n >pT + "2=4. We also remark that the above argument only holds in one spa
e dimension. Forthe multi-dimensional problem, no results are available. This situation is similar to the invis
idquantum hydrodynami
 equations, where mathemati
al results are essentially only available inone spa
e dimension (ex
ept [15℄).The above reformulation (10) is the main idea of this paper, together with the key estimate(11) below.In order to prove the existen
e of solutions to (10) and (5)-(7), we rewrite (10) as a fourth-order equation and employ the te
hnique of exponential transformation of variables n = eu as4



in [14℄ (�rst used in [6℄). The existen
e of a weak solution u 2 H2(0; 1) provides a weak solutionn = eu whi
h is stri
tly positive. Noti
e that maximum prin
iple arguments 
an generally benot applied to third- or fourth-order equations, and therefore, the exponential transformationof variables 
ir
umvents this fa
t to prove positive lower bounds for the parti
le density. Ourresults 
an be easily extended to Diri
hlet boundary 
onditions n(0) 6= n(1), following thete
hnique used in [14℄, but we use (6) for the sake of a smoother presentation. The existen
eof solutions is proved in Se
tion 3.As a se
ond result we prove in Se
tion 4 the uniqueness of solutions of (3)-(5) for suÆ
ientlysmall parameters �, " and J0. It is well known in semi
ondu
tor problems that uniqueness ofsolutions 
an only be expe
ted for suÆ
iently small 
urrent densities sin
e there are devi
esbased on multiple solutions.Using u = logn as a test fun
tion in the weak formulation of the fourth-order equation, weobtain the estimate ��2 + "24 �kuxxkL2 + �T + �� �kuxkL2 � K; (11)where K > 0 is a 
onstant whi
h does not depend on u, � or " (see Lemma 3.1). This inequalityis the key estimate of this paper. It provides an H1 bound for u independently of � and ". Thisallows to perform the invis
id limit � ! 0 and the semi
lassi
al limit " ! 0. These limits aswell as the 
ombined limit �2 + "2 ! 0 are shown in Se
tion 5.Finally, the Appendix is 
on
erned with a sket
h of the derivation of the model and itss
aling.A numeri
al study of the vis
ous quantum hydrodynami
 model, in
luding the asymptoti
behavior of the solutions for small parameters (� and "), will be published in [18℄.2 Reformulation of the equations and statement of themain resultsWe reformulate the system (3)-(4) as an ellipti
 fourth-order equation. After integration of(3) and substitution into (4) we obtain the expression (10). When we divide (10) by n anddi�erentiate with respe
t to x, this equation is formally equivalent to��2�2 + "22 ��(pn)xxpn �xx + �T + �� � (logn)xx= n� C�2 + J20 �nxn3�x � 2J0� � 1n(logn)xx�x � J0� � 1n�x ; (12)where we have used the Poisson equation (5). The ele
trostati
 potential 
an be re
overed from(10), after division by n and integration:V (x) = ��2�2 + "22 � (pn)xxpn (x) + �T + �� � logn(x) + J202n(x)2+ J0� Z x0 dsn(s) + 2J0� nxn2 (x) + 2J0� Z x0 n2xn3 ds: (13)
5



The integration 
onstant vanishes due to the boundary 
ondition (7). Now we rewrite thefourth-order term as n�(pn)xxpn �xx = 12(n(logn)xx)xxand introdu
e as in [14℄ the exponential variable n = eu to arrive to the problem���2 + "24 ��uxx + u2x2 �xx + �T + �� � uxx= ��2(eu � C) + J20 (e�2uux)x � 2J0�(e�uuxx)x � J0� (e�u)x; (14)V (x) = ���2 + "24 ��uxx + u2x2 � (x) + �T + �� � u(x) + J202 e�2u(x)+ J0� Z x0 e�u(s)ds+ 2J0�e�u(x)ux(x) + 2J0� Z x0 e�uu2xds: (15)Equation (14) has to be solved in the interval (0; 1) with the boundary 
onditionsu(0) = u(1) = 0; ux(0) = ux(1) = 0: (16)The problems (3)-(7) and (14)-(16) are equivalent for 
lassi
al solutions if n > 0 in (0; 1).Indeed, we have already shown that a 
lassi
al solution to (3)-(7) with n > 0 in (0; 1) providesvia u = logn a 
lassi
al solution to (14)-(16). Conversely, let (u; V ) be a 
lassi
al solutionto (14)-(16). Setting n = eu gives n > 0 in (0; 1), and the equations (12) and (13) hold.Di�erentiating (13) twi
e, multiplying by n and 
omparing with (12) yields the Poisson equation(5). Then, di�erentiating (13) on
e and multiplying the resulting equation by n, we obtain (4).Finally, the boundary 
ondition (7) follows from (13) using (6). Thus it is suÆ
ient to provethe existen
e of solutions to (14)-(16).Our existen
e result is as follows.Theorem 2.1 (Existen
e and uniqueness) Let C 2 L1(0; 1), C > 0 in (0; 1), 0 < 
 < 1,and 0 < J0 � 
p2e�M(
)rT + "216 + �� ; (17)where the 
onstant M(
) > 0 is de�ned in (27). Then there exists a 
lassi
al solution (n; J; V )to (3)-(7) su
h that n(x) � e�M(
) > 0 for x 2 (0; 1). Furthermore, if J0 and �2 + "2 aresuÆ
iently small, the problem (3)-(7) has a unique solution.The restri
tion (17) implies (9) sin
eJ0n � J0eM(
) < 1p2rT + "216 + �� :The 
onstant 
 needs to be smaller than one sin
eM(
)!1 for 
 ! 1 su
h that 
e�M(
) ! 0.We are able to prove the semi
lassi
al limit " ! 0, the invis
id limit � ! 0 and the
ombined semi
lassi
al-invis
id limit " ! 0 and � ! 0. We refer to the appendix for thephysi
al assumptions on the parameters, whi
h 
orrespond to su
h limits.6



Theorem 2.2 (Invis
id limit) Let (n�; J�; V�) be a solution to (3)-(7) and assume that 
on-dition (17) holds for � = 0. Then, as � ! 0, maybe for a subsequen
e,n� * n weakly in H2(0; 1);V� * V weakly in H4(0; 1);J� * J weakly in H1(0; 1);and (n; J; V ) is a (
lassi
al) solution of the quantum hydrodynami
 equations�J2n + Tn�x � nVx � "22 n�(pn)xxpn �x = �J� ;J = J0; �2Vxx = n� C in (0; 1);n(0) = n(1) = 1; nx(0) = nx(1) = 0; V (0) = V0:Theorem 2.3 (Semi
lassi
al limit) Let (n"; J"; V") be a solution to (3)-(7) and assume that
ondition (17) holds for " = 0. Then, as "! 0, maybe for a subsequen
e,n" * n weakly in H2(0; 1);V" * V weakly in H4(0; 1);J" * J weakly in H1(0; 1);and (n; J; V ) is a (
lassi
al) solution of�J2n + Tn�x � nVx = �Jxx � J� ; Jx = �nxx; �2Vxx = n� C in (0; 1);n(0) = n(1) = 1; nx(0) = nx(1) = 0; V (0) = V0; J(0) = J0:Theorem 2.4 (Semi
lassi
al-invis
id limit) Let Æ = �2 + "2=4, V0 = J20=2, let (nÆ; JÆ; VÆ)be a solution to (3)-(7), and assume that 
ondition (17) holds for Æ = 0. Then, as Æ ! 0,maybe for a subsequen
e (see Remark 5.2),nÆ * n weakly in H1(0; 1); (18)VÆ * V weakly in H3(0; 1); (19)JÆ * J weakly in H1(0; 1); (20)and (n; J; V ) is a (
lassi
al) solution of the hydrodynami
 equations�J2n + Tn�x � nVx = �J� ; J = J0; �2Vxx = n� C in (0; 1); (21)n(0) = n(1) = 1; V (0) = V0: (22)Remark 2.5 The 
onvergen
e results for the ele
tron density are not strong enough to 
on-
lude that the boundary 
ondition (7) holds. However, the boundary 
onditions of the limitequations are suÆ
ient to get (formally) well-posed problems.7



3 Existen
e of solutionsAs usual, we 
all u 2 H20 (0; 1) a weak solution of (14), (16) if for all  2 H20 (0; 1) it holds���2 + "24 �Z 10 �uxx + 12u2x� xxdx� �T + �� � Z 10 ux xdx (23)= 2J0� Z 10 uxxe�u xdx� J20 Z 10 uxe�2u xdx+ J0� Z 10 e�u xdx+ 1�2 Z 10 (eu � C) dx:In order to prove Theorem 2.1 we 
onsider the following trun
ated problem:���2 + "24 �Z 10 �uxx + 12u2x� xxdx� �T + �� �Z 10 ux xdx (24)= 2J0� Z 10 uxxe�uM xdx� J20 Z 10 uxe�2uM xdx+ J0� Z 10 e�u xdx + 1�2 Z 10 (eu � C) dx;where M =M(
) > 0 is the 
onstant from (17) de�ned in (27) below anduM = � u : juj �Msign(u)M : juj > M:The following lemma is the key result of this paper.Lemma 3.1 (H2-Estimate). Let u 2 H20 (0; 1) be a solution of (24) and let (17) hold forsome 0 < 
 < 1. Then ��2 + "24 �kuxxk2L2 + �T + �� �kuxk2L2 � K(
); (25)where K(
) > 0 is independent of u, �, and " (see (29) for its de�nition). In parti
ular, itfollows kukL1 �M(
); (26)where M(
) =rK(
)T : (27)Proof. We use  = u as a test fun
tion in the weak formulation of (24) to obtain��2 + "24 �Z 10 �u2xx + 12u2xuxx�dx+ �T + �� �Z 10 u2xdx= �2J0� Z 10 uxxe�uMuxdx + J20 Z 10 u2xe�2uMdx� J0� Z 10 e�uuxdx� 1�2 Z 10 u(eu � C)dx= I1 + I2 + I3 + I4: (28)We estimate the right-hand side term by term. By Young's inequality,I1 = �2J0� Z 10 uxxe�uMuxdx � 2J0eM� Z 10 juxxjjuxjdx� (1� �)�2 Z 10 u2xxdx + J20e2M1� � Z 10 u2xdx;8



where 0 < � < (1� 
2)=(1� 
2=2). Furthermore,I2 = J20 Z 10 u2xe�2uMdx � J20 e2M Z 10 u2xdx:Due to the boundary 
onditions (16), the third integral vanishes: I3 = 0. It is not diÆ
ult tosee that 1=e+ kC logCkL1 is an upper bound for the fun
tion u 7! �u(eu � C(x)), u 2 R, forany x 2 (0; 1). Here we use the assumption that the 
on
entration C(x) is positive. Therefore,I4 � ��2(e�1 + kC logCkL1):Noti
ing that the integral Z 10 u2xuxxdx = 13(u3x(1)� u3x(0)) = 0vanishes, due to the boundary 
onditions (16), we 
on
lude that (28) 
an be estimated as���2 + "24 �kuxxk22 + �T + �� � 2� �1� �J20 e2M�kuxk22 � ��2(e�1 + kC logCkL1):In view of 
ondition (17) we obtainT + �� � 2� �1� �J20 e2M � �1� 2� �1� � 
22 ��T + �� �� 2� �1� � 
22 "216 :Using the Poin
ar�e inequality "216 Z 10 u2xdx � "24 Z 10 u2xxdx;this givesh��2+�1� 
2(2� �)2(1� �) �"24 ikuxxk2L2+�1� 
2(2� �)2(1� �) ��T + �� �kuxk2L2 � ��2(e�1+kC logCkL1)or ��2 + "24 �kuxxk2L2 + �T + �� �kuxk2L2 � K(
);where K(
) = 1�2�1e + kC logCkL1�minn�; 1� 
2(2� �)2(1� �) o�1: (29)Noti
e that 1�
2(2��)=(2(1��)) > 0 due to the 
hoi
e of �. Finally, from the Poin
ar�e-Sobolevestimate, kukL1 � kuxkL2 �M(
);where M(
) =pK(
)=T . This proves the lemma. �Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a solution u 2 H20 (0; 1) of (23).9



Proof. The existen
e of a solution of the problem (23) is shown by using the Leray-S
hauder�xed-point theorem. For this, we 
onsider the following linear problem for given w 2 H10 (0; 1)with test fun
tions  2 H20 (0; 1): �a(u;  ) = �F ( ); (30)where � 2 [0; 1℄, a(u;  ) = ��2 + "24 �Z 10 uxx xxdx + �T + �� �Z 10 ux xdx; (31)and F ( ) = ����2 + "24 �Z 10 12w2x xxdx+ 2J0�� Z 10 wx(e�w x)xdx+ J20� Z 10 wxe�2w xdx� J0� � Z 10 e�w xdx� ��2 Z 10  (ew � C)dx: (32)Sin
e the bilinear form a(u;  ) is 
ontinuous and 
oer
ive on H20 (0; 1)�H20 (0; 1) and the linearfun
tional F is 
ontinuous on H20 (0; 1), we 
an apply the Lax-Milgram theorem to obtain theexisten
e of a solution u 2 H20 (0; 1) of (30). Thus, the operatorS : H10 (0; 1)� [0; 1℄! H10 (0; 1); (w; �) 7! u;is well-de�ned. Moreover, it is 
ontinuous and 
ompa
t sin
e the embedding H20 (0; 1) ,!H10 (0; 1) is 
ompa
t. Furthermore, S(w; 0) = 0. Following the steps of the proof of Lemma3.1, we 
an show that kukH20 � 
onst. for all (u; �) 2 H01 (0; 1) � [0; 1℄ satisfying S(u; �) = u.Therefore, the existen
e of a �xed point u with S(u; 1) = u follows from the Leray-S
hauder�xed-point theorem. This �xed point is a solution of (24) and, in fa
t, also of (23) sin
eju(x)j �M(
). �Theorem 3.3 Under the assumptions of Lemma 3.1, there exists a solution (u; V ) 2 H4(0; 1)�H2(0; 1) of (14)-(16).Proof. Let u be a weak solution of (23) or (14). Sin
e u 2 H20 (0; 1), it holds u2x 2 H10 (0; 1)and (e�uuxx)x 2 H�1(0; 1). Then, from (14), we infer uxxxx 2 H�1(0; 1). Hen
e, there existsw 2 L2(0; 1) su
h that wx = uxxxx. This implies uxxx = w + 
onst. 2 L2(0; 1) and, by (14),uxxxx 2 L2(0; 1). This allows us to 
on
lude that u 2 H4(0; 1) and from the regularity of u andfrom (15) follows the regularity of V . �4 Uniqueness of solutionsTheorem 4.1 If the positive 
onstants �, " and J0 are suÆ
iently small, the problem (14)-(16)has a unique solution.Proof. We pro
eed similarly as in [14℄. Let u, v 2 H20 (0; 1) be weak solutions of (14). Weobserve that, in view of the boundary 
onditions for ux,u2x(x) = 2 Z x0 ux(s)uxx(s)ds � 2kuxkL2kuxxkL210



and thus kuxkL1 � �2 kuxkL2 + 12�kuxxkL2for all � > 0. By Lemma 3.1 we obtainkuxkL1 � � �2p�2 + "2=4 + 12�pT + �=� �pK(
):Choosing � =p(T + �=�)=K(
) then giveskuxkL1 � pT + �=�2p�2 + "2=4 + K(
)T + �=� :Now we 
hoose � and " so small thatp�2 + "2=4 � (T + �=�)3=22K(
) :As T is positive, su
h a 
hoi
e is possible. This implieskuxkL1 �s T + �=��2 + "2=4 :A similar estimate 
an be obtained for vx. Thereforek(u+ v)xkL1 � 2s T + �=��2 + "2=4 : (33)Now we start to estimate the di�eren
e u � v. The weak formulation of the di�eren
e ofthe equations satis�ed by u and v, with the test fun
tion u� v, reads as follows:��2 + "24 �Z 10 (u� v)2xx + �T + �� �Z 10 (u� v)2xdx+ 12��2 + "24 �Z 10 (u2x � v2x)(u� v)xxdx= �2J0� Z 10 (uxxe�u � vxxe�v)(u� v)xdx� 12J20 Z 10 (e�2u � e�2v)x(u� v)xdx� 1�2 Z 10 (eu � ev)(u� v)dx+ J0� Z 10 (e�u � e�v)(u� v)xdx= I1 + I2 + I3 + I4: (34)The mean value theorem and the estimate (26) with M = M(
) yields je�u(x) � e�v(x)j �eM ju(x)� v(x)j. Therefore, using Poin
ar�e's inequality,I4 � J0� eMku� vkL2k(u� v)xkL2 � J0� eMk(u� v)xk2L2 :The monotoni
ity of x 7! ex implies I3 � 0. For the estimate of the se
ond integral we obtainsimilarly as aboveI2 = J20 Z 10 [e�2u(u� v)2x + (e�2u � e�2v)vx(u� v)x℄dx � J20K1e2Mk(u� v)xk2L2;11



where the 
onstant K1 > 0 depends on kvxkL1. Finally, we write for the �rst integralI1 = �2J0� Z 10 [e�u(u� v)xx + (e�u � e�v)vxx℄(u� v)xdx:As we do not have an L1 bound for vxx, we integrate by parts in the se
ond addend:I1 = �2J0� Z 10 [e�u(u� v)xx(u� v)x � e�uvx(u� v)2x � (e�u � e�v)v2x(u� v)x� (e�u � e�v)vx(u� v)xx℄dx� �22 k(u� v)xxk2L2 + J20e2MK2k(u� v)xk2L2;and K2 > 0 depends on kvxkL1. In the last step we have used again the mean value theoremand Young's and Poin
ar�e's inequalities. We 
on
lude from (34)I = ��2 + "24 �Z 10 (u� v)2xx + �T + �� � Z 10 (u� v)2xdx+ 12��2 + "24 �Z 10 (u+ v)x(u� v)x(u� v)xxdx� �22 k(u� v)xxk2L2 + J0�eM� + J0K1e2M + J0K2e2M�k(u� v)xk2L2 : (35)The estimate of the last integral of the left-hand side of (34) is more deli
ate. We use thebound (33):I � 12��2 + "24 �Z 10 (u� v)2xx + 12�T + �� �Z 10 (u� v)2xdx+ 12 Z 10 �p�2 + "2=4j(u� v)xxj �pT + �=� j(u� v)xj�2 dx+p�2 + "2=4pT + �=� Z 10 j(u� v)xjj(u� v)xxj�1� 12s�2 + "2=4T + �=� j(u+ v)xj�dx� 12��2 + "24 �Z 10 (u� v)2xx + 12�T + �� �Z 10 (u� v)2xdx:Thus putting together this estimate and (35), for suÆ
iently small J0 > 0, we arrive to"28 Z 10 (u� v)2xx + 12�T + �� �Z 10 (u� v)2xdx � 0:This implies u� v = 0 in (0; 1). �For the proof of Theorem 2.1 it remains to show that the solution (u; V ) of (14)-(16) providesa solution (n; V ) of (3)-(7). Then both formulations are equivalent and the uniqueness ofsolutions of (3)-(7) follows. 12



Let (u; V ) be the unique solution of (14)-(16) and set n = eu. Then we obtain (12) and(13). We di�erentiate (13) twi
e with respe
t to x:Vxx = ��2�2 + "22 ��(pn)xxpn �xx + �T + �� � (logn)xx + J202 � 1n2�xx+ J0� � 1n�x + 2J0��nxn2�xx + 2J0��n2xn3�x;and, 
omparing with (12), Poisson's equation (5) follows. Furthermore, from (13) it holds:V (0) = ��2�2 + "22 ��(pn)xxpn �(0) + J202 = V0;taking into a

ount (7).Now we di�erentiate (13) with respe
t to x and multiply the resulting equation with n:nVx = ��2�2 + "22 �n�(pn)xxpn �x + �T + �� �nx � J20 nxn2 + J0� � 2J0��n2xn2 � nxxn �:Introdu
ing J(x) := �nx(x) + J0, equation (3) follows after di�erentiation. Finally, from�2�2n�(pn)xxpn �x + �� nx � 2J0��n2xn2 � nxxn � + J0� � J20�nxn2� = �J2n �x � �Jxx + J�equation (4) follows.5 Asymptoti
 limitsWe only prove Theorem 2.4 as the proofs of Theorems 2.2 and 2.3 are very similar (and infa
t, easier). The proof is a 
onsequen
e of the key estimate (25) and the 
ompa
t embeddingH1(0; 1) ,! L1(0; 1). First we show:Theorem 5.1 Let (uÆ; VÆ) be a solution of (14)-(16) for Æ = �2 + "2=4 > 0 and let (17) holdfor � = 0. Set JÆ = � exp(uÆ)uÆ;x + J0. Then there exists a subsequen
e of (uÆ; JÆ; VÆ) (notrelabeled) su
h that uÆ * u weakly in H1 and strongly in L1; (36)VÆ * V weakly in H3; (37)JÆ * J weakly in H1; (38)and (u; J; V ) is a solution ofJ = J0; (39)Tuxx = eu � C�2 + J20 (uxe�2u)x � J0� (e�u)x; (40)V (x) = Tu(x) + 12J20 e�2u(x) + J0� Z x0 e�u(x)ds; x 2 (0; 1); (41)with boundary 
onditions u(0) = u(1) = 0: (42)13



Proof. From Lemma 3.1 and Poin
ar�e's inequality we obtain a uniformH1 bound for uÆ. Thenthere exists a subsequen
e of (uÆ) (not relabeled) su
h that (36) holds. The weak formulationof (14) reads, for any  2 C10 (0; 1), after integration by parts,�Æ Z 10 uÆ xxxx � Æ2 Z 10 u2Æ;x xxdx= �T + �� �Z 10 uÆ;x xdx + 2J0� Z 10 u2Æ;xe�uÆ xdx� 2J0� Z 10 uÆ;xe�uÆ xxdx� J20 Z 10 uÆ;xe�2uÆ xdx+ J0� Z 10 e�uÆ xdx + 1�2 Z 10 (euÆ � C) dx:The 
onvergen
es (36) allow us to pass to the limit Æ ! 0 in the above equation, observingthat the left-hand side vanishes in the limit:�T Z 10 ux xdx = �J20 Z 10 uxe�2u xdx+ J0� Z 10 e�u xdx+ 1�2 Z 10 (eu � C) dx:Now we rewrite (15) asVÆ(x) = �Æ�uÆ;xx + 12u2Æ;x� + �T + �� �uÆ + 2J0�e�uÆuÆ;x + 2J0� Z x0 e�uÆu2Æ;xds+ 12J20 e�2uÆ + J0� Z x0 e�uÆds: (43)Di�erentiating this equation twi
e with respe
t to x and 
omparing to (14) yieldsVÆ;xx = ��2(euÆ � C):Thus, from (25) follows that VÆ is uniformly bounded in H3 and (37) is proved.Next we multiply (43) by � 2 C10 (0; 1) and integrate over (0; 1). Integrating by parts andusing (16), we �ndZ 10 VÆ�dx = �Æ Z 10 uÆ�xxdx� Æ2 Z 10 u2Æ;x�dx+ �T + �� �Z 10 uÆ�dx+ 2J0� Z 10 e�uÆuÆ;x�dx+ 2J0� Z 10 � Z x0 e�uÆu2Æ;xdsdx+ 12J20 Z 10 e�2uÆ�dx+ J0� Z 10 � Z x0 e�uÆdsdx: (44)Using the uniform L1 and H1 bounds of uÆ and the 
onvergen
e (36), we 
an pass to the limitÆ ! 0 in (44): Z 10 V �dx = Z 10 �Tu+ 12J20 e�2u + J0� Z x0 e�uds��dx:Finally, we 
onsider the equation JÆ = �euÆuÆ;x + J0:14



As �uÆ;x is uniformly bounded in H1, by Lemma 3.1, a subsequen
e of (JÆ) 
onverges weaklyin H1, i.e., (38) holds. Multiplying the above equation by some � 2 C10 (0; 1) and integratingover (0; 1) gives Z 10 JÆ�dx = �� Z 10 euÆ�xdx+ J0 Z 10 �dx;and the limit � ! 0 implies (39). �Remark 5.2 For suÆ
iently small 
urrent densities J0 > 0, the quantum hydrodynami
 model(39)-(42) is uniquely solvable (see, e.g., [10, 14℄). This means that the whole sequen
e (uÆ; VÆ; JÆ)
onverges to (u; V; J0) in the sense of (36)-(38).We prove Theorem 2.4. Setting nÆ = euÆ and n = eu, where u is the solution of (40), obtainedas the limit of the subsequen
e (uÆ), the 
onvergen
e results (18)-(20) hold. We rewrite (40) inthe variable n: T (logn)xx = n� C�2 + J20�nxn3�x � J0� � 1n�x: (45)Noti
e that n is stri
tly positive sin
e n(x) � exp(�kukL1) � exp(�M(
)), x 2 (0; 1). Di�er-entiating (41) twi
e with respe
t to x, we obtainVxx(x) = T (logn)xx + J202 � 1n2�xx + J0� � 1n�x: (46)Comparing (45) and (46) gives Poisson's equation (see (21)). Di�erentiating (41) with respe
tto x and multiplying by n, the resulting equation is equal to the �rst equation in (21). Finally,from (41) we have V (0) = 12J20 = V0;whi
h equals (22).6 Con
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 equations are derived similarly as in [11℄ by applying amoment method to the following Wigner-Fokker-Plan
k equation:�tw + ~mk � rxw + q~�[V ℄(w) = L(w); x; k 2 Rd ; t > 0; (47)w(x; k; 0) = w0(x; k); x; k 2 Rd : (48)Here, w = w(x; k; t) is the Wigner distribution fun
tion depending on the spa
e variable x 2 Rd(d � 1), the wave ve
tor k 2 Rd , and the time t > 0. The physi
al parameters are the redu
edPlan
k 
onstant ~ = h=2�, the e�e
tive mass m of the ele
trons, and the elementary 
harge q.The operator �[V ℄ is de�ned in the sense of pseudo-di�erential operators [23℄ as(�[V ℄)(w)(x; k; t) = i(2�)d ZRd ZRd m~ hV �x+ �2 ; t�� V �x� �2 ; t�i� w(x; k0; t)e�i(k�k0)��dk0 d�;where V = V (x; t) is the ele
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Here, "s denotes the permittivity of the semi
ondu
tor material and C(x) the 
on
entrationof �xed 
harged ba
kground ions (doping pro�le). The parti
le density n(x; t) and the 
urrentdensity J(x; t) are related to the Wigner fun
tion byn(x; t) = ZRd w(x; k; t)dp; J(x; t) = qm ZRd w(x; k; t)pdp;with the momentum p = ~k.The quantum Fokker-Plan
k operatorL(w) = Dpp~2 �kw + 1�0divk(kw) + Dpq~ divx(rkw) +Dqq�xw (49)models the intera
tion of the ele
trons with the phonons of the 
rystal latti
e (os
illators) with
onstants Dpp = kBT0m�0 ; Dpq = 
~26�kBT0�0 ; Dqq = ~212mkBT0�0 ;where kB denotes the Boltzmann 
onstant, T0 the latti
e temperature, �0 the momentum re-laxation time, and 
 the 
ut-o� frequen
y of the reservoir os
illators. This model governsthe dynami
al evolution of an ele
tron ensemble in the single-parti
le Hartree approximationintera
ting dissipatively with an idealized heat bath 
onsisting of an ensemble of harmoni
os
illators and modeling the semi
ondu
tor latti
e.The Wigner-Fokker-Plan
k model (47)-(49) has been derived in [7, 9℄ under the main as-sumptions that� the thermal energy kBT0 is of the same order as the energy ~
 
orresponding to the
ut-o� frequen
y;� the reservoir memory time 1=
 is mu
h smaller than the 
hara
teristi
 time s
ale t� ofthe ele
trons and the momentum relaxation time �0.For a dis
ussion of the model (47), we refer to [4℄. The existen
e and uniqueness of solutionsto the periodi
 and the whole-spa
e problem (47)-(49) have been shown in [3, 4℄.In order to derive ma
ros
opi
 equations from (47) for the ma
ros
opi
 variables n andJ , the moment method as in [11℄ 
an be applied, i.e., equation (47) is multiplied by 1 andp = ~k, respe
tively, and integrated over Rd with respe
t to p. The resulting system is 
losedby assuming that the Wigner fun
tion w is 
lose to the quantum thermal equilibrium densityapproximation by Wigner [25℄. The only di�eren
e to the derivation in [11℄ is that the Fokker-Plan
k operator has to be integrated. This yieldsZRd(L(w))(x; k; t)d(~k) = Dqq�xn(x; t);ZRd(L(w))(x; k; t)(~k)d(~k) = �J(x; t)�0 � qmDpqrxn(x; t) +Dqq�xJ(x; t):Therefore, we obtain the vis
ous quanutm hydrodynami
 equations�tn + 1qdivJ = Dqq�n;�tJ + 1qdiv�J 
 Jn �+ qkBT0m �1 + DpqkBT0�rxn� q2mnrV � q~26m2nr��pnpn �= � J�0 +Dqq�J; 18



where J 
 J is a matrix with the 
omponents JiJk, i; k = 1; : : : ; d.In order to s
ale these equations, we introdu
e the 
hara
teristi
 length L and the 
hara
-teristi
 time t� and de�ne the 
hara
teristi
 density, voltage and 
urrent density, respe
tively,by C� = sup jCj; V � = kBT0q ; J� = qkBT0C�t�LM L� ;where � is the mean-free path de�ned by �2 = kBT0� 20 =m. After introdu
ing the s
alingx! Lx; t! t�t; n! C�n; C ! C�C; V ! V �V; J ! J�J;we obtain the s
aled vis
ous quantum hydrodynami
 equations�tn+ divJ = ��n;�tJ + div�J 
 Jn � + Trn� nrV � "22 nr��pnpn � = �J� + ��J;�2�V = n� C(x):The s
aled parameters are"2 = 16 �LbL �2 ; � = 16 �LbL �2 L� t��0 ; T = 1 + 1p18� 
~kBT0 Lb� ;� = �0t� ; �2 = "skBT0q2L2C� ;and Lb = ~=p2mkBT0 is the de Broglie length. Noti
e that the s
aled e�e
tive temperature Tis the sum of the s
aled temperature (whi
h is one) and the 
orre
tion term 
~Lb=p18�kBT0�.The 
orre
tion is small if the mean free path is large 
ompared to the de Broglie length, sin
e
~=kBT0 is assumed to be of order one.The parameters " and � 
an be small depending on the physi
al situations:1. T0 = 300K, � = 10�12 s, L = 1�m: With these values we have Lb=L � 10�3 and �=L � 0:1and hen
e "2 � 1 and � � 1 if the 
hara
teristi
 time t� is of the same order as �0. Thisregimes holds for rather large devi
es at room temperature.2. T0 = 300K, � = 10�12 s, L = 100 nm: We obtain Lb=L � 0:01 and �=L � 1. If the 
hara
-teristi
 time is mu
h larger than the relaxation time, t�=�0 � 1, su
h that (Lb=L)2(t�=�0)is of order one, this gives "2 � 1 but � is of order one. This regime holds for rather smalldevi
es at room temperature.3. T0 = 3K, � = 10�12 s, L = 100 nm: This yields Lb=L � 0:1 and �=L � 1. If the
hara
teristi
 time is mu
h smaller than the momentum time, t�=�0 � 1, we obtain� � ". This regime is relevant for, for instan
e, infra-red sensors.
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