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Abstract

The steady-state viscous quantum hydrodynamic model in one space dimension is studied.
The model consists of the continuity equations for the particle and current densities, cou-
pled to the Poisson equation for the electrostatic potential. The equations are derived from
a Wigner-Fokker-Planck model and they contain a third-order quantum correction term
and second-order viscous terms. The existence of classical solutions is proved for “weakly
supersonic” quantum flows. This means that a smallness condition on the particle veloc-
ity is still needed but the bound is allowed to be larger than for classical subsonic flows.
Furthermore, the uniqueness of solutions and various asymptotic limits (semiclassical and
inviscid limits) are investigated. The proofs are based on a reformulation of the problem
as a fourth-order elliptic equation by using an exponential variable transformation.
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1 Introduction

In semiconductor device simulation, the modeling of quantum effects becomes more and more
important as the characteristic device lengths can nowadays be smaller than about 100 nm.
Usually, quantum effects are modeled by using microscopic equations, like the Schrodinger or
Wigner equation [16, 22]. In recent years, macroscopic quantum equations have been developed
and used in quantum device simulation [1, 8, 11, 13, 17, 24, 27]. There are several advantages
of a macroscopic description of semiconductors. First, the Wigner or Schrodinger equation is
computationally very expensive, whereas for fluid-type models efficient numerical algorithms
are available. Second, as semiconductor devices are modeled in bounded domains, it is easier to
find physically relevant boundary conditions for the macroscopic variables than for the Wigner
function or the wave function.
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It is well known since 1927 that there exists a fluiddynamical formulation of the Schrodinger
equation [21]. In fact, by separating the real and the complex part of the single-state Schrodinger
equation, the electron density n(x,t) and current density J(z,t) are satisfying (formally) the
scaled Madelung equations

8tn + divJ = 0,
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where V' (z,t) is the electrostatic potential, satisfying the Poisson equation

NAV =n - C(z),

with the concentration of fixed background charges C(x). The physical constants are the
(scaled) Planck constant £ and the Debye length A. The symbol J ® .J denotes the tensor
with components J;.JJ,. The Madelung equations can be also derived from the Wigner equation
by a moment method [11]. This allows to incorporate temperature effects (for many-electron
ensembles) and a relaxation-time term. Temperature effects can be also obtained from a mixed-
state Schrodinger approach [12]. This yields the equation

2 A
0;J + div <J®J> +TVn—nVV — 8—nV< ﬁ) __7
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where T is the (scaled) temperature and 7 the (scaled) momentum relaxation time. This
equation, together with the equation for the electron density and the Poisson equation, is
called the quantum hydrodynamic model. For vanishing scaled Planck constant ¢ = 0 (and
vanishing relaxation-time term), the above equation is equal to the classical Euler momentum
equation for charged particles. The relaxation term models interactions of the electrons with
the phonons of the semiconductor crystal lattice.

A more precise model of the electron-phonon interactions is obtained by using a (quantum)
Fokker-Planck scattering operator in the Wigner equation [3, 4]. This operator, which acts
both in the position and velocity (more precisely: wave vactor) space, yields additional terms
in the quantum hydrodynamic equations when applying a moment method (see the appendix
for details):

on+divJ = vAn, (1)
N
8tJ—|—div<J®J>—|—TVn—nVV—8—nV< ﬁ) NN 2)
n 2 Vn T

where v > 0 is a viscosity-type constant. We call the equations, coupled to the Poisson equation,
the viscous quantum hydrodynamic model. We refer to the appendix for details on the derivation
(and scaling) of this model.

Some remarks on the additional terms in (1)-(2) are in order. We stress the fact that
the viscous terms vAn and vAJ are formally derived from the Wigner-Fokker-Planck model;
they do not describe an ad-hoc regularization of the quantum hydrodynamic model. The above
viscous regularization is different from the viscous terms in the classical Navier-Stokes equations
since it models the interactions of electrons and phonons in a semiconductor crystal. Usually,



when applying a moment method to the Boltzmann equation, one would expect the continuity
equation N
8tn + divJ =0

instead of (1). However, writing (1) as
o +div (J — vVn) =0,

we can interpret JJ—v'Vn as the (effective) current density. The additional term vAn comes from
the position-space dependency of the Fokker-Planck operator (see the appendix for details). We
notice that the Fokker-Planck operator is a very simple model for the interactions of electrons
and phonons but up to now, no final theory for quantum collisions exists. The Fokker-Planck
model has the advantage that it can be formally derived in the sense of Caldeira and Leggett
[7].

For vanishing scaled Planck constant £ = 0, we obtain a parabolic regularization of the hy-
perbolic hydrodynamic equations. This regularization has been employed to prove the existence
of solutions to the one-dimensional Euler equations [19].

The objective of this paper is to analyze the one-dimensional stationary version of the
viscous quantum hydrodynamic model:

Jo = Vhgg, (3)
(%) +Tng, —nVy, — Z—Qn C@”) = —% + vy, (4)
' Vwi:n—ow in (0,1). (5)

We choose the physically motivated boundary conditions

w(0) = () =1, ma(0)=m(1) =0, V(0)= Vi, J0) = ©)
Vo= = (274 5 ) (Vua(0) 4 2, 7

The last boundary condition can be interpreted as a Dirichlet condition for the Bohm potential
at © = 0. Indeed, as the electrostatic potential is only defined up to an additive constant, this
constant can be choosen such that (1/n).,(0) = « holds for any o € R (often a = 0, see, e.g.,
[17]).

Notice that we prescribe the current density but not the applied voltage V(1) —V(0). Given
Jo, the applied voltage can be computed from the solution of the above boundary-value problem,
which gives a well-defined current-voltage characteristic.

Concerning the mathematical analysis of the (inviscid) quantum hydrodynamic model, only
partial results are available. It has been shown (in one or several space dimensions) that there
exists a weak solution to (3)-(5) with » = 0 (and for various choices of the boundary conditions),
if a subsonic-type condition of the form

2
%<\/T+% in (0,1) (8)

is satisfied, i.e., if the current density is small enough [10, 14, 15, 26]. (Recall that an Euler
flow is called subsonic if Jy/n < /T.) Moreover, for special boundary conditions, it has been
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proved [10] that the quantum hydrodynamic equations do not possess a weak solution if the
current density is sufficiently large. The main difficulty in the existence analysis (besides of the
mathematical treatment of the third-order quantum term) is the convection term (J?/n),. In
fact, in [10] it has been shown that this term forces the particle density to cavitate if the current
density is large enough. Without this term, the stationary equations (still with v = 0) become
the quantum drift-diffusion model for which a solution exists for any data [5]. The third-
order quantum term possesses a regularizing effect since the condition (8) allows for slightly
“supersonic” flows [14].

The question arises if, as in the case of the classical hydrodynamic equations, the viscous
terms regularize the equations in such a way that the existence of solutions can be proved for
all values of the current densities. In this paper we give a partial answer to this question.

More precisely, we prove the existence of classical solutions if the following “weakly super-

sonic” condition holds:

J() 1 g2 v

— < —=\/T+—=+—- 1in (0,1). 9

n V2 16 7 (0.1) )
Thus, the current density is allowed to be large if either the viscosity v is large or the (scaled)
relaxation time is small enough. The reason for this restriction comes from the fact that,
roughly speaking, the viscous term v.J,, can be reformulated (up to a factor) as the third-order

quantum term. In fact, integrating (3) and using the boundary condition for .J(0) we obtain
J=vn, + Jy,

which gives

and therefore, we can reformulate equation (4) formally as

2

() e (470 2)o (45, s

This formulation shows that the viscous terms indeed regularize the equations (as the coefficient
of the quantum term becomes larger) but there is still a convection term which may force the
solutions to cavitate for large values of the current density Jy. (Unfortunately, the method in
[10] cannot be applied to prove this conjecture rigorously.) Thus we expect a similar restriction
on the current density as (8), but allowing for larger current densities.

We notice that the factor 1/v/2 in (9) is needed in order to estimate the last term in (10).
However, for sufficiently large v/7, we can allow for “supersonic” current densities Jo/n >
VT + e%2/4. We also remark that the above argument only holds in one space dimension. For
the multi-dimensional problem, no results are available. This situation is similar to the inviscid
quantum hydrodynamic equations, where mathematical results are essentially only available in
one space dimension (except [15]).

The above reformulation (10) is the main idea of this paper, together with the key estimate
(11) below.

In order to prove the existence of solutions to (10) and (5)-(7), we rewrite (10) as a fourth-
order equation and employ the technique of exponential transformation of variables n = e" as




in [14] (first used in [6]). The existence of a weak solution u € H?(0, 1) provides a weak solution
n = e which is strictly positive. Notice that maximum principle arguments can generally be
not applied to third- or fourth-order equations, and therefore, the exponential transformation
of variables circumvents this fact to prove positive lower bounds for the particle density. Our
results can be easily extended to Dirichlet boundary conditions n(0) # n(1), following the
technique used in [14], but we use (6) for the sake of a smoother presentation. The existence
of solutions is proved in Section 3.

As a second result we prove in Section 4 the uniqueness of solutions of (3)-(5) for sufficiently
small parameters v, € and J,. It is well known in semiconductor problems that uniqueness of
solutions can only be expected for sufficiently small current densities since there are devices
based on multiple solutions.

Using u = logn as a test function in the weak formulation of the fourth-order equation, we
obtain the estimate

(2 ) selae + (7 4+ 2 e < . (11)

where K > 0 is a constant which does not depend on u, v or € (see Lemma 3.1). This inequality
is the key estimate of this paper. It provides an H' bound for u independently of v and e. This
allows to perform the inviscid limit » — 0 and the semiclassical limit £ — 0. These limits as
well as the combined limit v + 2 — 0 are shown in Section 5.

Finally, the Appendix is concerned with a sketch of the derivation of the model and its
scaling.

A numerical study of the viscous quantum hydrodynamic model, including the asymptotic
behavior of the solutions for small parameters (v and ¢), will be published in [18].

2 Reformulation of the equations and statement of the
main results

We reformulate the system (3)-(4) as an elliptic fourth-order equation. After integration of
(3) and substitution into (4) we obtain the expression (10). When we divide (10) by n and
differentiate with respect to x, this equation is formally equivalent to

_ <2u2 + %) (%)m + (T + ;) (1og n)s
= Sl (%) 2w (L) <% (1) )

where we have used the Poisson equation (5). The electrostatic potential can be recovered from
(10), after division by n and integration:

o = (3745 B (14
% m%wm— +2J01// —z (13)



The integration constant vanishes due to the boundary condition (7). Now we rewrite the

fourth-order term as |

and introduce as in [14] the exponential variable n = e* to arrive to the problem

g2 u? v
- V2+_ umm+_m +<T+_)ufm
4 2 ) T

J,
= A 2(e" = C) + J2 (e Muy)y — 2Jov(e " Ugy) s — 70(6_“),0, (14)
2 2 2
R Uy v Jo )
V(z) = <1/+4><um+2>(:ﬂ)+<T+T>u($)+26
+ Jo e "Ods + 2Jyve "Dy, (x) + 2ng// e "ulds. (15)
T Jo 0

Equation (14) has to be solved in the interval (0,1) with the boundary conditions
u(0) =u(1) =0, u,(0)=1u,(1)=0. (16)

The problems (3)-(7) and (14)-(16) are equivalent for classical solutions if n > 0 in (0, 1).
Indeed, we have already shown that a classical solution to (3)-(7) with n > 0 in (0, 1) provides
via u = logn a classical solution to (14)-(16). Conversely, let (u,V’) be a classical solution
to (14)-(16). Setting n = €* gives n > 0 in (0,1), and the equations (12) and (13) hold.
Differentiating (13) twice, multiplying by n and comparing with (12) yields the Poisson equation
(5). Then, differentiating (13) once and multiplying the resulting equation by n, we obtain (4).
Finally, the boundary condition (7) follows from (13) using (6). Thus it is sufficient to prove
the existence of solutions to (14)-(16).

Our existence result is as follows.

Theorem 2.1 (Existence and uniqueness) Let C € L>(0,1), C > 0in (0,1), 0 <y <1,
and
Y —M( ) 52 1%
0< Jp < — TNT + — + — 17
0SS \/56 + ]_6 + T’ ( )
where the constant M () > 0 is defined in (27). Then there exists a classical solution (n, J, V')
to (3)-(7) such that n(z) > e ™M) > 0 for x € (0,1). Furthermore, if Jy and v* + &% are
sufficiently small, the problem (3)-(7) has a unique solution.

The restriction (17) implies (9) since

Jo < JoeM)
n

1

< — .
V2 16 7

The constant v needs to be smaller than one since M () — oo for v — 1 such that ye=™ ) — 0.
We are able to prove the semiclassical limit ¢ — 0, the inviscid limit ¥ — 0 and the

combined semiclassical-inviscid limit ¢ — 0 and v — 0. We refer to the appendix for the
physical assumptions on the parameters, which correspond to such limits.
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Theorem 2.2 (Inviscid limit) Let (n,, J,,V,) be a solution to (3)-(7) and assume that con-
dition (17) holds for v = 0. Then, as v — 0, maybe for a subsequence,

n, —n weakly in H*(0,1),
V, =~V weakly in H*(0,1),
J,—=J weakly in H*(0,1),

and (n, J,V) is a (classical) solution of the quantum hydrodynamic equations

2 2
(J——i—Tn) —nVI—6—n<(\/ﬁ)“> :_1,

n . 2 N
J=Jy, MVy=n—-C in(0 )

n(0) =n(1) =1, na(0) = ny(1)

Theorem 2.3 (Semiclassical limit) Let (n., J., V.) be a solution to (3)-(7) and assume that
condition (17) holds for e = 0. Then, as € — 0, maybe for a subsequence,

ne —n weakly in H*(0,1),
V.=V weakly in H*(0, 1),
Jo—J weakly in H'(0, 1),

and (n, J, V') is a (classical) solution of

J2 J 2 .
F+Tn —nVy =vJpy — —, Jp =gy, ANV =n-C in(0,1),
. T
n(0) =n(l) =1, n.(0)=n.(1)=0, V(0)=V, J(0)=Jo.
Theorem 2.4 (Semiclassical-inviscid limit) Let § = v? +¢&2/4, Vy = J2/2, let (ng, Js5, Vs)
be a solution to (3)-(7), and assume that condition (17) holds for 6 = 0. Then, as 6 — 0,
maybe for a subsequence (see Remark 5.2),

ng —n weakly in H*(0,1), (18)
Vs =V weakly in H(0,1), (19)
Js —J weakly in H*(0,1), (20)
and (n, J,V) is a (classical) solution of the hydrodynamic equations

J? J ) 4

- —+4+Tn) —nVy=——, J=Jy, AXVp=n—-C in(0,1), (21)
. T

n(0)=n(1) =1, V(0) ="V (22)

Remark 2.5 The convergence results for the electron density are not strong enough to con-
clude that the boundary condition (7) holds. However, the boundary conditions of the limit
equations are sufficient to get (formally) well-posed problems.



3 Existence of solutions

As usual, we call u € H2(0,1) a weak solution of (14), (16) if for all ¢» € HZ(0, 1) it holds

2 1

1
(21 v
(1/ n 4)/0 (um+ u )wmdx (T+ )/0 Ugthude (23)
1 1 1
= QJOV/ Uyz€ “wzdx—JO/ Uge 2“1/)mdx+— ’“wzdx+ 32 (e“—C)wdx
0 0

In order to prove Theorem 2.1 we consider the followmg truncated problem:

2 1

1
—(v* + a / Uge + u Vpzdr — (T + v / Uy pdx 24
(7 7) (et g )ate = (74 7) | 24)
1 1 1 !
= 2JUV/ Ugze “Mipydr — JO/ Uge M), dx + — 7“1/)mdx+ 32 (e“ — C)ipdz,
0 0
where M = M(~) > 0 is the constant from (17) defined in (27) below and

Y tlul <M
M sign(u)M o ul > M.

The following lemma is the key result of this paper.

Lemma 3.1 (H*-Estimate). Let u € HZ(0,1) be a solution of (24) and let (17) hold for
some 0 <y < 1. Then

2

(v + ) lutaallfe + (7 + 2) a2 < K (), (25)

where K(v) > 0 is independent of u, v, and £ (see (29) for its definition). In particular, it
follows

[ull e < M(7), (26)
where
K(v)
M(y) = = (27)

Proof. We use ¢ = u as a test function in the weak formulation of (24) to obtain

2 1 1 1
<1/2 + 8—) / <u + umum> dzx + <T+ Z) / ulds
4 0 2 7/ Jo
1 1 Ty 1 1
= —2ng// Ugzl "Mugdr + J§ / ule "M dy — e “ugdr — — u(e” — C)dx
0 0 T Jo A?
= L+1L+ 13+ 1, (28)

We estimate the right-hand side term by term. By Young’s inequality,

1 1
I, = —2J01// Ugze "Muzdr < 2J06MV/ |ty | |11 | A
0 0

2 _2M
< (1—n)u2/ u? dav+J6 /uzdx,
0 L—nJo
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where 0 < 1 < (1 —~2)/(1 = ~+?/2). Furthermore,
1 1
I, = JZ/ ue ?"Mdy < JgeZM/ uldz.
0 0

Due to the boundary conditions (16), the third integral vanishes: I3 = 0. It is not difficult to
see that 1/e + ||C'log C||z~ is an upper bound for the function u — —u(e* — C(z)), u € R, for
any = € (0,1). Here we use the assumption that the concentration C'(x) is positive. Therefore,

I < A7 (e + || Clog C| ).

Noticing that the integral

1
1
[ s = S2(1) ~ uE(0)) = 0
0

vanishes, due to the boundary conditions (16), we conclude that (28) can be estimated as

2

2
(T sl (7 2 = el 0727 4 1€ g i)

In view of condition (17) we obtain

2 — 2 — 2—n 2 e?
y Ay e (1——”1)(T+3)——”11.
T 1—n 1—-n 2 16

Using the Poincaré inequality

T

this gives

2

[+ (1- 2= ) Mnaae + (1 - M) (742) luallfe < A2 +1|C1og Ol 1)

2(1—n) 2(1 —n)
(2 5 sl (74 2) s < K,
where
K(vy) = )\12( +||ClOgC||Loo> min {n,l—%}_l. (29)

Notice that 1—72(2—n)/(2(1—n)) > 0 due to the choice of 5. Finally, from the Poincaré-Sobolev
estimate,
Jullzee < Juallr < M(v),

where M(vy) = y/K(v)/T. This proves the lemma. [J

Lemma 3.2 Under the assumptions of Lemma 5.1, there ezists a solutionu € HZ(0,1) of (23).



Proof. The existence of a solution of the problem (23) is shown by using the Leray-Schauder
fixed-point theorem. For this, we consider the following linear problem for given w € Hj(0,1)
with test functions ¢ € HZ(0,1):

_a(u: w) = UF(T?), (30)
where o € [0, 1],

2 1

alu, v) = (VZ + %) /01 Yo Paad + (T + g) /0 Uptbed, (31)

and

2

1 1
F(y) = —O’(l/2 + %) / §w§¢mdx + 2J00'l// Wy (™ 1y dx
1 ’ Jo [ ’ o (!
+ Jga/ wee 1y dr — —a/ e Yhdr — —2/ (e’ — C)dx. (32)
0 T Jo A2 Jo
Since the bilinear form a(u, 1) is continuous and coercive on H3(0,1) x HZ(0,1) and the linear

functional F is continuous on HZ(0,1), we can apply the Lax-Milgram theorem to obtain the
existence of a solution u € HZ(0,1) of (30). Thus, the operator

S+ Hy(0,1) x [0,1] = Hy(0,1),  (w,0) = u,

is well-defined. Moreover, it is continuous and compact since the embedding HZ(0,1) —
H}(0,1) is compact. Furthermore, S(w,0) = 0. Following the steps of the proof of Lemma
3.1, we can show that [ul|; < const. for all (u,0) € HY(0,1) x [0,1] satisfying S(u,0) = u.
Therefore, the existence of a fixed point u with S(u,1) = u follows from the Leray-Schauder
fixed-point theorem. This fixed point is a solution of (24) and, in fact, also of (23) since
u(z)] < M(). O

Theorem 3.3 Under the assumptions of Lemma 3.1, there exists a solution (u,V) € H*(0,1)x
H2(0,1) of (14)-(16).

Proof. Let u be a weak solution of (23) or (14). Since u € HZ(0,1), it holds u? € H}(0,1)
and (e “uzp)e € H'(0,1). Then, from (14), we infer u,,., € H~'(0,1). Hence, there exists
w € L*(0,1) such that wy = ugpee. This implies ugz., = w + const. € L*(0,1) and, by (14),
Ugzzr € L2(0,1). This allows us to conclude that v € H*(0,1) and from the regularity of u and
from (15) follows the regularity of V. O

4 Uniqueness of solutions

Theorem 4.1 If the positive constants v, € and Jy are sufficiently small, the problem (14)-(16)
has a unique solution.

Proof. We proceed similarly as in [14]. Let u, v € HZ(0,1) be weak solutions of (14). We
observe that, in view of the boundary conditions for u,,

ui(x) = 2/ Ug (8) Uz (5)ds < 2||Ug| || Uae || 22
0
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and thus

Q
ltallee < 3 lluallze + 5 lltwal]re

for all & > 0. By Lemma 3.1 we obtain

a 1
sl < (5= * gasre) VEO)

Choosing a = /(T + v/7)/K(v) then gives

VT +v/T N K(v)
2\/v?+¢e%/4 T+v/T

a2 <

Now we choose v and ¢ so small that

5 (T +v/1)3/?
v2+e2/4 < T('Y)

As T is positive, such a choice is possible. This implies

| T+v/T
o < _
||u$||L — V2+82/4

A similar estimate can be obtained for v,. Therefore

I+ ool < 24527 (33)

Now we start to estimate the difference u — v. The weak formulation of the difference of
the equations satisfied by u and v, with the test function u — v, reads as follows:

2

(1/2—1-%) /Ol(u—v)i,m+(T—i—;> /Ol(u—v)idx+%(z/2+§> /Ol(ui—vi)(u—v)mdx

1 1 1
= —2,]01// (Ugze™ — Vgpe™ ") (u — v)dx — 5,]3/ (e — ™) (u — v),d
0 0

L[ e — e um e+ 2 [ (e = ey = 0)d
— — e — € u—vv €T — (& — € u_'l)xl'
A2 0 T Jo
= L+1L+13+ 1, (34)

The mean value theorem and the estimate (26) with M = M (y) yields |e @) — @] <
eM|u(x) — v(x)|. Therefore, using Poincaré’s inequality,

J J,
I < 2eMflu = vl e (u = v)allz2 < 2eM]|(u = v)al e

The monotonicity of z — e® implies I3 < 0. For the estimate of the second integral we obtain
similarly as above

1
I, = Jg/ [e 2 (u—v)2 + (e — e v, (u — v) Jdr < JEK M| (u — v),|2,
0

11



where the constant K; > 0 depends on ||vg||;. Finally, we write for the first integral

1
I, = —2J01// e (u—0)ge + (e — € ")vpe](u — v),d.
0

As we do not have an L*> bound for v,,, we integrate by parts in the second addend:

1
I, = —2ng// [ (t — V) ga(u — v)g — e vy (u —v)2 — (7" — e7")0?
0

— (7" — e "y (u — v) g |dx

(u—v)y

2
14
< Slitu= V)aallze + e Kol (u = v)al 1,

and Ky > 0 depends on ||v;||z~. In the last step we have used again the mean value theorem

and Young’s and Poincaré’s inequalities. We conclude from (34)

I = (1/2+%2>/01(u—v)im+<T+;)/Ol(u—v)idx

+ 1(”2 + 6—) /Ul(“ +0)a(u = v)o(u = v)gpde

2 4
V_2 o 2 ﬁ 2M 2M . 2
S 9 ||(u v)xxHL? + J() - + J[]K1€ + J[]KQB ||(’LL ’U)xHLQ. (35)

The estimate of the last integral of the left-hand side of (34) is more delicate. We use the
bound (33):

I > %(1}4_%)/Ul(u—v)im+%<T+§)/Ul(u—v)idx

+%/ ( /;/2+52/4|(u—v)m|—w/T+V/T|(U—U)x|>2d$

L +52/4\/T+V/7'/0 (= )l = v)el (1 - %,/ﬁ%jﬁ(uﬂm)dx

> %(zﬂ_,_%) /Ol(u—v)im+%<T+g> /Ol(u—v)i,dx.

Thus putting together this estimate and (35), for sufficiently small Jy > 0, we arrive to

52 1 ) 1 v 1 )
- _ - z _ <0.
A /0 (u—v)y, + 5 (T + T) /0 (u—w)zdx <0

This implies u —v =01in (0,1). O

For the proof of Theorem 2.1 it remains to show that the solution (u, V') of (14)-(16) provides
a solution (n,V’) of (3)-(7). Then both formulations are equivalent and the uniqueness of

solutions of (3)-(7) follows.
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Let (u, V) be the unique solution of (14)-(16) and set n = e*. Then we obtain (12) and
(13). We differentiate (13) twice with respect to z:

o = = (200 5) (V) (e Y o (L)

Jo 1 .
+ 2 (—) + 2J01/<n—2> + 2ng("—§> ,
T \N/z n</zzx n°/«
and, comparing with (12), Poisson’s equation (5) follows. Furthermore, from (13) it holds:

V(0) = — (2% n %) ((\/\2) (0) + J?g — T,

taking into account (7).
Now we differentiate (13) with respect to z and multiply the resulting equation with n:

e (o4 5 0) (2« (- )

Introducing J(x) := vng(x) + Jy, equation (3) follows after differentiation. Finally, from

2

() (- 2) 2 (5) = () vt

equation (4) follows.

5 Asymptotic limits

We only prove Theorem 2.4 as the proofs of Theorems 2.2 and 2.3 are very similar (and in

fact, easier). The proof is a consequence of the key estimate (25) and the compact embedding
H'(0,1) < L>(0,1). First we show:

Theorem 5.1 Let (us, V) be a solution of (14)-(16) for § = v* +e2/4 > 0 and let (17) hold
for v =0. Set Js = vexp(us)us, + Jo. Then there exists a subsequence of (us, Js, Vs) (not
relabeled) such that

Us — u weakly in H' and strongly in L™, (36)
Vs =V weakly in H?, (37)
Js—J weakly in H*, (38)

and (u, J, V') is a solution of

J - JO; (39)
v C J,
Tir = S5+ Rl ™), - 2, (10
T
1 T
V(z) = Tu(z)+ iJge_Q“(’”) + Jo e @ ds, x e (0,1), (41)
T Jo

with boundary conditions



Proof. From Lemma 3.1 and Poincaré’s inequality we obtain a uniform H*' bound for u;. Then
there exists a subsequence of (us) (not relabeled) such that (36) holds. The weak formulation
of (14) reads, for any ¢ € C§°(0,1), after integration by parts,

1 (5 1
_5/ uédjmmmm - _/ Ug ;pd}mmdx
0 2/ ©

1 1 1

= (T+ Z) / Us g Ypdr + 2J01// ugze’“éwmdx - 2J01// Usge " Pgrda
0 0 0

1

1
1
3 [ v vdn 2 [ evpdn s 5 [ - Cppn

)\2

The convergences (36) allow us to pass to the limit 6 — 0 in the above equation, observing
that the left-hand side vanishes in the limit:

1 1 - Lo
—T/O uxd)xdx——,]o/o Uge 2“@Dxd$+— 1/}xdx+)\2/ (" — C)pdx.

Now we rewrite (15) as

1 x
Vi(z) = —5(u5,m+§u§x) (T = Jus + 2Jove "o, + 2Jov /0 e "y, ds
2,—2u Jo —u
+z JO 4 = / ods. (43)
T Jo

Differentiating this equation twice with respect to x and comparing to (14) yields
Vizs = A2(e" — O).
Thus, from (25) follows that Vs is uniformly bounded in H?* and (37) is proved.

Next we multiply (43) by ¢ € C§°(0,1) and integrate over (0,1). Integrating by parts and
using (16), we find

1 1 5 1 y 1
/ ‘/;5¢d$ = _6/ uﬁqs:mcdx_ _/ U§x¢d$+ (T+ —>/ Ugd)dl‘
0 0 2 0 0
1 1
+2J01// e u6U5$¢de'+2JUl// gb/ u‘su(gzdsdx—l— J2/ 672u5¢dx
0

Using the uniform L and H' bounds of u; and the convergence (36), we can pass to the limit

d — 0 in (44):
1 1 1 T
/ Vodr = / (Tu + = Jie M + ﬁ/ e’“ds) odx.
0 0 2 T Jo

Finally, we consider the equation

J5 = ye“éum + J().

14



As vus, is uniformly bounded in H', by Lemma 3.1, a subsequence of (.J5) converges weakly
in H', i.e., (38) holds. Multiplying the above equation by some ¢ € C§°(0,1) and integrating

over (0,1) gives
1 1 1
/ Jsopdxr = —1// e“5¢de+Jg/ odzx,
0 0 0

and the limit » — 0 implies (39). O

Remark 5.2 For sufficiently small current densities Jy > 0, the quantum hydrodynamic model
(39)-(42) is uniquely solvable (see, e.g., [10, 14]). This means that the whole sequence (us, Vs, J;)
converges to (u,V,.Jy) in the sense of (36)-(38).

We prove Theorem 2.4. Setting ns = " and n = e, where u is the solution of (40), obtained
as the limit of the subsequence (u;), the convergence results (18)-(20) hold. We rewrite (40) in
the variable n: o I

n — 2 Ny 0
T(logn)es = A? o (n?’)m T (n)z (45)
Notice that n is strictly positive since n(z) > exp(—||u|[z=) > exp(—M (7)), = € (0,1). Differ-
entiating (41) twice with respect to z, we obtain

Jg1 Jo 1
Vial() = T(logn)e + (=) +22(=) . 46

(«’L') (Ogn) + 2 n2 Tx + T \NnN/zx ( )
Comparing (45) and (46) gives Poisson’s equation (see (21)). Differentiating (41) with respect
to x and multiplying by n, the resulting equation is equal to the first equation in (21). Finally,

from (41) we have

1
V(U) = 5‘](? = Vo,

which equals (22).

6 Conclusions

In this paper we analyzed a macroscopic model for quantum semiconductor devices including
viscous terms which model collisions of the electrons with the semiconductor lattice. The
derivation of the so-called viscous quantum hydrodynamic equations from the Wigner-Fokker-
Planck model is sketched. The existence and uniqueness of classical stationary solutions of the
one-dimensional model is shown for “weakly supersonic” flows. This means that for sufficiently
large viscosity or, equivalently, sufficiently small momentum relaxation time, the flow is allowed
to be supersonic in the classical sense. Furthermore, the inviscid and semiclassical limits are
investigated and it is shown that the solution of the viscous quantum hydrodynamic model
converges to the quantum hydrodynamic equations in the inviscid limit and to the classical
hydrodynamic equations in the combined inviscid-semiclassical limit.
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Appendix: Derivation and scaling of the model

The viscous quantum hydrodynamic equations are derived similarly as in [11] by applying a
moment method to the following Wigner-Fokker-Planck equation:

h

dw + —k - Vyw + %G[V](w) = Lw),  a,keR: >0, (47)
m

w(x, k,0) = wo(x, k), z,k € R (48)

Here, w = w(zx, k, t) is the Wigner distribution function depending on the space variable z € R?
(d > 1), the wave vector k € R?, and the time ¢ > 0. The physical parameters are the reduced
Planck constant ii = h/27, the effective mass m of the electrons, and the elementary charge gq.
The operator #[V] is defined in the sense of pseudo-differential operators [23] as

oDkt = oo [ E V(g0 -V (o= 30)]

x w(x, k' t)e” k= k)"dk’dn

where V' = V(x,t) is the electrostatic potential, usually selfconsistently given by the Poisson

equation
div,(e5V,V) = q(n — C(x)), z € R

17



Here, £, denotes the permittivity of the semiconductor material and C(z) the concentration
of fixed charged background ions (doping profile). The particle density n(z,t) and the current
density J(x,t) are related to the Wigner function by

n(z,t) = /Rdw(x,k,t)dp, J(z,t) = q w(zx, k, t)pdp,

m Jgrd
with the momentum p = hk.
The quantum Fokker-Planck operator

D 1 D
L(w) = %Akw + —divg(kw) + %divz(vkw) + Dy Ayw (49)
To
models the interaction of the electrons with the phonons of the crystal lattice (oscillators) with
constants

D — kgTy oo D — h?
b mty , P 67TkBT[]T[]’ - 12kaT[]T[]’

where kp denotes the Boltzmann constant, 7 the lattice temperature, 79 the momentum re-
laxation time, and 2 the cut-off frequency of the reservoir oscillators. This model governs
the dynamical evolution of an electron ensemble in the single-particle Hartree approximation
interacting dissipatively with an idealized heat bath consisting of an ensemble of harmonic
oscillators and modeling the semiconductor lattice.

The Wigner-Fokker-Planck model (47)-(49) has been derived in [7, 9] under the main as-

sumptions that

e the thermal energy kpTy is of the same order as the energy hS) corresponding to the
cut-off frequencys;

e the reservoir memory time 1/Q is much smaller than the characteristic time scale ¢* of
the electrons and the momentum relaxation time 7.

For a discussion of the model (47), we refer to [4]. The existence and uniqueness of solutions
to the periodic and the whole-space problem (47)-(49) have been shown in [3, 4].

In order to derive macroscopic equations from (47) for the macroscopic variables n and
J, the moment method as in [11] can be applied, i.e., equation (47) is multiplied by 1 and
p = hk, respectively, and integrated over R with respect to p. The resulting system is closed
by assuming that the Wigner function w is close to the quantum thermal equilibrium density
approximation by Wigner [25]. The only difference to the derivation in [11] is that the Fokker-
Planck operator has to be integrated. This yields

[Rd(L(w))(x,k,t)d(hk) = Dy,An(z,t),
/(L(w))(m,k,t)(ﬁk)d(hk) = —M—%quvxn(x,t)+quAxJ(x,t).

7o

Therefore, we obtain the wviscous quanutm hydrodynamic equations

1
o + —divJ = Dy An,
q

1., [(J®J qksTy D q> qh? A/n
Oy J + —d 1 P Ven — —nVV — \Y
1 + . 1v< - ) + - ( + kBT[]> n mn 6m2n Jn

J
= — = 4 DA,
To
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where J ® J is a matrix with the components J;J, i,k =1,...,d.

In order to scale these equations, we introduce the characteristic length L and the charac-
teristic time ¢* and define the characteristic density, voltage and current density, respectively,
by

k1o

kpTyC*t* L
Cr=supC|, V=" T2
q

LM L’

where ¢ is the mean-free path defined by «* = kgTy7¢/m. After introducing the scaling

r— Ly, t—tt, n—Cn, C—-CC, V>VV J—=.JJ
we obtain the scaled viscous quantum hydrodynamic equations
on +divJ = vAn,
8tJ+div<J®J> +TVn—nVV—%2nV (A\/ﬁ> = —%—f-VAj,

n i
NAV = n-C(x).

The scaled parameters are

1/ Ly\> 1 (Ly\* Lt 1 Qn I
62 G <_> ’ "6 <_> PR N 1 + D
6 \ L 6 \ L L To V187 kpTy ¢
_To 2 eskpTo
T= t_*’ - qQLZC'*’

and Ly, = h/\/2mkgTy is the de Broglie length. Notice that the scaled effective temperature T
is the sum of the scaled temperature (which is one) and the correction term QAL,/v/187kgTye.
The correction is small if the mean free path is large compared to the de Broglie length, since
Qh/kpTy is assumed to be of order one.

The parameters € and v can be small depending on the physical situations:

1. Ty = 300K, 7 =107"%s, L = 1 um: With these values we have L,/L ~ 1072 and +/L ~ 0.1
and hence €2 < 1 and v < 1 if the characteristic time ¢* is of the same order as 75. This
regimes holds for rather large devices at room temperature.

2. Ty = 300K, 7 = 107"?s, L = 100 nm: We obtain L;/L ~ 0.01 and ¢/L =~ 1. If the charac-
teristic time is much larger than the relaxation time, t* /75 > 1, such that (L,/L)?(t*/7)
is of order one, this gives €2 < 1 but v is of order one. This regime holds for rather small
devices at room temperature.

3. Ty, = 3K, 7 = 107"%s, L = 100nm: This yields Ly/L ~ 0.1 and /L ~ 1. If the
characteristic time is much smaller than the momentum time, t*/7 < 1, we obtain
v < e. This regime is relevant for, for instance, infra-red sensors.
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