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Abstract. We present an abstract method for deriving decay estimates on the resolvents and semi-

groups of non-symmetric operators in Banach spaces in terms of estimates in another smaller reference

Banach space. This applies to a class of operators writing as A+B where A is bounded, B is dissipative
and the two parts satisfy a semigroup commutator condition of regularization. The core of the method

is a high-order quantitative factorization argument on the resolvents and semigroups. We then apply

this approach to the Fokker-Planck equation, to the kinetic Fokker-Planck equation in the torus, and to
the linearized Boltzmann equation in the torus.

We finally use this information on the linearized Boltzmann semigroup to study perturbative solutions

for the nonlinear Boltzmann equation. We introduce a non-symmetric energy method to prove nonlinear
stability in this context in L1

vL
∞
x (1+|v|k), k > 2, with sharp rate of decay in time. Our result drastically

improves the class of functions considered in the literature, it also provides optimal rate of convergence
and our proof is constructive.

As a consequence of these results, we obtain the first constructive proof of exponential decay, with

sharp rate, towards global equilibrium for the full nonlinear Boltzmann equation for hard spheres,
conditionally to some smoothness and (polynomial) moment estimates. This improves the result in [40]

where polynomial rates at any order were obtained, and solves the conjecture raised in [106, 37, 98]

about the optimal decay rate of the relative entropy in the H-theorem.
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1. Introduction

1.1. The problem at hand. This paper deals with (i) the study of resolvent estimates and decay
properties for a class of generators and associated semigroups in general Banach spaces, and (ii) the
study of relaxation to equilibrium for some kinetic evolution equations, which makes use of the previous
abstract tools.

Let us give a brief sketch of the first problem. Consider two Banach spaces E ⊂ E , and two C0-
semigroup generators L and L respectively on E and E with spectrum Σ(L),Σ(L) ( C. Denote S(t) and
S(t) the two associated semigroups respectively in E and E . Further assume that L|E = L, and E is
dense in E . The theoretical question we address in this work is the following:

Can one derive quantitative informations on Σ(L) and S(t) in terms of informations on Σ(L) and S(t)?

We provide here an answer for a class of operators L which split as L = A + B, where the spectrum
of B is well localized and the iterated convolution (ASB)∗n maps E to E with proper time-decay control
for some n ∈ N∗. We then prove that (i) L inherits most of the spectral gap properties of L, (ii) explicit
estimates on the rate of decay of the semigroup S(t) can be computed from the ones on S(t). The core of
the proposed method is a robust factorization argument on the resolvents and semigroups, reminiscent
of the Dyson series.

In a second part of this paper, we then show that the kinetic Fokker-Planck operator and the linearized
Boltzmann operator for hard sphere interactions satisfy the above abstract assumptions, and we thus ex-
tend the known spectral-gap properties from the standard linearization space (an L2 space with Gaussian
weight prescribed by the equilibrium) to larger Banach spaces (for example Lp with polynomial decay).
It is worth mentioning that the proposed method provides optimal rate of decay and there is no loss of
accuracy in the extension process from E to E (as would be the case in, say, interpolation approaches).
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Proving the abstract assumption requires significant technical efforts for the Boltzmann equation
and leads to the introduction of new tools: some specific estimates on the collision operator, some
iterated averaging lemma and a nonlinear non-symmetric energy method. All together, we are able to
prove nonlinear stability of Gaussian equilibrium and of space homogeneous solutions for the Boltzmann
equation for hard spheres interactions in the torus in a L1

vL
∞
x (1 + |v|k), k > 2, framework with sharp

rate of decay in time. That result drastically improves the class of functions considered in the literature
since the seminal work by Ukai [107] and provides (for the very first time) optimal rate of decay. The
method of proof is also completely constructive.

1.2. Motivation. The motivation for the abstract part of this paper, i.e. enlarging the functional space
where spectral properties are known to hold for a linear operator, comes from nonlinear PDE analysis.

The first motivation is when the linearized stability theory of a nonlinear PDE is not compatible
with the nonlinear theory. More precisely, the natural function space where the linearized equation is
well-posed and stable, with nice symmetric or skew-symmetric properties for instance, is “too small” for
the nonlinear PDE in the sense that no well-posedness theorem is known (and conjectured to be false)
in such a space. This is the case for the classical Boltzmann equation and therefore it is a key obstacle
in obtaining perturbative result in natural physical spaces and connecting the nonlinear results to the
perturbative theory.

This is related to the famous H-theorem of Boltzmann. The natural question of understanding math-
ematically the H-theorem was emphasized by Truesdell and Muncaster [106, pp 560-561] thirty years
ago: “Much effort has been spent toward proof that place-dependent solutions exist for all time. [. . . ]
The main problem is really to discover and specify the circumstances that give rise to solutions which
persist forever. Only after having done that can we expect to construct proofs that such solutions exist,
are unique, and are regular.”

The precise issue of the rate of convergence in the H-theorem was then put forward by Cercignani [37]
(see also [38]) when he conjectured a linear relationship between the entropy production functional and
the relative entropy functional, in the spatially homogeneous case. While this conjecture has been shown
to be false in general [17], it gave a formidable impulse to the works on the Boltzmann equation in the
last two decades [32, 31, 101, 17, 110]. It has been shown to be almost true in [110], in the sense that
polynomial inequalities relating the relative entropy and the entropy production hold for powers close to
1, and it was an important inspiration for the work [40] in the spatially inhomogeneous case.

However, due to the fact that Cercignani’s conjecture is false for physical models [17], these important
progresses in the far from equilibrium regime were unable to answer the natural conjecture about the
correct timescale in the H-theorem, in order to prove the exponential decay in time of the relative entropy.
Proving this exponential rate of relaxation was thus pointed out as a key open problem in the lecture
notes [98, Subsection 1.8, page 62]. This has motivated the work [87] which answers this question, but
only in the spatially homogeneous case.

In the present paper we answer this question for the full Boltzmann equation for hard spheres in
the torus. We work in the same setting as in [40], that is under some a priori regularity assumptions
(Sobolev norms and polynomial moments bounds). We are able to connect the nonlinear theory in
[40] with the perturbative stability theory first discovered in [107] and then revisited with quantitative
energy estimates in several works including [59] and [89]. This connexion relies on the development of a
perturbative stability theory in natural physical spaces thanks to the abstract extension method. Let us
also mention here the important papers [8, 9, 114, 115] which proved for instance nonlinear stability in
spaces of the form L1

vW
s,p
x (1 + |v|k) with s > 3/p and k > 0 large enough, by non-constructive methods.

We emphasize the dramatic gap between the spatially homogeneous situation considered in [87] and
the spatially inhomogeneous one studied here. In the first case the linearized equation is coercive and the
linearized semigroup is self-adjoint or sectorial, whereas in the second case the equation is hypocoercive
and the linearized semigroup is neither sectorial, nor even hypoelliptic.

The second main motivation for the abstract method developed here is considered in other papers [76,
10]. It concerns the existence, uniqueness and stability of stationary solutions for degenerate perturbations
of a known reference equation, when the perturbation makes the steady solutions leave the natural
linearization space of the reference equation. Taking advantage of the theory developed in the present
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work, the first existence result in a collisional regime for spatially inhomogeneous granular gases has been
recently obtained in [103]. More generally, the present work has inspired a large number of papers, among
which [29, 104, 34, 33, 105, 80, 45, 35, 25, 24, 28, 36, 79, 81].

1.3. Main results. We can summarize the main results established in this paper as follows:

Section 2. We prove an abstract theory for enlarging (Theorem 2.1) the space where the spectral gap
and the discrete part of the spectrum is known for a certain class of unbounded closed operators. We
then prove a corresponding abstract theory for enlarging (Theorem 2.13) the space where explicit decay
semigroup estimates are known, for this class of operators. This can also be seen as a theory for obtaining
quantitative spectral mapping theorems in this setting, and it works in general Banach spaces.

Section 3. We prove a set of results concerning Fokker-Planck equations. The main outcome is the proof
of an explicit spectral gap estimate on the semigroup in L1

x,v(1 + |v|k), k > 0 as small as wanted, for the
kinetic Fokker-Planck equation in the torus with super-harmonic potential (see Theorems 3.1 and 3.12).

Section 4. We prove a set of results concerning the linearized Boltzmann equation. The main outcome is
the proof of explicit spectral gap estimates on the linearized semigroup in L1 and L∞ with polynomial
moments (see Theorem 4.2). More generally we prove explicit spectral gap estimates in any space of the
form Wσ,q

v W s,p
x (m), σ ≤ s, with polynomial or stretched exponential weight m, including the borderline

cases L∞x,v(1 + |v|5+0) and L1
vL
∞
x (1 + |v|2+0). We also make use of the factorization method in order to

study the structure of singularities of the linearized flow (see Subsection 4.10).

Section 5. We finally prove a set of results concerning the nonlinear Boltzmann equation in perturbative
setting. The main outcomes of this section are: (1) The construction of perturbative solutions close to
the equilibrium or close to the spatially homogeneous case in Wσ,q

v W s,p
x (m), s > 6/p with polynomial

or stretched exponential weight m, including the borderline cases L∞x,v(1 + |v|5+0) and L1
vL
∞
x (1 + |v|2+0)

without assumption on the derivatives: see Theorem 5.3 in a close-to-equilibrium setting, and Theorem 5.5
in a close-to-spatially-homogeneous setting. (2) We give a proof of the exponential H-theorem: we show
exponential decay in time of the relative entropy of solutions to the fully nonlinear Boltzmann equation,
conditionnally to some regularity and moment bounds. Such rate is proven to be sharp. This answers
the conjecture in [40, 98] (see Theorem 5.7). We also finally apply the factorization method and the
Duhamel principle to study the structure of singularities of the nonlinear flow in perturbative regime (see
Subsection 5.7).

Below we give a precise statement the main result established in this paper.

Theorem 1.1. The Boltzmann equation

∂tf + v · ∇xf = Q(f, f), t ≥ 0, x ∈ T3, v ∈ R3,

Q(f, f) :=

∫
R3

∫
S2

[
f(x, v′) f(x, v′∗)− f(x, v) f(x, v∗)

]
|v − v∗|dv∗ dσ

v′ =
v + v∗

2
+ σ
|v − v∗|

2
, v′∗ =

v + v∗
2
− σ |v − v∗|

2

with hard spheres collision kernel and periodic boundary conditions is globally well-posed for non-negative
initial data close enough to the Maxwellian equilibrium µ or to a spatially homogeneous profile, in the
space L1

vL
∞
x (1 + |v|k), k > 2.

The corresponding solutions decay exponentially fast in time with constructive estimates and with the
same rate as the linearized flow in the space L1

vL
∞
x (1 + |v|k). For k large enough (with explicit threshold)

this rate is the sharp rate λ > 0 given by the spectral gap of the linearized flow in L2(µ−1/2).
Moreover any solution that is a priori bounded uniformly in time in Hs

x,v(1 + |v|k) with some large s, k

satisfies the exponential decay in time with sharp rate O(e−λ t) in L1 norm, as well as in relative entropy.
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2. Factorization and quantitative spectral mapping theorems

2.1. Notation and definitions. For a given real number a ∈ R, we define the half complex plane

∆a := {z ∈ C, <e z > a} .

For some given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E) we denote by B(E, E) the space of bounded
linear operators from E to E and we denote by ‖ · ‖B(E,E) or ‖ · ‖E→E the associated norm operator.
We write B(E) = B(E,E) when E = E . We denote by C (E, E) the space of closed unbounded linear
operators from E to E with dense domain, and C (E) = C (E,E) in the case E = E .

For a Banach space X and a generator Λ on X, we denote by SΛ(t), t ≥ 0, its semigroup, by Dom(Λ)
its domain, by N(Λ) its null space and by R(Λ) its range. We also denote by Σ(Λ) its spectrum, so that
for any z belonging to the resolvent set ρ(Λ) := C\Σ(Λ) the operator Λ−z is invertible and the resolvent
operator

RΛ(z) := (Λ− z)−1

is well-defined, belongs to B(X) and has range equal to D(Λ). We recall that ξ ∈ Σ(Λ) is said to be an
eigenvalue if N(Λ− ξ) 6= {0}. Moreover an eigenvalue ξ ∈ Σ(Λ) is said to be isolated if

Σ(Λ) ∩ {z ∈ C, |z − ξ| ≤ r} = {ξ} for some r > 0.

In the case when ξ is an isolated eigenvalue we may define ΠΛ,ξ ∈ B(X) the associated spectral projector
by

(2.1) ΠΛ,ξ := − 1

2iπ

∫
|z−ξ|=r′

RΛ(z) dz

with 0 < r′ < r. Note that this definition is independent of the value of r′ as the application C \Σ(Λ)→
B(X), z → RΛ(z) is holomorphic. For any ξ ∈ Σ(Λ) isolated, it is well-known (see [68, III-(6.19)]) that
Π2

Λ,ξ = ΠΛ,ξ, so that ΠΛ,ξ is indeed a projector, which commutes with SΛ.

When moreover the algebraic eigenspace M(Λ− ξ) := R(ΠΛ,ξ) is finite dimensional, we say that ξ is a
discrete eigenvalue, written as ξ ∈ Σd(Λ). In that case, RΛ is a meromorphic function on a neighborhood
of ξ, with non-removable finite-order pole ξ, and there exists α0 ∈ N∗ such that

M(Λ− ξ) = N(Λ− ξ)α0 = N(Λ− ξ)α for any α ≥ α0.

Finally for any a ∈ R such that

Σ(Λ) ∩∆a = {ξ1, . . . , ξk}
where ξ1, . . . , ξk are distinct discrete eigenvalues, we define without any risk of ambiguity

ΠΛ,a := ΠΛ,ξ1 + · · ·+ ΠΛ,ξk .

2.2. Factorization and spectral analysis. The main abstract factorization and enlargement result is:

Theorem 2.1 (Enlargement of the functional space). Consider two Banach spaces E and E such that
E ⊂ E with continuous embedding and E is dense in E. Consider an operator L ∈ C (E) such that
L := (L)|E ∈ C (E). Finally consider a set ∆a as defined above.

We assume:

(H1) Localization of the spectrum in E. There are some distinct complex numbers ξ1, . . . , ξk ∈ ∆a,
k ∈ N (with the convention {ξ1, . . . , ξk} = ∅ if k = 0) such that

Σ(L) ∩∆a = {ξ1, . . . , ξk} ⊂ Σd(L) (distinct discrete eigenvalues).

(H2) Decomposition. There exist A,B operators defined on E such that L = A + B, Dom(B) =
Dom(L) and:
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(i) B ∈ C (E) is such that RB(z) is bounded in B(E) uniformly on z ∈ ∆a and ‖RB(z)‖B(E) → 0
as <e z →∞, in particular

Σ(B) ∩∆a = ∅;

(ii) A ∈ B(E) is a bounded operator on E;
(iii) There is n ≥ 1 such that the operator (ARB(z))n is bounded in B(E , E) uniformly on

z ∈ ∆a.

Then we have in E:

(i) The spectrum of L satisfies: Σ(L) ∩∆a = {ξ1, . . . , ξk}.
(ii) For any z ∈ ∆a \ {ξ1, . . . , ξk} the resolvent satisfies:

(2.2) RL(z) =

n−1∑
`=0

(−1)`RB(z) (ARB(z))
`

+ (−1)nRL(z) (ARB(z))
n
.

(iii) For any ξi ∈ Σ(L) ∩∆a = Σ(L) ∩∆a, i = 1, . . . , k, we have (ΠL,ξi)|E = ΠL,ξi and hence also

∀m ≥ 1, N(L− ξi)m = N(L − ξi)m and M(L− ξi) = M(L − ξi).

Remarks 2.2. (1) In words, assumption (H1) is a weak formulation of a spectral gap in the initial
functional space E. The assumption (H2) is better understood in the simplest case n = 1, where
it means that one may decompose L into a regularizing part A (in the generalized sense of the
“change of space” A ∈ B(E , E)) and another part B whose spectrum is “well localized” in E : for
instance when B − a′ is dissipative with a′ < a then the assumption (H2)-(i) is satisfied.

(2) There are many variants of sets of hypothesis for the decomposition assumption. In particular,
assumptions (H2)-(i) and (H2)-(iii) could be weakened. However, (1) these assumptions are
always fulfilled by the operators we have in mind, (2) when we weaken (H2)-(i) and/or (H2)-
(iii) we have to compensate them by making other structure assumptions. We present later,
after the proof, a possible variant of Theorem 2.1.

(3) One may relax (H2)-(i) into Σ(B) ∩ ∆a ⊂ {ξ1, . . . , ξk} and the bound in (H2)-(iii) could be
asked merely locally uniformly in z ∈ ∆a\{ξ1, . . . , ξk}.

(4) One may replace ∆a \ {ξ1, . . . , ξk} in the statement by any nonempty open connected set Ω ⊂ C.
(5) This theorem and the next ones in this section can also be extended to the case where E is not

necessarily included in E . This will be studied and applied to some PDE problems in future
works.

Proof of Theorem 2.1. Let us denote Ω := ∆a \ {ξ1, . . . , ξk} and let us define for z ∈ Ω

U(z) :=

n−1∑
`=0

(−1)`RB(z) (ARB(z))
`

+ (−1)nRL(z) (ARB(z))
n
.

Observe that thanks to the assumption (H2), the operator U(z) is well-defined and bounded on E .

Step 1. U(z) is a right-inverse of (L − z) on Ω. For any z ∈ Ω, we compute

(L − z)U(z) =

n−1∑
`=0

(−1)` (A+ (B − z))RB(z) (ARB(z))
`

+ (−1)n (L − z)RL(z) (ARB(z))
n

=

n−1∑
`=0

(−1)` (ARB(z))
`+1

+

n−1∑
`=0

(−1)` (ARB(z))
`

+ (−1)n (ARB(z))
n

= IdE .

Step 2. (L−z) is invertible on Ω. First we observe that there exists z0 ∈ Ω such that (L−z0) is invertible
in E . Indeed, we write

L − z0 = (ARB(z0) + IdE) (B − z0)

with ‖ARB(z0)‖ < 1 for z0 ∈ Ω, <ez0 large enough, thanks to assumption (H2)-(i). As a consequence
(ARB(z0) + IdE) is invertible and so is L − z0 as the product of two invertible operators.
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Since we assume that (L − z0) is invertible in E for some z0 ∈ Ω, we have RL(z0) = U(z0). And if

‖RL(z0)‖B(E) = ‖U(z0)‖B(E) ≤ C

for some C ∈ (0,∞), then (L − z) is invertible on the disc B(z0, 1/C) with

(2.3) ∀ z ∈ B(z0, 1/C), RL(z) = RL(z0)

∞∑
n=0

(z0 − z)nRL(z0)n,

and then again, arguing as before, RL(z) = U(z) on B(z0, 1/C) since U(z) is a left-inverse of (L− z) for
any z ∈ Ω. Then in order to prove that (L − z) is invertible for any z ∈ Ω, we argue as follows. For a
given z1 ∈ Ω we consider a continuous path Γ from z0 to z1 included in Ω, i.e. a continuous function
Γ : [0, 1] → Ω such that Γ(0) = z0, Γ(1) = z1. Because of assumption (H2) we know that (ARB(z))`,
1 ≤ ` ≤ n− 1, and RL(z)(ARB(z))n are locally uniformly bounded in B(E) on Ω, which implies

sup
z∈Γ([0,1])

‖U(z)‖B(E) := C0 <∞.

Since (L − z0) is invertible we deduce that (L − z) is invertible with RL(z) locally bounded around z0

with a bound C0 which is uniform along Γ (and a similar series expansion as in (2.3)). By a continuation
argument we hence obtain that (L − z) is invertible in E all along the path Γ with

RL(z) = U(z) and ‖RL(z)‖B(E) = ‖U(z)‖B(E) ≤ C0.

Hence we conclude that (L − z1) is invertible with RL(z1) = U(z1).
This completes the proof of this step and proves Σ(L)∩∆a ⊂ {ξ1, . . . , ξk} together with the point (ii)

of the conclusion.

Step 3. Spectrum, eigenspaces and spectral projectors. On the one hand, we have

N(L− ξj)α ⊂ N(L − ξj)α, j = 1, . . . , k, α ∈ N,

so that {ξ1, . . . , ξk} ⊂ Σ(L)∩∆a. The other inclusion was proved in the previous step, so that these two
sets are equals. We have proved

Σ(L) ∩∆a = Σ(L) ∩∆a.

Now, we consider a given eigenvalue ξj of L in E. We know (see [68, paragraph I.3]) that in E the
following Laurent series holds

RL(z) =

+∞∑
`=−`0

(z − ξj)` C`, C` = (L− ξj)|`|−1ΠL,ξj , −`0 ≤ ` ≤ −1,

for z close to ξj and for some bounded operators C` ∈ B(E), ` ≥ 0. The operators C−1, . . . , C−`0 satisfy
the range inclusions

R(C−2), . . . ,R(C−`0) ⊂ R(C−1).

This Laurent series is convergent on B(ξj , r)\{ξj} ⊂ ∆a. The Cauchy formula for meromorphic functions
applied to the circle {z, |z − ξj | = r} with r small enough thus implies that

ΠL,ξj = C−1 so that C−1 6= 0

since ξj is a discrete eigenvalue.
Using the definition of the spectral projection operator (2.1), the above expansions and the Cauchy

theorem we get for any small r > 0

ΠL,ξj :=
(−1)n+1

2iπ

∫
|z−ξj |=r

RL(z) (ARB(z))n dz

=
(−1)n+1

2iπ

∫
|z−ξj |=r

−1∑
`=−`0

C` (z − ξj)` (ARB(z))n dz

+
(−1)n+1

2iπ

∫
|z−ξj |=r

∞∑
`=0

C` (z − ξj)` (ARB(z))n dz,
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where the first integral has range included in R(C−1) and the second integral vanishes in the limit r → 0.
We deduce that

M(L − ξj) = R(ΠL,ξj ) ⊂ R(C−1) = R(ΠL,ξj ) = M(L− ξj).
Together with

M(L− ξj) = N(L− ξj)α0 ⊂ N(L − ξj)α0 ⊂M(L − ξj) for some α0 ≥ 1

we conclude that M(L − ξj) = M(L − ξj) and N((L − ξj)α) = N((L − ξj)α) for any j = 1, . . . , k and
α ≥ 1.

Finally, the proof of ΠL,ξj |E = ΠL,ξj is straightfoward from the equality

RL(z)f = RL(z)f when f ∈ E

and the integral formula (2.1) defining the projection operator. �

Let us shortly present a variant of the latter result where the assumption (H2) is replaced by a more
algebraic one. The proof is then purely based on the factorization method and somehow simpler. The
drawback is that it requires some additional assumption on B at the level of the small space (which
however is not so restrictive for a PDE’s application perspective but can be painful to check).

Theorem 2.3 (Enlargement of the functional space, purely algebraic version). Consider the same setting
as in Theorem 2.1, assumption (H1), and where assumption (H2) is replaced by

(H2’) Decomposition. There exist operators A,B on E such that L = A + B (with corresponding
extensions A,B on E) and
(i′) B and B are closed unbounded operators on E and E, Dom(B) = Dom(L), Dom(B) =

Dom(L), and

Σ(B) ∩∆a = Σ(B) ∩∆a = ∅.
(ii) A ∈ B(E) is a bounded operator on E.

(iii) There is n ≥ 1 such that the operator (ARB(z))n is bounded from E to E for any z ∈ ∆a.

Then the same conclusions as in Theorem 2.1 hold.

Remark 2.4. Actually there is no need in the proof that (B − z)−1 for z ∈ ∆a is a bounded operator,
and therefore assumption (H2’) could be further relaxed to assuming only (B− z)−1(E) ⊂ Dom(L) ⊂ E
(bijectivity is already known in E from the invertibility of (B−z)). However these subtleties are not used
at the level of the applications we have in mind.

Proof of Theorem 2.3. The Step 1 is unchanged, only the proofs of Steps 2 and 3 are modified:

Step 2. (L−z) is invertible on Ω. Consider z0 ∈ Ω. First observe that if the operator (L−z0) is bijective,
then composing to the left the equation

(L − z0)U(z0) = IdE

by (L − z0)−1 = RL(z0) yields RL(z0) = U(z0) and we deduce that the inverse map is bounded (i.e.
(L− z0) is an invertible operator in E) together with the desired formula for the resolvent. Since (L− z0)
has a right-inverse it is surjective.

Let us prove that it is injective. Consider f ∈ N(L − z0) ⊂ E :

(L − z0)f = 0 and thus (Id + G(z0))(B − z0)f = 0 with G(z0) := ARB(z0).

We denote f̄ := (B − z0)f ∈ E and obtain

f̄ = −G(z0)f̄ ⇒ f̄ = (−1)n G(z0)nf̄

and therefore, from assumption (H2’), we deduce that f̄ ∈ E. Finally f = RB(z0)f̄ = RB(z0)f̄ ∈
Dom(L) ⊂ E. Since (L− z0) is injective we conclude that f = 0.

This completes the proof of this step and proves Σ(L)∩∆a ⊂ {ξ1, . . . , ξk} together with the point (ii)
of the conclusion.
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Step 3. Spectrum, eigenspaces and spectral projectors. On the one hand N(L − ξj) ⊂ N(L − ξj),
j = 1, . . . , k, so that Σ(L)∩∆a ⊃ {ξ1, . . . , ξk}. Since the other inclusion was proved in the previous step,
we conclude that

Σ(L) ∩∆a = Σ(L) ∩∆a.

We deduce from E ⊂ E that more generally

N(L− ξj)α ⊂ N(L − ξj)α, j = 1, . . . , k, α ∈ N,

and we claim that the inverse inclusions

N(L − ξj)α ⊂ N(L− ξj)α, j = 1, . . . , k, α ∈ N,

hold true. We argue by induction on α. We first remark that, similarly as in the previous step, for any
ξ ∈ ∆a, g ∈ E and f ∈ E such that (L − ξ)f = g, there holds f̄ = −G(ξ)f̄ + g with f̄ := (B − ξ)f . By
iterating this formula we deduce

f̄ =

n−1∑
`=0

(−1)`G(ξj)
`g + (−1)nG(ξj)

nf̄ ∈ E.

That proves the claim for α = 1, because if f ∈ N(L − ξj) ⊂ E , we have (L − ξj)f = 0 ∈ E, and then
f ∈ E. Next, we assume that the claim is proved at order α and we consider f ∈ N(L− ξj)α+1. We may
write (L − ξj)α[(L − ξj)f ] = (L − ξj)α+1f = 0, and by the induction hypothesis, we get (L − ξj)f ∈ E,
which in turn implies f ∈ E. That conclude the proof of the inverse inclusions, and thus

N(L − ξj)α = N(L− ξj)α ∀α ≥ 1, ∀ j = 1, ..., k.

Finally, the relation ΠL,ξj |E = ΠL,ξj follows from RL(z)(f) = RL(z)(f) when f ∈ E and the formula
(2.1) for the projector. �

2.3. Hypodissipativity. Let us first introduce the notion of hypodissipative operators and discuss its
relation with the classical notions of dissipative operators and coercive operators as well as its relation
with the recent terminology of hypocoercive operators (see mainly [112] and then [89, 62, 44] for related
references).

Definition 2.5 (Hypodissipativity). Consider a Banach space (X, ‖ · ‖X) and some operator Λ ∈ C (X).
We say that (Λ − a) is hypodissipative on X if there exists some norm ||| · |||X on X equivalent to the
initial norm ‖ · ‖X such that

(2.4) ∀ f ∈ D(Λ), ∃ϕ ∈ F (f) s.t. <e 〈ϕ, (Λ− a) f〉 ≤ 0,

where 〈·, ·〉 is the duality bracket for the duality in X and X∗ and F (f) ⊂ X∗ is the dual set of f defined
by

F (f) = F|||·|||(f) :=
{
ϕ ∈ X∗; 〈ϕ, f〉 = |||f |||2X = |||ϕ|||2X∗

}
.

Remarks 2.6. (1) An hypodissipative operator Λ such that ||| · |||X = ‖ · ‖X in the above definition is
nothing but a dissipative operator, or in other words, −Λ is an accretive operator.

(2) When ||| · |||X is an Hilbert norm on X, we have F (f) = {f} and (2.4) writes

(2.5) ∀ f ∈ D(Λ), <e ((Λf, f))X ≤ a |||f |||2X ,

where ((·, ·))X is the scalar product associated to ||| · |||X . In this Hilbert setting such a hypodissi-
pative operator shall be called equivalently hypocoercive.

(3) When ||| · |||X = ‖ · ‖X is an Hilbert norm on X, the above definition corresponds to the classical
definition of a coercive operator.

(4) In other words, in a Banach space (resp. an Hilbert space) X, an operator Λ ∈ C (X) is hypodis-
sipative (resp. hypocoercive) on X if Λ is dissipative (resp. coercive) on X endowed with a norm
(resp. an Hilbert norm) equivalent to the initial one. Therefore the notions of hypodissipativity
and hypocoercivity are invariant under change of equivalent norm.



10 M.P. GUALDANI, S. MISCHLER, C. MOUHOT

The concept of hypodissipativity seems to us interesting since it clarifies the terminology and draws a
bridge between works in the PDE community, in the semigroup community and in the spectral analysis
community. For convenience such links are summarized in the theorem below. This theorem is a non
standard formulation of the classical Hille-Yosida theorem on m-dissipative operators and semigroups,
and therefore we omit the proof.

Theorem 2.7. Consider X a Banach space and Λ the generator of a C0-semigroup SΛ. We denote by
RΛ its resolvent. For given constants a ∈ R, M > 0 the following assertions are equivalent:

(i) Λ− a is hypodissipative;
(ii) the semigroup satisfies the growth estimate

∀ t ≥ 0, ‖SΛ(t)‖B(X) ≤M ea t;

(iii) Σ(Λ) ∩∆a = ∅ and

∀ z ∈ ∆a, ‖RΛ(z)n‖ ≤ M

(<e z − a)n
;

(iv) Σ(Λ) ∩ (a,∞) = ∅ and there exists some norm ||| · ||| on X equivalent to the norm ‖ · ‖:

∀ f ∈ X ‖f‖ ≤ |||f ||| ≤M ‖f‖,

such that

∀λ > a, ∀ f ∈ D(Λ), |||(Λ− λ) f ||| ≥ (λ− a) |||f |||.

Remarks 2.8. (1) We recall that Λ− a is maximal if

R(Λ− a) = X.

This further condition leads to the notion of m-hypodissipative, m-dissipative, m-hypocoercive,
m-coercive operators.

(2) The Hille-Yosida theorem is classically presented as the necessary and sufficient conditions for
an operator to be the generator of a semigroup. Then one assumes, additionally to the above
conditions, that Λ− b is maximal for some given b ∈ R. Here in our statement, the existence of
the semigroup being assumed, the maximality condition is automatic, and Theorem 2.7 details
how the operator’s, resolvent’s and the associated semigroup’s estimates are linked.

(3) In other words, the notion of hypodissipativity is just another formulation of the minimal as-
sumption for estimating the growth of a semigroup. Its advantage is that it is arguably more
natural from a PDE viewpoint.

(4) The equivalence (i) ⇔ (iv) is for instance a consequence of [94, Chap 1, Theorem 4.2] and [94,
Chap 1, Theorem 5.3]. All the other implications are also proved in [94, Chap 1].

Let us now give a synthetic statement adapted to our purpose. We omit the proof which is a straight-
forward consequence of the Lumer-Philipps or Hille-Yosida theorems together with basic matrix linear
algebra on the finite-dimensional eigenspaces. The classical reference for this topic is [68].

Theorem 2.9. Consider a Banach space X, a generator Λ ∈ C (X) of a C0-semigroup SΛ, a ∈ R and
distinct ξ1, . . . , ξk ∈ ∆a, k ≥ 1. The following assertions are equivalent:

(i) There exist g1, . . . , gm linearly independent vectors so that the subspace Span{g1, . . . , gm} is in-
variant under the action of Λ, and

∀ i ∈ {1, . . . ,m}, ∃ j ∈ {1, . . . , k}, gi ∈M(Λ− ξj).

Moreover there exist ϕ1, . . . , ϕm linearly independent vectors so that the subspace Span{ϕ1, . . . , ϕm}
is invariant under the action of Λ∗. These two families satisfy the orthogonality conditions
〈ϕi, gj〉 = δij and the operator Λ− a is hypodissipative on Span{ϕ1, . . . , ϕm}⊥:

∀ f ∈
m⋂
n=1

Ker(ϕi) ∩D(Λ), ∃ f∗ ∈ F|||·|||(f), <e 〈f∗, (Λ− a)f〉 ≤ 0.
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(ii) There exists a decomposition X = X0⊕· · ·⊕Xk where (1) X0 and (X1+· · ·+Xk) are invariant by
the action of Λ, (2) for any j = 1, . . . , k Xj is a finite-dimensional space included in M(Λ− ξj),
and (3) Λ− a is hypodissipative on X0:

∀ f ∈ D(Λ) ∩X0, ∃ f∗ ∈ F|||·|||(f), <e 〈f∗, (Λ− a)f〉 ≤ 0.

(iii) There exist some finite-dimensional projection operators Π1, . . . ,Πk which commute with Λ and
such that Πi Πj = 0 if i 6= j, and some operators Tj = ξj IdYj +Nj with Yj := R(Πj), Nj ∈ B(Yj)
nilpotent, so that the following estimate holds

(2.6) ∀ t ≥ 0,
∥∥∥SΛ(t)−

k∑
j=1

et Tj Πj

∥∥∥
B(X)

≤ Ca ea t,

for some constant Ca ≥ 1.
(iv) The spectrum of Λ satisfies

Σ(Λ) ∩∆a = {ξ1, . . . , ξk} ∈ Σd(Λ) (distinct discrete eigenvalues)

and Λ− a is hypodissipative on R(I −ΠΛ,a).

Moreover, if one (and then all) of these assertions is true, we have

X0 = R(I −ΠΛ,a),

Xj = Yj = M(Λ− ξj),

ΠΛ,ξj = Πj ,

Tj = ΛΠΛ,ξj .

As a consequence, we may write
RΛ(z) = R0(z) +R1(z),

where R0 is holomorphic and bounded on ∆a′ for any a′ > a and

R1(z) =

k∑
j=1

 Πj

z − ξj
+

βj∑
n=2

Nn
j

(z − ξj)n
Πj

 .

Remark 2.10. When X is a Hilbert space and Λ is a self-adjoint operator, the assumption (i) is satisfied
with k = 1, ξ1 = 0, as soon as there exist g1, . . . , gk ∈ X normalized such that gi ⊥ gj if i 6= j, Λgi = 0
for all i = 1, . . . , k, and

∀ f ∈ X0 := Span{g1, . . . , gk}⊥, 〈Λf, f〉 ≤ a 〈f, f〉.

2.4. Factorization and quantitative spectral mapping theorems. The goal of this subsection is
to establish quantitative decay estimates on the semigroup in the larger space E . Let us recall the key
notions of spectral bound of an operator L on E :

s(L) := sup{<e ξ : ξ ∈ Σ(L)}
and of growth bound of its associated semigroup

w(L) := inf
t>0

1

t
‖SL(t)‖ = lim

t→+∞

1

t
‖SL(t)‖ .

It is always true that s(L) ≤ w(L) but we are interested in proving the equality with quantitative
estimates, in the larger space E . Proving such a result is a particular case of a spectral mapping theorem.

Let us first observe that in view of our previous factorization result the natural control obtained
straightforwardly on the resolvent in the larger functional space E is a uniform control on vertical lines.
It is a classical fact that this kind of control is not sufficient in general for inverting the Laplace transform
and recovering spectral gap estimates on a semigroup from it.

Indeed for semigroups in Banach spaces the equality between the spectral bound and the growth bound
is false in general when assuming solely that the resolvent is uniformly bounded in any ∆a with a > s(L)
(with bound depending on a). A classical counterexample [46, Chap. 5, 1.26] is the derivation operator
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Lf = f ′ on the Banach space C0(R+)∩L1(R+, e
s ds) of continuous functions that vanish at infinity and

are integrable for es ds endowed with the norm

‖f‖ = sup
s≥0
|f(s)|+

∫ +∞

0

|f(s)|es ds.

Another simple counterexample can be found in [3]: consider 1 ≤ p < q < ∞ and the C0-semigroup on
Lp(1,∞) ∩ Lq(1,∞) defined by

(T (t)f)(s) = et/qf(set), t > 0, s > 1.

However for semigroups in Hilbert spaces, the Gerhart-Herbst-Prüss-Greiner theorem [51, 64, 96, 4]
(see also [46]) asserts that the expected semigroup decay w(L) = s(L) is in fact true, under this sole
pointwise control on the resolvent. While the constants seem to be non-constructive in the first versions
of this theorem, Engel and Nagel gave a comprehensive and elementary proof with constructive constant
in [46, Theorem 1.10; chapter V]. Let us also mention on the same subject subsequent works like Yao
[119] and Blake [13], and more recently [61].

The main idea in the proof of [46, Theorem 1.10, chapter V], which is also used in [61], is to use a
Plancherel identity on the resolvent in Hilbert spaces in order to obtain explicit rates of decay on the
semigroup in terms of bounds on the resolvent. We will present in a remark how this interesting argument
can be used in our case, but instead our proof will use a more robust argument valid in Banach spaces,
which is made possible by the additional factorization structure we have. The key idea is to translate
the factorization structure at the level of the semigroups.

We shall need the following definition on the convolution of semigroup (corresponding to composition
at the level of the resolvent operators).

Definition 2.11 (Convolution of semigroups). Consider some Banach spaces X1, X2, X3. For two
one-parameter families of operators

S1 ∈ L1(R+; B(X1, X2)) and S2 ∈ L1(R+; B(X2, X3)),

we define the convolution S2 ∗ S1 ∈ L1(R+; B(X1, X3)) by

∀ t ≥ 0, (S2 ∗ S1)(t) :=

∫ t

0

S2(s)S1(t− s) ds.

When S1 = S2 and X1 = X2 = X3, we define recursively S(∗0) = Id and S(∗`) = S ∗ S(∗(`−1)) for any
` ≥ 1.

Remarks 2.12. (1) Note that this product law is in general not commutative.
(2) A simple calculation shows that if Si satisfies

∀ t ≥ 0, ‖Si(t)‖B(Xi,Xi+1) ≤ Ci tαi eai t

for some ai ∈ R, αi ∈ N, Ci ∈ (0,∞), then

∀ t ≥ 0, ‖S1 ∗ S2(t)‖B(X1,X2) ≤ C1 C2
α1!α2!

(α1 + α2)!
tα1+α2+1 emax(a1,a2) t.

Theorem 2.13 (Enlargement of the functional space of the semigroup decay). Let E, E be two Banach
spaces with E ⊂ E dense with continuous embedding, and consider L ∈ C (E), L ∈ C (E) with L|E = L
and a ∈ R.

We assume the following:

(A1) L generates a semigroup etL on E, L− a is hypodissipative on R(Id−ΠL,a) and

Σ(L) ∩∆a := {ξ1, . . . , ξk} ⊂ Σd(L) (distinct discrete eigenvalues)

(with {ξ1, . . . , ξk} = ∅ if k = 0).

(A2) There exist A,B ∈ C (E) such that L = A+B (with corresponding restrictions A,B on E), some
n ≥ 1 and some constant Ca > 0 so that
(i) (B − a) is hypodissipative on E;

(ii) A ∈ B(E) and A ∈ B(E);
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(iii) Tn := (ASB)(∗n) satisfies ‖Tn(t)‖B(E,E) ≤ Ca ea t.
Then L is hypodissipative in E with

(2.7) ∀ t ≥ 0,

∥∥∥∥∥∥SL(t)−
k∑
j=1

SL(t) ΠL,ξj

∥∥∥∥∥∥
B(E)

≤ C ′a max{1, tn−1} ea t,

for some explicit constant C ′a > 0 depending on the constants in the assumptions. Moreover we have the
following factorization formula on the semigroup SL on E:

(2.8) SL(t) =

k∑
j=1

SL(t) ΠL,ξj +

n−1∑
`=0

(Id − ΠL,a)SB ∗ (ASB)
∗`

(t) +
[
(Id − ΠL,a)SL

]
∗ (ASB)

∗n
(t).

Remarks 2.14. (1) It is part of the result that B generates a semigroup on E so that (A2)-(iii) makes
sense. Except for the assumption that L generates a semigroup, all the other assumptions are
pure functional, either on the discrete eigenvalues of L or on L, B, A, A and Tn, and do not
require maximality conditions.

(2) Assumption (A1) could be alternatively formulated by mean of any of the equivalent assertions
listed in Theorem 2.9.

Proof of Theorem 2.13. We split the proof into four steps.

Step 1. First remark that since B = L − A, A ∈ B(E), and L is m-hypodissipative then B is
m-hypodissipative and generates a strongly continuous semigroup SB on E.

Because of the hypodissipativity of B, we can extend this semigroup from E to E and we obtain that
B generates a semigroup SB on E . To see this, we may argue as follows. We denote by ||| · |||E a norm
equivalent to ‖ · ‖E so that B − b is dissipative in (E, ||| · |||E) and ||| · |||E a norm equivalent to ‖ · ‖E so
that B − b is dissipative in (E , ||| · |||E), for some b ∈ R large enough. We introduce the new norm

|||f |||ε := |||f |||E + ε |||f |||E on E

so that ||| · |||ε is equivalent to ||| · |||E for any ε > 0. Since B − b is m-dissipative in (E, ||| · |||ε), the Lumer-
Phillips theorem shows that the operator B− b generates a semigroups of contractions on (E, ||| · |||ε), and
in particular

∀ f ∈ E, ∀ t ≥ 0, |||S(B−b)(t)f |||E + ε |||S(B−b)(t)f |||E ≤ |||f |||E + ε |||f |||E .

Letting ε going to zero, we obtain

∀ f ∈ E, ∀ t ≥ 0, |||SB(t)f |||E ≤ et b |||f |||E .

Because of the continuous and dense embedding E ⊂ E , we deduce that we may extend SB(t) from E
to E as a family of operators S(t) which satisfies the same estimate. We easily conclude that S(t) is a
semigroup with generator B, or in other words, B generates a semigroup SB = S on E .

Finally, since L = A+ B and A ∈ B(E), we deduce that L generates a semigroup.

Step 2. We have from (A2)-(i) that

(2.9) ∀ t ≥ 0, ‖SB(t)‖E→E ≤ C eat

and we easily deduce (by iteration) that T` := (ASB)(∗`), ` ≥ 1, satisfies

(2.10) ∀ t ≥ 0, ∀ ` ≥ 1, ‖T`(t)‖B(E) ≤ C` t`−1 eat

for some constants C` > 0.
Let us define

U` := (IdE −ΠL,a) SB ∗ (ASB)(∗`), 0 ≤ ` ≤ n− 1.

From (2.9) and (2.10) and the boundedness of ΠL,a, we get

(2.11) ∀ t ≥ 0, ‖U`(t)‖B(E) ≤ C` t` eat, 0 ≤ ` ≤ n− 1.
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By applying standard results on Laplace transform, we have for any f ∈ E

∀ z ∈ ∆a,

∫ +∞

0

e−zt U`(t)f dt = (−1)`+1 (IdE −ΠL,a) RB(z) (ARB(z))`f.

Then the inverse Laplace theorem implies that for ` = 0, . . . , n− 1 and for all a′ > a, it holds

U`(t)f =
(−1)`+1

2iπ
(IdE −ΠL,a)

∫ a′+i∞

a′−i∞
eztRB(z) (ARB(z))` f dz

:= lim
M→∞

(−1)`+1

2iπ
(IdE −ΠL,a)

∫ a′+iM

a′−iM
eztRB(z) (ARB(z))` f dz,(2.12)

where the integral along the complex line {a′ + iy, y ∈ R} may not be absolutely convergent, but is
defined as the above limit.

Let us now consider the case ` = n and define

Un(t) := (IdE −ΠL,a)
[
SL ∗ (ASB)(∗n)

]
= [(IdE −ΠL,a)SL] ∗ (ASB)(∗n).

Observe that this one-parameter family of operators is well-defined and bounded on E since (ASB)(∗n)

is bounded from E to E by the assumption (A2)-(iii). Moreover for f ∈ E , the assumption (A3)-(iii)
implies ∥∥∥(ASB)(∗n)(t)f

∥∥∥
E
≤ Ca eat ‖f‖E

and since from (A1)
‖[(IdE −ΠL,a)SL] (t)g‖E ≤ C

′
a e

at ‖g‖E
for g ∈ E, we deduce, together with E ⊂ E ,

(2.13) ‖Un(t)f‖E ≤ C
′′
a e

at ‖f‖E
(for some constants Ca, C

′
a, C

′′
a > 0). Finally observe that

∀ z ∈ ∆a,

∫ +∞

0

e−zt (IdE −ΠL,a)SL(t) dt = −(IdE −ΠL,a)RL(z)

by classical results of spectral decomposition.
Therefore the inverse Laplace theorem implies that for any a′ > a close enough to a (so that a′ <

min{<e ξ1, . . . ,<e ξk}), it holds
Un(t)f := lim

M→∞
Un,M (t)f,

with

(2.14) Un,M (t)f :=
(−1)n+1

2iπ
(IdE −ΠL,a)

∫ a′+iM

a′−iM
eztRL(z) (ARB(z))nf dz.

Step 3. Let us prove that the following representation formula holds

(2.15) ∀ f ∈ E , ∀ t ≥ 0, SL(t)f =

k∑
j=1

SL,ξj (t) f +

n∑
`=0

U`(t) f,

where SL,ξj (t) = SL(t)ΠL,ξj and ΠL,ξj is the spectral projection as defined in (2.1).
Consider f ∈ D(L) and define ft = SL(t)f . From (A2) there exists b ∈ R and Cb ∈ (0,∞) so that

(2.16) t 7→ ft ∈ C1(R+; E) and ‖ft‖E ≤ Cb eb t ‖f‖E ,
and we may assume b > a (otherwise the proof is finished). Therefore the inverse Laplace theorem implies
for b′ > b

(2.17) ∀ z ∈ ∆b′ , r(z) :=

∫ +∞

0

ft e
−z t dt = −RL(z) f

is well-defined as an element of E , and

(2.18) ∀ t ≥ 0, ft =
1

2iπ

∫ b′+i∞

b′−i∞
ezt r(z) dz := lim

M→∞

1

2iπ

∫ b′+iM

b′−iM
ezt r(z) dz.
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Combining the definition of ft together with (2.18) and (2.17), we get

(2.19) SL(t)f = − lim
M→∞

Ib′,M ,

where

∀ c ∈ R \ <e(Σ(L)), Ic,M :=
1

2iπ

∫ c+iM

c−iM
eztRL(z) f dz.

Now from (A2)-(iii), we have that (ARB(z))n defined as

(−1)n(ARB(z))n =

∫ ∞
0

e−z t Tn(t) dt(2.20)

is holomorphic on ∆a with values in B(E , E). Hence the assumptions (H1)-(H2) of Theorem 2.1 are
satisfied. We deduce that

Σ(L) ∩∆a = Σ(L) ∩∆a,

with the same eigenspaces for the discrete eigenvalues ξ1, . . . , ξk.
Moreover, thanks to (A1) and (A2)-(i) we have

∀ a′ > a, ∀ ε > 0,


sup

z∈Ka′,ε
‖RL(z)‖B(E) ≤ Ca′,ε,

sup
z∈∆a′

‖RB(z)‖B(E) ≤ Ca′ ,

with

Ka′,ε := ∆a′ \
(
B(ξ1, ε) ∪ . . . ∪B(ξk, ε)

)
.

As a consequence of the factorization formula (2.2), we get

∀ a′ > a, ∀ ε > 0, sup
z∈Ka′,ε

‖RL(z)‖B(E) ≤ Ca′,ε.

Thanks to the identity

∀ z /∈ Σ(L), RL(z) = z−1 [−Id +RL(z)L]

and the above bound, we have (remember that f ∈ D(L))

(2.21) sup
z; |=mz|≥M,<e z≥a′

‖RL(z) f‖B(E) −→
M→∞

0.

We then choose a′ ∈ (a, b) close enough to a and ε > 0 small enough so that

B(ξ1, ε) ∪ . . . ∪B(ξk, ε) ⊂ ∆a′ .

Since RL is a meromorphic function on ∆a with poles ξ1, . . . , ξk, we compute by Cauchy’s theorem

(2.22) Ib′,M = Ia′,M −
k∑
j=1

SL,ξj f + ε1(M),

with

ε1(M) =

[
1

2iπ

∫ b′

a′
e(x+iy) tRL(x+ iy) f dx

]y=M

y=−M

−→ 0

as M → +∞ thanks to (2.21).
On the other hand, because of Theorem 2.1, we may decompose

(2.23)

Ia′,M =
1

2iπ

∫ a′+iM

a′−iM
ezt

n−1∑
`=0

(−1)`RB(z) (ARB(z))` f dz+
(−1)n

2iπ

∫ a′+iM

a′−iM
eztRL(z) (ARB(z))n f dz.
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Note that the limit in (2.23) as M goes to infinity is well defined. Hence (2.19), (2.22) and (2.23) yield

SL(t)f =

k∑
j=1

SL,ξj (t) f +
1

2iπ

∫ a′+i∞

a′−i∞
ezt

n−1∑
`=0

(−1)`+1RB(z) (ARB(z))` f dz

+
(−1)n+1

2iπ

∫ a′+i∞

a′−i∞
eztRL(z) (ARB(z))n f dz.

Since
∑k
j=1 SL,ξj (t) = ΠL,aSL(t) we deduce that the sum of the last two terms in the equation above

belongs to R(IdE −ΠL,a). Hence

SL(t)f =

k∑
j=1

SL,ξj (t) f +
1

2iπ

∫ a′+i∞

a′−i∞
ezt

n−1∑
`=0

(−1)`+1 (IdE −ΠL,a) RB(z) (ARB(z))` f dz

+
(−1)n+1

2iπ

∫ a′+i∞

a′−i∞
ezt (IdE −ΠL,a) RL(z) (ARB(z))n f dz.

As a consequence of (2.12) and (2.14), we deduce that

∀ f ∈ D(L), ∀ t ≥ 0, SL(t)f =

k∑
j=1

SL,ξj (t) f +

n∑
`=0

U`(t) f.

Then using the density of D(L) ⊂ E , we obtain the representation formula (2.15). We have thus estab-
lished (2.8).

Step 4. Conclusion. We finally obtain the time decay (2.7) by plugging the decay estimates (2.11) and
(2.13) into the representation formula (2.15). �

Remark 2.15. There is another way to interpret the factorization formula at the level of semigroups.
Consider the evolution equation ∂tf = Lf and introduce the spliting

f =

k∑
i=1

SL,ξifin + f1 + · · ·+ fn+2,

with 

∂tf
1 = Bf1, f1

in = (Id−ΠL,a) fin,

∂tf
` = Bf ` +Af `−1, f `in = 0, 2 ≤ ` ≤ n,

∂tf
n+1 = Lfn+1 + (Id−ΠL,a)Afn, fn+1

in = 0,

∂tf
n+2 = Lfn+2 + ΠL,aAfn, fn+2

in = 0.

This system of equations on (f `)1≤`≤n+2 is compatible with the equation satisfied by f , and it is possible
to estimate the decay in time inductively for f ` (for the last equation one uses fn+2 = ΠL,af

n+2 =
−ΠL,a(f1 + · · ·+ fn+1) and the decay of the previous terms).

We made the choice to present the factorization theory from the viewpoint of product of resolvents
and convolution products of semigroups as it reveals the algebraic structure in a much clearer way, and
also is more convenient for obtaining properties of the spectrum and precise controls on the resolvent in
the large space.

Let us finally give a lemma which provides a practical criterion for proving assumptions (A2)-(iii) in
the enlargement theorem 2.13:

Lemma 2.16. Let E, E be two Banach spaces with E ⊂ E dense with continuous embedding, and consider
L ∈ C (E), L ∈ C (E) with L|E = L and a ∈ R.

We assume:



FACTORIZATION OF NON-SYMMETRIC OPERATORS. . . 17

(A3) There exist some “intermediate spaces” (not necessarily ordered)

E = EJ , EJ−1, . . . , E2, E1 = E , J ≥ 2,

equipped with there norm denoted by ‖ · ‖Ej such that
(i) (B|Ej − a) is hypodissipative and A|Ej is bounded on Ej for each 1 ≤ j ≤ J .

(ii) There are some constants `0 ∈ N∗, C ≥ 1, K ∈ R, α ∈ [0, 1) such that

∀ t ≥ 0, ‖T`0(t)‖B(Ej ,Ej+1) ≤ C
eKt

tα
,

for 1 ≤ j ≤ J − 1, with the notation T`0 := (ASB)(∗`0).

Then for any a′ > a, there exist some explicit constants n ∈ N, Ca′ ≥ 1 such that

∀ t ≥ 0, ‖Tn(t)‖B(E,E) ≤ Ca′ ea
′ t.

Proof of Lemma 2.16. On the one hand, hypothesis (A3)-(i) implies for 1 ≤ j ≤ J − 1 that

(2.24) ‖T1(t)‖B(Ej) ≤ Ca e
at

and next

(2.25) ‖T`‖B(Ej) ≤ Ca t
`−1 eat ∀ ` ≥ 1.

On the other hand, for n = p `0, p ∈ N∗, we write

Tn(t) = (T`0 ∗ · · · ∗ T`0)(t)︸ ︷︷ ︸
p times

=

∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1 T`0(δp) . . . T`0(δ1)

with

δ1 = t1, δ2 = t2 − t1, . . . , δp−1 = tp−1 − tp−2 and δp = t− tp−1.

We claim that for p > J , there exist at least J − 1 increments δr1 , . . . , δrJ−1
such that δrj ≤ t/(p− J)

for any 1 ≤ j ≤ J − 1; indeed, assuming that there exist δq1 , . . . , δqp−J such that δqj > t/(p − J), one
arrives at the contradiction

t = δ1 + · · ·+ δp ≥ δq1 + · · ·+ δqp−J > (p− J)
t

p− J
= t.

Using (A3)(ii) to estimate ‖T`(δrj )‖B(Ej ,Ej+1) and (2.25) to bound the other terms ‖T`(δr)‖B(Er) in
the appropriate space, we have, with Q := {r1, . . . , rJ−1},

‖Tn(t)‖B(E,E)

≤
∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1
∏
r/∈Q

Ca δ
`0−1
r ea δr

∏
q∈Q

C
eK δq

δαq

≤ C̃a t`0(p−J) CJ ea t eK
J t
p−J

∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1

J∏
j=1

1

δαrj

≤ C ′ e(a+ K J
p−J ) t t`0(p−J)+p−Jα

∫ 1

0

dup−1

∫ up−1

0

dup−2 . . .

∫ u2

0

du1

p−1∏
j=1

1

(uj+1 − uj)α
,

with the convention up = 1. Since the last integral is finite for any p ∈ N, we conclude by taking p (and
then n) large enough so that a+KJ/(p− J) < a′. �
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3. The Fokker-Planck equation

Consider the Fokker-Planck equation

∂tf = Lf := ∇v · (∇vf + F f) , f0(·) = fin(·),(3.1)

on the density f = ft(v), t ≥ 0, v ∈ Rd and where the (exterior) force field F = F (v) ∈ Rd takes the
form

(3.2) F = ∇vφ+ U,

with confinement potential φ : Rd → R of class C2 and non gradient force field perturbation U : Rd → Rd
of class C1 so that

(3.3) ∀ v ∈ Rd, ∇v · (U(v) e−φ(v)) = 0.

It is then clear that a stationary solution is

µ(v) := e−φ(v).

In order for µ to be the global equilibrium we make the following additional classical assumptions on
the φ and U :

(FP1) The Borel measure associated to the function µ and denoted in the same way, µ(dv) := e−φ(v) dv,
is a probability measure and the function φ is C2 and satisfies one of the two following large
velocity asymptotic conditions

(3.4) lim inf
|v|→∞

(
v

|v|
· ∇vφ(v)

)
> 0

or

(3.5) ∃ ν ∈ (0, 1) lim inf
|v|→∞

(
ν |∇vφ|2 −∆vφ

)
> 0

while the force field U satisfies the growth condition

∀ v ∈ Rd, |U(v)| ≤ C (1 + |∇vφ(v)|) .
It is crucial to observe that (FP1) implies that the measure µ satisfies the Poincaré inequality∫

Rd

∣∣∣∣∇v (fµ
)∣∣∣∣2 µ(dv) ≥ 2λP

∫
Rd
f2 µ−1(dv) for

∫
Rd
f dv = 0,(3.6)

for some constant λP > 0. We refer to the recent paper [11] for an introduction to this important subject
as well as to the references therein for further developments. Actually the above hypothesis (FP1) could
be replaced by assuming directly that (3.6) holds. However, the conditions (3.4) and (3.5) are more
concrete and yield criterion that can be checked for a given potential.

The fundamental example of a suitable confinement potential φ ∈ C2(Rd) which satisfies our assump-
tions is when

(3.7) φ(v) ≈ α |v|γ and ∇φ(v) ≈ αγ v |v|γ−2 as |v| → +∞
for some constants α > 0 and γ ≥ 1. For instance, the harmonic potential φ(v) = |v|2/2 − (d/2) ln(2π)
corresponds to the normalised Maxwellian equilibrium µ(v) = (2π)−d/2 exp(−|v|2/2).

3.1. The Fokker-Planck equation: model and results. For some given Borel weight function m =
m(v) > 0 on Rd, let us define Lp(m), 1 ≤ p ≤ 2, as the Lebesgue space associated to the norm

‖f‖Lp(m) := ‖f m‖Lp =

(∫
Rd
fp(v)m(v)p dv

)1/p

.

For any given positive weight, we define the defect weight function

(3.8) ψm,p := (p− 1)
|∇m|2

m2
+

∆m

m
+

(
1− 1

p

)
divF − F · ∇m

m
.

Observe that ψµ−1/2,2 = 0: ψm,p quantifies some error to this reference case.
Let us enounce two more assumptions:
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(FP2) The weight m satisfies L2(µ−1/2) ⊂ Lp(m) (recall p ∈ [1, 2]) and the condition

lim sup
|v|→∞

ψm,p = am,p < 0.

(FP3) There exists a positive Borel weight m0 such that L2(µ−1/2) ⊂ Lq(m0) for any q ∈ [1, 2] and
there exists b ∈ R so that 

sup
q∈[1,2], v∈Rd

ψm0,q ≤ b,

sup
x∈Rd

(
∆m0

m0
− |∇m0|2

m2
0

)
≤ b.

The typical weights m satisfying these assumptions are m(v) ≈ eκφ with κ ∈ [0, 1/2], m(v) = eκ |v|
β

with
β ∈ [0, 1] and κ > 0 appropriately chosen, or m(v) ≈ 〈v〉k, at large velocities.

Here is our main result on the Fokker-Planck equation.

Theorem 3.1. Assume that F satisfies (FP1) and consider a C2 weight function m > 0 and an exponent
p ∈ [1, 2] so that (FP2) holds if p = 2 and (FP2)-(FP3) holds if p ∈ [1, 2).

Then for any initial datum fin ∈ Lp(m), the associated solution ft to (3.1) satisfies the following decay
estimate

(3.9) ∀ t ≥ 0, ‖ft − µ 〈fin〉‖Lp(m) ≤ C e
−λm,p t ‖fin − µ 〈fin〉‖Lp(m) ,

with λm,p := λP if λP < |am,p|, and λm,p < |am,p| as close as wanted to |am,p| else, and where we use
the notation

〈fin〉 :=

∫
Rd
fin dv.

Remarks 3.2. (1) Note that this statement implies in particular that the spectrum of L in Lp(m)
satisfies for a as above:

Σ(L) ⊂ {z ∈ C | <e(z) ≤ a} ∪ {0},

and that the null space of L is exactly Rµ.
(2) When m = m̃(φ) and divU = U · ∇φ = 0, an alternative choice for the defect weight function

associated to the weight m and p ∈ [1, 2] could be ψm,p =: ψ1
m,p + ψ2

m,p with

ψ1
m,p =

1

pm2µp
∇v ·

[
µpm2p−2∇v

(
1

m2p−4

)]
ψ2
m,p =

(p− 1)

p
m2p−2∇v ·

[
µ

m2p−4
∇v ·

(
1

m2 µ

)]
.

Notice that again ψµ−1/2,2 = 0. The first part ψ1
m,p is related to the change in the Lebesgue

exponent from 2 to p, and the second part ψ2
m,p is related to the change of weight from µ−1/2 to

m.
(3) Concerning the weight function m, other technical assumptions could have been chosen for the

function m(v), however the formulation (FP2)-(FP3) seems to us the most natural one since
it is based on the comparison of the Fokker-Planck operators for two different force field. In the
case U = 0, p = 2 and m = eφ/2 the condition (FP2) is nothing but the classical condition (3.5)
with ν = 1/2. In any case, the core idea in the decomposition is that a coercive B in E is obtained
by a negative local perturbation of the whole operator.

(4) By mollification the C2 smoothness assumption of m could be relaxed: if m(v) is not smooth but
m̃(v) is smooth, satisfies (FP2)-(FP3) and is such that c1m(v) < m̃(v) ≤ c2m(v), then it holds

‖ft − µ‖E ≤ C ‖ft − µ‖Lp(m̃) ≤ C ′ e−λ̃ t ‖fin − µ‖Lp(m̃) ≤ C ′′ e−λ̃ t ‖fin − µ‖E .
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(5) It is easy to extend the well-posedness of the Fokker-Planck equation to measure solutions, and
using the case p = 1 in the previous theorem (under appropriate assumptions on the weight) we
deduce the following decay estimate

∀ t ≥ 0, ‖ft − µ 〈fin〉‖M1(m−1) ≤ C e
−λm,1 t ‖fin − µ〈fin〉‖M1(m−1)

where M1(m−1) denotes the weighted space of measures with finite mass.

For concrete applications, for φ satisfying the power-law asymptotic condition (3.7), we have the
following decay rates depending on the weight m and the exponent γ in (3.7):

Proposition 3.3. Assume that φ satisfies (3.7) with exponent γ ≥ 1, then:

(W1) Exponential energy weight. For all γ ≥ 1, the weight m = eκφ is allowed, where κ satisfies
κ ∈ (0, 1/2] when p = 2 and κ ∈ (0, 1/2) when p ∈ [1, 2).

Moreover, in these spaces the estimate we obtain on the exponential decay rate is the optimal
Poincaré constant

λm,p := λP when γ > 1

while in the critical case γ = 1 it is given by λm,p = λP when λP < κ (1 − pκ), and by any
0 ≤ λm,p < κ (1 − pκ) else (which degenerates to zero as κ → 0). The constant in front of the
exponentially decaying term in (3.9) blows-up as λm,p → κ (1− pκ) in the last case.

(W2) Stretched exponential weight. For all γ > 1, the weight m = eκ |v|
β

is allowed for any κ > 0,
p ∈ [1, 2] and 2− γ ≤ β < γ.

Moreover, in these spaces the estimate we obtain on the exponential decay rate is the optimal
Poincaré constant

λm,p := λP when γ + β > 2,

while in the critical case β = 2− γ it is given by λm,p = λP if λP < κβγ, and by any 0 ≤ λm,p <
κβγ else (which degenerates to zero as κ goes to zero). The constant in front of the exponentially
decaying term in (3.9) blows-up as λm,p → κβγ in the last case.

(W3) Polynomial weight. For all γ ≥ 2, the weight m = 〈v〉k is allowed for the Lebesgue exponent
p ∈ [1, 2] under the condition

(3.10) (γ − 2 + d)

(
1− 1

p

)
< k.

Moreover, in these spaces the estimate we obtain on the exponential decay rate is the optimal
Poincaré constant

λm,p := λP when γ > 2,

while in the critical case γ = 2 it is given by λm,p = λP if λP < 2k − 2d(1 − 1/p), and by any
0 ≤ λm,p < λP else (which degenerates to zero as κ goes to zero). The constant in front of the
exponentially decaying term in (3.9) blows-up as λm,p → 2k − 2d(1− 1/p) in the last case.

Remarks 3.4. (1) Observe how the polynomial weights are sensitive to the Lebesgue exponent p in
the condition (3.10). We believe the restriction on the polynomial weight (depending on p, γ and
d) to be optimal. Accordingly we expect that in the case γ = 2 the optimal value of the spectral
gap is given by

λm,2 := max

{
λP ; 2k − 2d

(
1− 1

p

)}
.

This is still an open question that needs to be proven, or disproven. However we can give a partial
positive answer: for potentials φ satisfying (3.7) with γ = 2, and polynomial weights m = 〈v〉k,
then the constant λm,2 = 2k − d, k > d/2, coincides with the value of the spectral gap explicitly
computed by Gallay and Wayne in [49, Appendix A].

(2) Observe furthermore that in the case of a polynomial weight we require the confinement potential
to be quadratic or over-quadratic. This is reminiscent of the logarithmic Sobolev inequality,
however this is strictly weaker than asking the confinement potential to satisfy the logarithmic
Sobolev inequality. It is an open question to know whether a spectral gap still exists when the
potential is subquadratic (γ ∈ [1, 2)) and the weight is polynomial.
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(3) When γ ≥ 2, p = 1 and the weight is polynomial any k > 0 is allowed, which means that it
almost includes L1 without weight. We expect that in the limit case L1 there is no spectral gap
and the continuous spectrum touches zero in the complex plane.

(4) Another strategy for proving the decay of the semigroup could have been the use of interpolation
between the exponential relaxation in E together and a uniform bound in L1 (provided by mass
conservation and preservation of non-negativity). However, first, it would not recover optimal
rates of decay, and second, most importantly, it would not apply to semigroups which do not
preserve non-negativity (and consequently do not preserve the L1 norm), such as those obtained
by linearization of a bilinear operator that we consider see later in this paper.

We give a simple application of our main result, related to the remark (2) above.

Corollary 3.5. Assume that φ satisfies (3.7) with exponent γ ∈ [1, 2). Then for any k > 0, there exists
C = C(k, γ, d) ∈ (0,∞) such that for any initial datum fin ∈ L1(〈v〉k), the solution to the initial value
problem (3.1)-(3.2) satisfies the decay estimate

(3.11) ∀ t ≥ 0, ‖ft − µ 〈fin〉‖L1 ≤ C t−
k

2−γ ‖fin − µ 〈fin〉‖L1(〈v〉k) .

Remark 3.6. A similar result has been proved in [102, Theorem 3] under the additional and fundamental
assumptions that fin is non negative and has finite energy and entropy. Moreover the decay rate obtained
in [102] was only of order t−(k−2)/(2(2−γ)) and remains valid for γ ∈ (0, 1).

3.2. Proof of the main results. The proof of Theorem 3.1 is based on the combination of the spectral
gap in the space L2(µ−1/2) given by Poincaré’s inequality together with the extension to functional spaces
of the form Lp(m), by applying Theorem 2.13.

Before going into the proof of Theorem 3.1, let us remark that most of the interesting external forces
and weights do satisfy our assumptions, as detailed below.

Lemma 3.7. When φ satisfies (3.7) and U ≡ 0, conditions (FP1)-(FP2)-(FP3) are met under condi-
tions (W1), (W2) and (W3) in the statement of Proposition 3.3.

Proof of Lemma 3.7. For the sake of simplicity we assume φ(v) = |v|γ , γ > 0, for |v| large enough, and
we show that the large velocity behavior properties in (FP1)-(FP2)-(FP3) hold under the suitable
conditions. The proof in the general case (3.7) is exactly similar.

First we compute for large velocities

∇φ = γ v |v|γ−2, divF = ∆φ = γ (d+ γ − 2) |v|γ−2,

and we observe that both conditions (3.4) and (3.5) (for any ν ∈ (0, 1)) are satisfied when γ ≥ 1, so that
condition (FP1) holds.

Step 1. Exponential weight. We consider m := exp(κ |v|β), κ, β > 0, and we compute for large velocities

∇m = κβ v |v|β−2m, ∆m = κβ (β − 1)|v|β−2m+ κ2 β2 |v|2β−2m.

We observe that in that case

ψm,p ≈ (p− 1)
|∇m|2

m2
+

∆m

m
−∇φ · ∇m

m

≈ (p− 1)κ2 β2 |v|2β−2 + κ2 β2 |v|2β−2 − κβ γ |v|β+γ−2

≈ p κ2 β2 |v|2β−2 − κβ γ |v|β+γ−2

since the third term is always smaller that the fourth term when β > 0 and using the asymptotic estimates.
The condition 2 − γ ≤ β comes from (and is equivalent to) the fact that the last term does not vanish
in the large velocity asymptotic and the condition β ≤ γ comes from (and is equivalent to) the fact that
the last term is not negligible with respect to the first term in the large velocity asymptotic.

When β = γ, we find

ψm,p ≈ κγ2 (pκ− 1) |v|2γ−2,
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from which we get the condition pκ < 1, and we conclude to am,p = −∞ when γ > 1 while am,p =

κ (pκ − 1) when γ = 1. However in order to have L2(µ−1/2) ⊂ Lp(m), we find the additional condition
κ ∈ (0, 1/2).

When β < γ, we find
ψm,p ≈ −κβ γ |v|β+γ−2,

so that am,p = −∞ when β > γ − 2 and am,p = −(κβγ) when β = γ − 2.
Finally, condition (FP3) is always satisfied for γ ≥ 1 with m0 := eκφ, κ ∈ (0, 1/2).

Step 2. Polynomial weight. We consider m := 〈v〉k, k > 0, and we compute for large velocities ∇m = k v 〈v〉k−2, ∆m ≈ k (d+ k − 2) 〈v〉k−2,

∇φ = γ v 〈v〉γ−2, ∆φ ≈ γ (d+ γ − 2) 〈v〉γ−2.

It holds

ψm,p ≈
(

1− 1

p

)
∆φ−∇φ · ∇m

m

≈
(

1− 1

p

)
γ (d+ γ − 2) 〈v〉γ−2 − γ k 〈v〉γ−2,

since the first and second terms are negligible as soon as γ > −1. We assume γ ≥ 2 so that the limit
is non-zero. We easily deduce the condition (3.10) and am,p = −∞ when furthermore γ > 2 while
am,p := 2d (1− 1/p)− 2k when γ = 2. �

Lemma 3.8. Under the assumptions (FP1)-(FP2), there exists M,R such that

B := L −A, Af := M χR f

satisfies the dissipativity estimate

(3.12) ∀ t ≥ 0, ‖SB(t)f‖Lp(m) ≤ e−λm,p t ‖f‖Lp(m).

Proof of Lemma 3.8. We calculate∫
Rd

(Lf) |f |p−2f mp dv =

∫
Rd

(∆f) |f |p−2f mp dv +

∫
Rd

div (F f) |f |p−2f mp dv =: T1 + T2.

For the first term T1, we compute

T1 = −
∫
Rd
∇
(
|f |p−2f mp

)
· ∇f dv

= −
∫
Rd

[
∇
(
|f |p−2f

)
· ∇f mp + p |f |p−2f mp−1∇f · ∇m

]
dv

= −(p− 1)

∫
Rd
|∇f |2 fp−2mp dv +

∫
Rd
|f |p div

(
mp−1∇m

)
dv

thanks to two integrations by parts. For the second term, we write

T2 =

∫
Rd

(divF ) |f |pmp dv +

∫
Rd

(F · ∇f) |f |p−2f mp dv

=

∫
Rd

(divF ) |f |pmp dv − 1

p

∫
Rd
|f |p div (F mp) dv

by integration by parts again. All together, we obtain the following identity and estimate∫
Rd

(Lf) |f |p−2f mp dv = (1− p)
∫
Rd
|∇f |2 fp−2mp dv +

∫
Rd
|f |pmp ψm,p dv

≤
∫
Rd
|f |pmp ψm,p dv.

From (FP2), for any a > am,p, we may find M and R large enough so that

∀ v ∈ Rd, ψm,p −M χR ≤ a.
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As a consequence, we deduce ∫
Rd

(Bf) |f |p−2f mp dv ≤ a
∫
Rd
|f |pmp dv,

from which (3.12) immediately follows. �

We now shall prove a lemma about the regularization properties of the Fokker-Planck equation. It is
related to the notion of ultracontractivity and is well-known; we include a sketch of its proof for clarity
and in order to make the constants explicit.

Lemma 3.9. Under the assumptions (FP3), there are b, C > 0 such that for any p, q with 1 ≤ p ≤ q ≤ 2,
we have

(3.13) ∀ t ≥ 0, ‖SB(t)f‖Lq(m0) ≤ C e2bt t−
d
2 ( 1

p−
1
q ) ‖f‖Lp(m0).

As a consequence, under the assumptions (FP2)-(FP3), there are b, C > 0 such that for any p, q with
1 ≤ p ≤ q ≤ 2, we have

(3.14) ∀ t ≥ 0, ‖T`(t)f‖Lq(m) ≤ C e2bt t−
d
2 ( 1

p−
1
q ) ‖f‖Lp(m)

with ` = 1 when Lp(m) ⊂ Lp(m0) and with ` = 2 in the general case.

Proof of Lemma 3.14. From condition (FP3) on ψm0,p, by arguing as in the proof of Lemma 3.8 we
obtain for any p ∈ [1, 2]

(3.15) ∀ t ≥ 0, ‖SB(t)f‖Lp(m0) ≤ Cpp ‖f‖Lp(m0), Cpp := ebt.

In order to establish the gain of integrability estimate we have to use the non positive term involving
the gradient in a sharper way, i.e. not merely the fact that it is non-positive. It is enough to do that in
the simplest case when p = 2. Let us consider a solution ft to the equation

∂tft = B ft, f0 ∈ L2(m0).

From the computation made in the proof of Lemma 3.8, we have

d

dt

∫
Rd

f2
t

2
m2

0 dv =−
∫
Rd
|∇ft|2m2

0 dv +

∫
Rd
f2
t {ψm0,2 −M χR} m2

0 dv

=−
∫
Rd
|∇(ftm0)|2 dv +

∫
Rd
f2
t

{
ψm0,2 −

|∇m0|2

m2
0

+
∆m0

m0
−M χR

}
m2

0 dv

≤−
∫
Rd
|∇(ftm0)|2 dv + 2b

∫
Rd
f2
t m

2
0 dv.

Using Nash’s inequality ([69, Chapter 8])(∫
Rd
g2 dv

)
≤ Kd

(∫
Rd
|∇vg|2 dv

) d
d+2

(∫
Rd
|g|dv

) 4
d+2

(for some constant Kd > 0 depending on the dimension) applied to g = ftm0, we get

d

dt

∫
Rd

f2
t

2
m2

0 dv ≤ −K−1
d

(∫
Rd
|ft|m0 dv

)− 4
d
(∫

Rd
|ft|2m2

0 dv

) d+2
d

+ 2b

∫
f2
t m

2
0 dv.

We then introduce the notation

X(t) := ‖ft‖2L2(m0), Y (t) := ‖ft‖L1(m0).

Since Yt ≤ C Y0 for t ∈ [0, 1] by the previous step, we end up with the differential inequality

(3.16) ∀ 0 ≤ t ≤ 1, X ′(t) ≤ −2KY
−4/d
0 X(t)1+ 2

d + 2bX(t),

with K ∈ (0,∞). On the one hand, if

X0 >

(
2b

K

)d/2
Y 2

0
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we define

τ := sup

{
t ∈ [0, 1] s.t. ∀ s ∈ [0, t], X(s) ≥

(
2b

K

)d/2 }
∈ (0, 1],

and the previous differential inequality implies

∀ t ∈ (0, τ), X ′(t) ≤ −KY −4/d
0 X(t)1+ 2

d ,

which in turns implies

(3.17) ∀ t ∈ (0, τ), X(t) ≤

(
2K Y

−4/d
0 t

d

)−d/2
.

On the other hand, when τ < 1 (so that X(τ) = (2b/K)d/2 Y 2
0 ), which includes the case τ = 0 and

X0 ≤ (2b/K)d/2 Y 2
0 , we simply drop the negative part in the right hand side of (3.16) and get

(3.18) ∀ t ∈ (τ, 1], X(t) ≤ e(t−τ) 2b

(
2b

K

)d/2
Y 2

0 .

Gathering (3.17) and (3.18), we obtain

(3.19) ∀ t ∈ [0, 1], X(t)1/2 ≤ C t−d/4 e2bt Y0.

Putting together (3.19) and the estimate (3.15) with p = 2 for the later times t ≥ 1 we conclude that

∀ t ≥ 0, ‖SB(t)f‖L2(m0) ≤ C12 ‖f‖L1(m0), C12 := C e2bt t−d/4.

Using twice the Riesz-Thorin interpolation theorem on the operator SB(t) which acts in the spaces
L1 → L1, L2 → L2 and L1 → L2, we obtain

‖SB(t)f‖Lq(m0) ≤ Cqp ‖f‖Lp(m0), Cqp := C
2−2/p
22 C

2/q−1
11 C

2/p−2/q
12 ,

for any 1 ≤ p ≤ q ≤ 2, which concludes the proof of (3.13). �

Proof of Theorem 3.1. Let us proceed step by step.

Step 1. The L2 case for energy weight. Let us first review the spectral gap properties of the
Fokker-Planck equation in the space L2(µ−1/2). On the one hand, performing one integration by parts,
we have ∫

Rd
div (Uf)µ−1 f dv =

∫
Rd

div (Uµ) (µ−1 f)2 dv +
1

2

∫
Rd
U µ · ∇(µ−1f)2 dv

=
1

2

∫
Rd

div (Uµ) (µ−1 f)2 dv = 0.

It is then immediate to check thanks to the Poincaré inequality (3.6) that

2<e 〈Lf, f〉L2(µ−1/2) :=

∫
Rd
Lf̄ f µ−1( dv) +

∫
Rd
Lf f̄ µ−1( dv)

=− 2

∫
Rd

∣∣∣∣∇v (fµ
)∣∣∣∣2 µ( dv)

≤− 2λP

∫
Rd
f2 µ−1 dv

when 〈f〉 = 0. For any fin ∈ L2(µ−1/2) such that 〈fin〉 = 0 and then 〈ft〉 = 0 for any t ≥ 0, we deduce
that the solution ft to the Fokker-Planck equation satisfies

d

dt
‖ft‖L2(µ−1/2) ≤ −λP ‖ft‖L2(µ−1/2)

from which we obtain estimate (3.9) in the case of the small space E := L2(µ−1/2).

Step 2. The L2 case with general weight. Let us write E = L2(m) with m satisfying (FP2) and
E = L2(µ−1/2), and denote by L and L the Fokker-Planck when considered respectively in E and E.
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We split the operator as L = A+ B with

Af := M χRf and Bf := div (∇f + F f)−MχRf.

We then have A ∈ B(E , E) and, thanks to Lemma 3.8, we know that B − a is dissipative for any fixed
a > am,2. We can therefore apply Theorem 2.13 with n = 1 which yields the conclusion.

Step 3. The Lp case, p ∈ [1, 2]. With the same splitting we have A ∈ B(E) as well as T2(t) satisfies
condition (iii) in Lemma 2.16 thanks to lemma 3.14. We can conclude by applying Theorem 2.13 with
n = 2. �

Proof of Corollary 3.5. We proceed along the line of the proof of [102, Theorem 3]. Without loss of
generality, we may assume that 〈fin〉 = 0. For any R > 0, we split the initial datum as

fin := f1
in + f2

in

f1
in := fin 1|v|≤R −

〈
fin 1|v|≤R

〉
f2

in := fin 1|v|≥R −
〈
fin 1|v|≥R

〉
and we denote by f1

t and f2
t the two solutions of the Fokker-Planck equation respectively associated with

the initial data f1
in and f2

in. Since f1
in ∈ L1(e|v|

2−γ
) and satisfies 〈f1

in〉 = 0, we may apply Theorem 3.1
and we get ∥∥f1

t

∥∥
L1(e|v|

2−γ
)
≤ C e−λ t ‖f1

in‖L1(e|v|
2−γ

) ≤ C e
−λ t e

R2−γ

Rk
∥∥f1

in

∥∥
L1(〈v〉k)

.

On the other hand, the mass conservation for the Fokker-Planck equation implies

‖f2
t ‖L1 ≤ ‖f2

in‖L1 ≤ 1

Rk
‖f2

in‖L1(〈v〉k).

We conclude by gathering the two estimates and choosing R such that R2−γ = λt. �

3.3. The kinetic Fokker-Planck equation in a periodic box. Consider the equation

∂tf = Lf := ∇v · (∇vf + φ f)− v · ∇xf, f0(·) = fin(·),(3.20)

for f = ft(x, v), t ≥ 0, x ∈ Td the flat d-dimensional torus, v ∈ Rd, and for some velocity potential
φ = φ(v).

(KFP1) The function φ is C2 and such that µ( dv) := e−φ(v) dv is a probability measure and

Wφ(v) :=
∆vφ

2
− |∇vφ|

2

4
−−−−−→
|v|→+∞

−∞.

Moreover we assume that

(3.21)
|∇svφ(v)|
|∇vφ(v)|

−−−−−→
|v|→+∞

0 for s = 2, . . . , 4.

This assumption is needed when deriving hypoelliptic regularization estimates which involves
taking velocity derivatives of the equation.

Observe that the condition (KFP1) is satisfied for any

φ(v) = Cφ (1 + |v|2)γ/2, γ > 1

(but does not cover the borderline case φ ∼ |v| for the Poincaré inequality). And as before it implies that
the probability measure µ satisfies the Poincaré inequality (3.6) in the velocity space for some constant
λP > 0. It also implies the stronger inequality

(3.22)

∫
Rd

∣∣∣∣∇v (fµ
)∣∣∣∣2 µ( dv) ≥ 2 λ̄P

∫ (
f −

∫
Rd
f(v∗) dv∗

)2 (
1 + |∇vφ|2

)
µ−1( dv)

for some constant λ̄P > 0 (see [90] for a quantitative proof).

For simplicity we normalize without loss of generality the volume of the space torus to one.
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Let us denote the probability measure µ(x, v) = e−φ(v). Let us consider the functional space

L2(µ−1/2) :=

{
f ∈ L2(Td × Rd)

∣∣∣ ∫
Td×Rd

f2 µ−1 dx dv < +∞
}
,

equipped with its norm

‖f‖L2(µ−1/2) :=

(∫
Td×Rd

f2 µ−1 dxdv

)1/2

.

It is immediate to check that L(µ) = 0 and

<e 〈Lf, f〉L2(µ−1/2) :=

∫
Td×Rd

Lf̄ f µ−1 dx dv +

∫
Td×Rd

Lf f̄ µ−1 dxdv

= <e 〈Lf, f〉L2(µ−1/2) = −
∫
Td×Rd

∣∣∣∣∇v (fµ
)∣∣∣∣2 µdx dv ≤ 0.

We also similarly define the weighted Sobolev spaces

Hs(µ−1/2) :=

{
f ∈ Hs

loc

(
Td × Rd

) ∣∣∣ ∀ |j| ≤ s, ∫
Td×Rd

(∂jf)2 µ−1 dxdv < +∞
}
,

for s ∈ N and j ∈ Nd multi-index (with |j| = j1 + · · ·+ jd), equipped with its norm

‖f‖Hs(µ−1/2) :=

∑
|j|≤s

∫
Td×Rd

(∂jf)2µ−1 dxdv

1/2

.

Let us first prove an hypocoercivity result on the kinetic Fokker-Planck equation in the torus. The
proof is a variation of the method developed in the recent works [43, 44], partly inspired from the paper
[62]. In [44] the kinetic equation is studied in the whole space with confining potential. This result is
also related to the works [63] and [112] on the kinetic Fokker-Planck equation in the whole space with a
confining potential.

Theorem 3.10. Assume that φ satisfies (FP1)-(FP2). Then for any initial datum fin ∈ L2(µ−1/2),
the solution to the initial value problem (3.20) satisfies

∀ t ≥ 0, ‖ft − µ 〈〈fin〉〉‖L2(µ−1/2) ≤ C e
−λKFP t ‖fin − µ 〈〈fin〉〉‖L2(µ−1/2) ,

for some constructive constant C > 0 and “hypocoercivity” constant λKFP > 0 depending on φ, with the
notation

〈〈fin〉〉 :=

∫
Td×Rd

fin dxdv.

Moreover the proof below provides a quantitative estimate from below on the optimal decay λKFP .

Remarks 3.11. (1) More generally for s ∈ N∗, if φ is Cq+2 and satisfies (FP1)-(FP2), then for any
initial datum fin ∈ Hs(µ−1/2), the solution to the initial value problem (3.20) satisfies

∀ t ≥ 0, ‖ft − µ 〈〈fin〉〉‖Hs(µ−1/2) ≤ C e
−λKFP t ‖fin − µ 〈〈fin〉〉‖Hs(µ−1/2) .

(2) Note that this statement implies in particular in L2(µ−1/2) (and in fact also in Hs(µ−1/2)) that

Σ (L) ⊂ {z ∈ C | <e(z) ≤ −λKFP } ∪ {0}

and that the null space of L is exactly Rµ.
(3) Observe that, on the contrary to the previous spatially homogeneous case, the optimal rate of

decay λKFP is in general different from the Poincaré constant of Φ. It depends for instance on
the size of the spatial domain.

Proof of Theorem 3.10. Without loss of generality we assume that 〈〈fin〉〉 = 0. Let us denote by

T := v · ∇x, L̄ := ∇v · (∇v + φ)
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and let us introduce the projection operator

Πf :=

(∫
Rd
f dv

)
µ

and the auxiliary operator

U := (Id + (T Π)∗(T Π))
−1

(T Π)∗.

Then one can check by elementary computations that

ΠT Π = 0 and U = ΠU

and

d

dt

(
1

2
‖f‖2L2(µ−1/2) + ε 〈Uf, f〉L2(µ−1/2)

)
=
〈
L̄f, f

〉
L2(µ−1/2)

+ ε 〈UT Πf, f〉L2(µ−1/2) + ε 〈UT (Id−Π)f, f〉L2(µ−1/2)

− ε 〈T Uf, f〉L2(µ−1/2) + ε 〈UL̄f, f〉L2(µ−1/2)

(observe that 〈Uf, L̄f〉L2(µ−1/2) = 0 since U = ΠU).

By explicit computation one can show that U , T U , UT and UL̄ are bounded, by using that the
operators

∇x (1− α∆x)
−1

and (1− α∆x)
−1 ∇x with α =

∫
Rd
|v|2 µdv

are bounded in L2
x. This implies

ε 〈UT (1−Π)f, f〉L2(µ−1/2) − ε 〈T Uf, f〉L2(µ−1/2) − ε 〈UL̄f, f〉L2(µ−1/2)

≤ λP ‖(1−Π)f‖2L2(µ−1/2) + C ε2 ‖Πf‖2L2(µ−1/2)

for some constant C > 0.
Finally one uses the Poincaré inequality on the velocity variable

−
〈
L̄f, f

〉
L2(µ−1/2)

≤ −2λP ‖(1−Π)f‖2L2(µ−1/2)

and the formula

UT Πf =
(

(1− α∆x)
−1 ◦ (α∆x)ρ

)
µ where ρ =

∫
Rd
f dv

which implies that

〈UT Πf, f〉L2(µ−1/2) ≤ −2λ′ ‖Πf‖L2(µ−1/2)

(we have used here 〈〈ft〉〉 = 0 for all times t ≥ 0) with

λ′ =
αλ′P

1 + αλ′P

where λ′P > 0 is the Poincaré constant for the Poincaré-Wirtinger inequality on the torus. This concludes
the proof of hypocoercivity by choosing some ε chosen small enough. �

Let us now consider some given Borel weight function m = m(v) > 0 on Rd and the associated Banach
space Lp(m), p ∈ [1, 2], equipped with the norm

‖f‖Lp(m) =

(∫
Td×Rd

|f |pmp dx dv

)1/p

.

We consider again the defect weight function ψp,m (see (3.8)) and we shall assume again (FP2)-(FP3).
Pairs of potential-weight functions (φ,m) satisfying these assumptions are detailed in Proposition 3.3.

The main result of this section is the following theorem:



28 M.P. GUALDANI, S. MISCHLER, C. MOUHOT

Theorem 3.12. Assume that m, p ∈ [1, 2], F ∈ C2 satisfy (KFP1)-(FP2)-(FP3). Then for any initial
data fin ∈ Lp(m) the corresponding solution to (3.20) satisfies

∀ t ≥ 0, ‖ft − µ 〈〈fin〉〉‖Lp(m−1) ≤ C e−λm,p t ‖fin − µ〈〈fin〉〉‖Lp(m−1) ,

with λm,p := λKFP if λKFP < |am,p|, or λm,p < |am,p| is as close as wanted to |am,p| else.
From Proposition 3.3 we deduce the same estimates on the rates λm,p depending on the choices of φ

and m as in the spatially homogeneous case, but where λP is replaced by λKFP .

Remark 3.13. Note that this statement implies in particular in Lp(m) that

Σ (L) ⊂ {z ∈ C | <e(z) ≤ −λm,p} ∪ {0}

and the null space of L is exactly Rµ. All the other remarks after Theorem 3.1 and Proposition 3.3
extend as well (in particular the remark on measure solutions). However the open questions raised in
these remarks are probably harder in this spatially inhomogeneous setting.

Before going into the proof of Theorem 3.12, let us again prove a lemma about the regularization
properties of the kinetic Fokker-Planck equation at hand. This result is related to the notion of hypoel-
lipticity, it is folklore but hard to find so we include a sketch of proof (following closely the methods and
discussions in [112, Section A.21]) for clarity and in order to make explicit the estimate.

Lemma 3.14. Under the assumptions (KFP1)-(FP2) the semigroup of the equation (3.20) is well-
defined in the space L1(µ−1/2) and satisfies

‖SL(t)f‖L2(µ−1/2) ≤
CL
tζ
‖f‖L1(µ−1/2)

for some constant ζ > 0.

Proof of Lemma 3.14. The estimate

d

dt

∫
Td×Rd

f µ−1/2 dxdv =

∫
Td×Rd

f Wφ µ
−1/2 dxdv ≤ C

∫
Td×Rd

f µ−1/2 dxdv

easily ensures that the semigroup is well-defined in L1(µ−1/2).
We rewrite the equation on h = f/

√
µ ∈ L2 (the unweighted Lebesgue space) and we consider the

functional

H(t) := ‖h‖2L2 + a2 ‖∇xh‖2L2 + 2b
〈
∇x(D1/3

x h),∇v(D1/3
x h)

〉
L2

+ c2
∥∥∇3

vh
∥∥2

L2

for some constants a, b, c ∈ R, where Dx := (1−∆x)1/2. Since〈
∇x(D1/3

x h),∇v(D1/3
x h)

〉
L2

=
〈
∇xh,∇v(D2/3

x h)
〉
L2
≤ α

2
‖∇xh‖2L2 +

2

α

∥∥∥∇v(D2/3
x h)

∥∥∥2

L2

≤ α ‖∇xh‖2L2 +
2

α

∥∥∇3
vh
∥∥2

L2

for any α > 0, it is clear that H is equivalent to

‖h‖2L2 + ‖∇xh‖2L2 +
∥∥∇3

vh
∥∥2

L2

as soon as c << ab.
Then computations lead to

d

dt
H(t) ≤ −K

(
‖h‖2H1/3 + ‖∇xh‖2H1/3 +

∥∥∇3
vh
∥∥2

H1/3

)
for some constant K > 0 by using the Poincaré inequality (3.22) in the velocity variable, the regularity
assumption (3.21) in (KFP1) and the mixed-term estimate

d

dt

〈
∇x(D1/3

x h),∇v(D1/3
x h)

〉
L2

= −
∥∥∥∇xD1/3

x h
∥∥∥2

L2
+ error terms. . . .
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Then by interpolation with the L1 norm of h we deduce that

d

dt
H(t) ≤ −K H(t)1+β

‖h‖2βL1

which concludes the proof of the first inequality. �

Proof of Theorem 3.12. The proof is similar to that of Theorem 3.1.
We first write

L = L̄+ T , L̄ := ∇v · (∇vf + φ f) , T := −v · ∇xf
in Lp(m) and the corresponding splitting L = L̄ + T in L2(µ−1/2). The operator L̄ is symmetric in
L2(µ−1/2) since 〈

L̄f, g
〉
L2(µ−1/2)

= −
∫
Td×Rd

∇v
(
f

µ

)
· ∇v

(
g

µ

)
µdx dv.

The operator T is skew-symmetric both in L2(µ−1/2) and Lp(m).
Then we define the decomposition L = A+ B with

Af := χRM f and Bf := Lf − χRM f

and χR = χR(v) is the characteristics function of v ∈ B(0, R). The rest of the proof is strictly similar to
that of Theorem 3.1. �

3.4. Summary of the results. Let us conclude this section with a summary of the results we have
established, both for the Fokker-Planck equation (3.1) or the kinetic Fokker-Planck equation (3.20) in
the torus with velocity potential φ(v) ≈ 〈v〉γ at infinity. The constant λ∗ > 0 denotes either λP for the
Fokker-Planck equation, or λKFP for the kinetic Fokker-Planck equation in the torus.

Weight admissible p admissible γ spectral gap λ

m = eφ/2 p = 2 γ ≥ 1 λ∗ (optimal)
m = eκφ, κ ∈ (0, 1/2) 1 ≤ p < 2 γ ≥ 1 min {λ∗; κ(1− pκ) + 0}
m = eκ |v|

β

, κ, β > 0 1 ≤ p ≤ 2 2− γ < β < γ λ∗ (optimal)

m = eκ |v|
β

, κ, β > 0 1 ≤ p ≤ 2 β + γ = 2 min {λ∗; κβγ + 0}
m = 〈v〉k, k > d(1− 1

p ) 1 ≤ p ≤ 2 γ > 2 λ∗ (optimal)

m = 〈v〉k, k > (γ − 2 + d)(1− 1
p ) 1 ≤ p ≤ 2 γ = 2 min

{
λ∗; 2k − 2d(1− 1

p ) + 0
}

The optimality of the estimates in the 2d, 4th and 6th line is open.

4. The linearized Boltzmann equation

Consider the Boltzmann equation for hard spheres in the torus in dimension d = 3, which writes

(4.1) ∂tf = Q(f, f)− v · ∇xf,
for f = ft(x, v) ≥ 0, x ∈ T3 (3-dimensional flat torus), v ∈ R3, and where the collision operator Q is
defined as

(4.2) Q(f, g) :=

∫
R3

∫
S2

[
f(v′) g(v′∗)− f(v) g(v∗)

]
|v − v∗|dv∗ dσ.

In (4.2) and below, we use the notations

(4.3) v′ =
v + v∗

2
+ σ
|v − v∗|

2
, v′∗ =

v + v∗
2
− σ |v − v∗|

2
,

with cos θ = σ · (v − v∗)/|v − v∗|. We assume without loss of generality that the torus has volume one.
Then global equilibria are absolute Maxwell functions which depend neither on time nor on position (see
[38, Chap. II, sect. 7] for instance). By normalization of the mass, momentum and energy, we consider
the following equilibrium

(4.4) µ(v) :=
1

(2π)3/2
e−|v|

2/2.
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Consider the linearization f = µ+h, then at first order the linearized equation around the equilibrium
is

(4.5) ∂th = Lh := L̄h− v · ∇xh,

for h = h(t, x, v) = ht(x, v), x ∈ T3, v ∈ R3 and

L̄h :=

∫
R3

∫
S2

[
µ(v′∗)h(v′) + µ(v′)h(v′∗)− µ(v∗)h(v)− µ(v)h(v∗)

]
|v − v∗|dv∗ dσ.

Following standard notations, we introduce the collision frequency

ν(v) := 4π

∫
R3

µ(v∗) |v − v∗|dv∗ = 4π (µ ∗ | · |) (v)

which satisfies for some constants ν0, ν1 > 0

∀ v ∈ R3, 0 < ν0 ≤ ν0 (1 + |v|) ≤ ν(v) ≤ ν1 (1 + |v|),

Remark 4.1. The collision frequency satisfies in fact the explicit bounds

∀ v ∈ R3, 4πmax
{
|v|,
√

2/(eπ)
}
≤ ν(v) ≤ 4π(|v|+ 2)

that we shall use in the sequel. Indeed, on the one hand, the lower bound follows from the Jensen
inequality

ν(v) ≥ 4π

∣∣∣∣∫
R3

(v − v∗)µ(v∗) dv∗

∣∣∣∣ = 4π |v|

and

(4π)−1ν(v) ≥
∫
|v∗−v|≥1

µ(v∗) dv∗ ≥
∫
|v∗|≥1

µ(v∗) dv∗

≥
√

2

π

∫ ∞
1

e−r
2
∗/2 r2

∗ dr∗ ≥
√

2

π

∫ ∞
1

e−r
2
∗/2 r∗ dr∗ =

√
2

eπ
.

One the other hand, we have

(4π)−1ν(v) ≤
∫
R3

|v|µ(v∗) dv∗ +

∫
R3

(
1

2
+
|v∗|2

2

)
µ(v∗) dv∗ = |v|+ 2.

4.1. Review of the decay results on the semigroup. Let us briefly review the existing results
concerning the decay estimates on the semigroup of L for hard spheres in the torus.

In the spatially homogeneous case, the study of the linearized collision operator L̄ goes back to Hilbert
[65, 66] who computed the collisional invariant, the linearized operator and its kernel in the hard spheres
case, and showed the boundedness and complete continuity of the non-local part of L̄. This opera-
tor is self-adjoint non-positive and generates a strongly continuous contraction semigroup in the space
L2
v(µ
−1/2). Carleman [30] then proved the existence of a spectral gap for L̄ by using Weyl’s theorem and

the compactness of the non-local part of L̄ proved by Hilbert. Grad [54, 55] then extended these results
to the so-called “hard potentials with cutoff”. All these results are based on non-constructive arguments.
The first constructive estimates in the hard spheres case were obtained only recently in [12] (see also
[86] for more general interactions). Note that these spectral gap estimates can easily be extended to
the spaces Hs

v(µ−1/2), s ∈ N∗, by reasoning as in the proof of Lemma 4.14 below when we introduce
derivatives.

Let us also mention the works [113, 14, 15] for the different setting of Maxwell molecules where
the eigenbasis and eigenvalues are explicitely computed by Fourier transform methods. Although these
techniques do not apply here, the explicit formula computed are an important source of inspiration for
dealing with more general physical models.

The complete linearized operator L is the sum of the self-adjoint non-positive operator L̄ and the
skew-symmetric transport operator −v · ∇x. It was first established in [107, Theorem 1.1] that it has a
spectral gap in the Hilbert space L2

vH
s
x(µ−1/2), s ∈ N, by non-constructive arguments. Then using an

argument initially due to Grad [56] for constructing local-in-time solutions Ukai [107], showed that the
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spectral property also holds in L∞v H
s
x((1+ |v|)kµ−1/2), k > 3/2. In [89, Theorems 1.1 & 3.1], quantitative

spectral gap estimates are established in Hs
v,x(µ−1/2), s ∈ N∗, following partly ideas from [58, 59, 60, 112].

For the spatially homogeneous case, in [8] the decay estimate of etL̄ was extended to L1 with polynomial
weight by an intricate non-constructive approach: the decay bound on the resolvent is deduced from the
spectrum localization with no constructive estimate, and then the decay of the semigroup is obtained
by some decomposition of the solution. This argument was then extended to Lp spaces in [114, 115].
In [87], this decay estimate was extended to the space L1(m) for a stretched exponential weight m, by
constructive means, with optimal rate. Let us also mention that in [9] some non-constructive decay
estimates were obtained in a Sobolev space in position combined with a polynomially weighted L∞ space
in velocity (integrating first in x and then taking the supremum in v, which is reminiscent of the norms
we shall use in the sequel). We also refer to the book [83] by M. Mokhtar-Kharroubi and the more recent
paper [84] for an overview of the spectral analysis and the semigroup growth estimate available for the
linear Boltzmann equation as it appears in neutron transport.

4.2. The main hypodissipativity results. For some given Borel weight function m > 0 on R3, let us
define LqvL

p
x(m), 1 ≤ p, q ≤ ∞, as the Lebesgue space associated to the norm

‖h‖LqvLpx(m) =: ‖‖h(·, v)‖Lpx m(v)‖Lqv .

We also consider the higher-order Sobolev subspaces Wσ,q
v W s,p

x (m) for σ, s ∈ N defined by the norm

(4.6) ‖h‖Wσ,q
v W s,p

x (m) :=
∑

i,j∈Nd, |i|≤σ,|j|≤s, |i|+|j|≤max{σ;s}

∥∥∥∥∥∂iv∂jxh(·, v)
∥∥
Lpx

∥∥∥
Lqv(m)

.

This definition reduces to the usual weighted Sobolev space W s,p
x,v (m) when q = p and σ = s, and we

recall the shorthand notation Hs
· := W s,2

· .

We present now our set of hypodissipativity results for the semigroup associated to the linearized
Boltzmann equation (4.5).

Theorem 4.2. Consider the space E = Wσ,q
v W s,p

x (m) with s, σ ∈ N, σ ≤ s, and with one of the following
choices of weight and Lebesgue exponents:

(W1) m = µ−1/2, q = p = 2;

(W2) m = eκ |v|
β

, κ > 0, β ∈ (0, 2) and p, q ∈ [1,+∞];
(W3) m = 〈v〉k, k > k∗q and p, q ∈ [1,+∞], where

k∗q :=
3 +

√
49− 48/q

2
.

Then there are constructive constants C ≥ 1, λ > 0, such that the operator L defined in (4.5) satisfes
in E: {

Σ(L) ⊂ {z ∈ C | <e (z) ≤ −λ} ∪ {0}

N(L) = Span
{
µ, v1 µ, . . . , vd µ, |v|2 µ

}
,

and is the generator of a strongly continuous semigroup

ht := SL(t)hin in E ,

solution to the initial value problem (4.5), which satisfies:

∀ t ≥ 0, ‖ht −Πhin‖E ≤ C e
−λ t ‖hin −Πhin‖E ,

where Πhin stands for the projection onto N(L) defined by (2.1), or more explicitly by

(4.7)


Πg :=

4∑
i=0

(∫
T3×R3

g ϕi dxdv

)
ϕi µ,

ϕ0 = 1, ϕi = vi, 1 ≤ i ≤ 3, ϕ4 =

(
|v|2 − 3

)
18

.
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Moreover λ can be taken equal to the spectral gap of L in Hs(µ−1/2) (with s ∈ N as large as wanted)
in the cases (W1)-(W2). This is still true in the case (W3) when k is big enough (with constructive
threshold).

Remarks 4.3. (1) An important aspect of this decay result is that the rate λ is equal to the spectral
gap in the smaller space Hs(µ−1/2). This is an optimal timescale. For weights of the form (W3)
such optimality requires k large enough.

(2) Another important point of Theorem 4.2 is the spectral analysis of the linearized Boltzmann
equation in Lebesgue spaces associated to a polynomial weight function. Apart from the non-
constructive works [8, 9], all the previous works were considering spaces with Gaussian decay
in velocity dictated by the equilibrium µ, or more recently stretched exponential weights in
[87, 76, 77]. We also refer to [27, 26] where polynomial weights are considered for a fragmentation
equation.

(3) Observe that we could replace k∗q by the slightly better exponent k∗∗q ≤ k∗q defined as the solution
to the equation φq(k

∗∗
q ) = 1 with

φq(k) :=
( 4

k + 2

)1/q( 4

k − 1

)1−1/q

.

This last condition comes from a careful application of the Riesz-Thorin interpolation inequality,
as will be seen in the proof.

(4) Observe that the thresholds k∗q , k
∗∗
q (related to the decomposition of the operator) are k∗1 =

k∗∗1 = 2 in the case q = 1 and k∗∞ = k∗∗∞ = 5 in the case q = +∞. It is remarkable that on both
cases these numbers correspond to the threshold for the energy to be finite. For q ∈ (1,+∞)
the asymptotic velocity decay suggested byx the finiteness of the energy is k∗∗∗q = 5 − 3/q and
our thesholds exponents k∗q ≥ k∗∗q > k∗∗∗q = 5 − 3/q are close to it. There is a further loss
1− 1/q on the threshold for the spectral gap (due to the fact that the reminder estimates in the

decomposition are applied with the negative weight ν−1/q′ , see later in the proofs), which leads
to the conditions k > 2 when q = 1 and k > 6 when q = +∞. The optimality of these conditions
is an open question suggested by our study.

(5) As for the Fokker-Planck equation in the previous section, we observe a threshold condition on the
polynomial degree to recover the optimal spectral: the weaker the growth of the weight function
is, the more the semigroup “ignores” some discrete eigenvalues in the sense of having time decay
worse than these eigenvalues, with eventually a time decay worse than the spectral gap and
degenerating to zero. This suggests a “tide” phenomenon for the continuous spectrum, i.e. that
depends on this weight and moves towards zero as the weight is weakened and approach to the
critical “energy space” L1

2 in velocity. Let us also mention that interestingly such a phenomenon
has also been observed by Bobylev in [14] for the linearized spatially homogeneous Boltzmann
equation associated to Maxwell molecules. In this case an explicit calculation (by mean of Fourier
transform analysis) can be performed.

(6) We note that even if our main goal here is to relax the tail decay condition on the solution,
our general method is also useful for relaxing the regularity condition on the solution. As a
side result, it hence provides an alternative strategy to [62, 44] in order to study the linearized
semigroup without regularity assumptions in various hypocoercive contexts. We refer to [118, 117]
where some aspects of these works are revisited in this spirit, with in particular a crucial use
of our iterated averaging lemma (see below). In this paper we will give some applications of
this regularity side of our method in order to understand the structure of propagation of the
singularities for the Boltzmann equation.

4.3. Strategy of the proof.

4.3.1. Methodology. The strategy is inspired from the methodological approach in [87, Theorem 4.2]; it
crucially uses the abstract enlargement Theorem 2.13. The starting point is the quantitative hypocoer-
civity theorem in a small Hilbert space setting from [89], and we use a decomposition of L found in [87].
We fundamentally extend [87, Theorem 4.2] in several aspects: (1) we include spatial dependency in
the torus, (2) we enlarge to L1 spaces with polynomial weights, and (3) we enlarge to L∞ spaces with
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polynomial or exponential weights. Extensions (2) and (3) result from new estimates on the remaining
operator B2

δ in Lpv(m), see Lemma 4.14 below, while extension (1) also takes advantage of the new ab-
stract extension Theorem 2.13 and a new result of smoothness for iterated velocity averages for solutions
to kinetic equations, see Lemma 4.19.

4.3.2. Steps of the proof. Consider a decomposition of the operator

L = A+ B where A = Aδ and B = B1 + B2
δ

are suitable operators which are defined through an appropriate mollification-truncation process, de-
scribed later on. As a first step we estimate the remainder term B2

δ and show that it is small in various
norms. The estimate in L1(〈v〉k), k > 2, is obtained by carefully exploiting a refined version of the
Povzner inequality. The estimate in L∞(〈v〉k) is obtained by using a representation of the gain term for
radially symmetric functions inspired from the physics literature, which has been used for the Boltzmann
equation for Bosons gas in [99, 100, 47, 48]. As a second and easier step we deduce that A has smoothing
effect in the v-variable and that B − a is dissipative with a < 0. In a third step, we prove some new
regularity estimates on iterated velocity averages of a solution to a kinetic transport equation and we
deduce some regularity estimates in both position and velocity variables on the iterated time-convolutions
of Aδ SBδ(t). The new feature of these regularity estimates is that they hold for solutions merely L1,
whereas classical averaging lemmas [52] are well-known to degenerate in L1. Finally, the known spectral
analysis of the linearized Boltzmann equation in H1

x,v(µ
−1/2) proved in [107, 89], the space extension

theory developed in section 2 and all the preceding steps yield the full proof of Theorem 4.2.

4.3.3. The decomposition of the linearized operator. Let us first recall the usual decomposition

Q(g, f) = Q+(g, f)−Q−(g, f)

of the bilinear collision operator with

(4.8)


Q+(g, f) :=

∫
R3

∫
S2
f(v′) g(v′∗) |v − v∗|dv∗ dσ

Q−(g, f) :=

∫
R3

∫
S2
f(v) g(v∗) |v − v∗|dv∗ dσ.

We introduce the decomposition of the linearized operator used in this section. For any δ ∈ (0, 1), we
consider Θδ = Θδ(v, v∗, σ) ∈ C∞ bounded by one on the set{

|v| ≤ δ−1 and 2δ ≤ |v − v∗| ≤ δ−1 and | cos θ| ≤ 1− 2δ
}

and whose support is included in{
|v| ≤ 2 δ−1 and δ ≤ |v − v∗| ≤ 2δ−1 and | cos θ| ≤ 1− δ

}
.

We define the splitting L̄h = Āδh+ B̄δh with

Āδh(v) :=

∫
Rd

∫
Sd−1

Θδ

[
µ(v′∗)h(v′) + µ(v′)h(v′∗)− h(v∗)µ(v)

]
|v − v∗|dv∗ dσ.

Thanks to the truncation, we can use the so-called Carleman representation (see [109, Chapter 1,
Section 4.4]) and write the truncated operator Āδ as an integral operator

(4.9) Āδh(v) =

∫
Rd
kδ(v, v∗)h(v∗) dv∗

for some smooth kernel kδ ∈ C∞c (Rd × Rd).
Defining the corresponding remainder operator

(4.10) B̄2
δh(v) :=

∫
Rd

∫
Sd−1

(1−Θδ)
[
µ(v′∗)h(v′) + µ(v′)h(v′∗)− h(v∗)µ(v)

]
|v − v∗|dv∗ dσ,
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we have therefore the representation B̄δ = −ν + B̄2
δ . We can then write a decomposition for the complete

linearized operator L = Aδ + Bδ withAδ = Āδ

Bδ = B1 + B2
δ , B1 = −ν − v · ∇x, B2

δ = B̄2
δ .

We also define the nonnegative operator B̃2
δ by

(4.11) B̃2
δh(v) :=

∫
Rd

∫
Sd−1

(1−Θδ)
[
µ(v′∗)h(v′) + µ(v′)h(v′∗) + h(v∗)µ(v)

]
|v − v∗|dv∗ dσ.

It is obvious that |(B2
δh)(v)| ≤ (B̃2

δ |h|)(v), and therefore any control in weighted Lebesgue space on B̃2
δ

implies a similar control on B2
δ .

4.4. Integral estimates with polynomial weight on the remainder. Let us first prove some small-
ness estimates on the remainder term B2

δ in the norm L1(ν〈v〉k)→ L1(〈v〉k), as δ goes to zero. Since the
position x is just a parameter for the operator B2

δ , we restrict the analysis to the velocity variable only
without loss of generality. This estimate improves on the estimate [87, Proposition 2.1] since it handles
polynomial weights instead of stretched exponential weights. This dramatically enlarges the functional
space in which we can control the semigroup, and it is also more natural from the perspective of the
Cauchy problem for the fully nonlinear equation. The cornerstone of the proof is a careful use of a
Povzner inequality with sharp constants.

Lemma 4.4. For any k > 2 and δ ∈ (0, 1), the remainder collision operator B2
δ defined in (4.10) satisfies

(4.12) ∀h ∈ L1(〈v〉k+1),
∥∥B2

δh
∥∥
L1(〈v〉k)

≤
(

4

k + 2
+ εk(δ)

)
‖h‖L1(ν 〈v〉k) ,

where εk(δ) is a constructive constant depending on k and approaching zero as δ goes to zero.

Before going into the proof of Lemma (4.12) we shall review a classical tool in the Boltzmann theory,
i.e. a sharp version of the Povzner (angular averaging) lemma. The key estimate we use was implicit in
[116], [16] or [82, Lemma 2.2], and was made explicit with sharp constants in [18], from which we adapt
the following statement.

Lemma 4.5 (Sharp Povzner Lemma). For any k > 2, we have

∀ v, v∗ ∈ R3,

∫
S2

[
|v′∗|k + |v′|k − |v∗|k − |v|k

]
dσ ≤ Ck

(
|v|k−1 |v∗|+ |v| |v∗|k−1

)
− (4π − γk) |v|k,

where γk := 16π/(k+ 2), so that in particular γk → 0 as k →∞, and Ck > 0 is a constant depending on
k.

Proof of Lemma 4.5. We know from [18, Corollary 3 and the remark that follows it] that for any k > 2,
it holds

(4.13)

∫
S2

(
|v′|k + |v′∗|k

)
dσ ≤ γk

(
|v|2 + |v∗|2

)k/2
,

from which we deduce that∫
S2

[
|v′∗|k + |v′|k − |v∗|k − |v|k

]
dσ ≤ γk

[ (
|v∗|2 + |v|2

)k/2 − |v∗|k − |v|k]− (4π − γk)
(
|v|k + |v∗|k

)
.

We conclude the proof by using the elementary inequality

(y + z)k/2 − yk/2 − zk/2 ≤ 2k/2 (yk/2−1/2 z1/2 + y1/2 zk/2−1/2),

for any y, z ≥ 0, in order to bound the first term. �

Let us now go back to the proof of Lemma 4.4.
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Proof of Lemma 4.4. Since 〈v〉k ≤ (1 + |v|k) ≤ 2k/2 〈v〉k, it is enough to prove the result with the weight
m := 1 + |v|k. We compute

∥∥B2
δh
∥∥
L1(m)

≤
∫
R3×R3×S2

(1−Θδ)
[
µ′∗ |h′|+ µ′ |h′∗|+ µ |h∗|

]
|v − v∗|m dv dv∗ dσ.

We first crudely bound from above the truncation function as follows

∥∥B2
δh
∥∥
L1(m)

≤
∫
{| cos θ|∈[1−δ,1]}

µ∗ |h|
[
m′ +m′∗ +m∗

]
|v − v∗|dv dv∗ dσ

+

∫
{|v−v∗|≤δ}

µ∗ |h|
[
m′ +m′∗ +m∗

]
|v − v∗|dv dv∗ dσ

+

∫
{|v|≥δ−1 or |v−v∗|≥δ−1}

[
µ′∗ |h′|+ µ′ |h′∗|+ µ |h∗|

]
|v − v∗|m dv dv∗ dσ,

where the change of variable (v′, v′∗, σ)→ (v, v∗, σ) has been used in the two first integral terms, so that

(4.14)
∥∥B2

δh
∥∥
L1(m)

≤ 2k/2

(∫
{| cos θ|∈[1−δ,1]}

dσ + δ

) ∫
R3×R3

µ∗ 〈v∗〉k+1 |h| 〈v〉k+1 dv dv∗

+

∫
R3×R3×S2

χδ−1

[
µ′∗ |h′|+ µ′ |h′∗|+ µ |h∗|

]
|v − v∗|m dv dv∗ dσ

where χδ−1(v, v∗) is the characteristic function of the set{√
|v|2 + |v∗|2 ≥ δ−1 or |v − v∗| ≥ δ−1

}
.

The first term in the right hand side of (4.14) is easily controlled as O(δ)‖h‖L1(νm).
In order to deal with the second term we write

(4.15)

∫
R3×R3×S2

χδ−1

[
µ′∗ |h′|+ µ′ |h′∗|+ µ |h∗|

]
|v − v∗|m dv dv∗ dσ

=

∫
R3×R3×S2

χδ−1

[
µ′∗ |h′|+ µ′ |h′∗| − µ∗ |h| − µ |h∗|

]
|v − v∗|m dv dv∗ dσ

+ 4π

∫
R3×R3

χδ−1 µ∗ |h| |v − v∗|m dv dv∗ + 8π

∫
R3×R3

χδ−1 µ |v − v∗| |h∗|m dv dv∗,

and the first term in the right hand side of (4.15) is bounded thanks to Lemma 4.5 as

(4.16)

∫
R3×R3×S2

χδ−1

[
µ′∗ |h′|+ µ′ |h′∗| − µ |h∗| − µ∗ |h|

]
|v − v∗|mdv dv∗ dσ

=

∫
R3×R3

χδ−1 µ∗ |h|
(∫

R3×R3×S2

[
|v′∗|k + |v′|k − |v∗|k − |v|k

]
dσ

)
|v − v∗|dv dv∗

≤
∫
R3×R3

χδ−1 µ∗ |h|Ck
(
|v|k−1 |v∗|+ |v| |v∗|k−1

)
|v−v∗|dv dv∗−(4π−γk)

∫
R3×R3

χδ−1 µ(v∗) |h| |v|k|v−v∗|dv dv∗

(observe that our characteristic function χδ−1 is invariant under the usual changes of variables as it only
depends on the kinetic energy and momentum).

Now using the elementary inequality

χδ−1(v, v∗) ≤ 1|v|≥δ−1/2 + 1|v∗|≥δ−1/2 ≤ 2 δ (|v|+ |v∗|),
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we easily and crudely bound from above the second and third terms of the right hand side in (4.15), and
the first term of the right hand side in (4.16), in the following way

(4.17) 4π

∫
R3×R3

χδ−1 |v − v∗|µ∗m |h| dv dv∗ + 8π

∫
R3×R3

χδ−1 |v − v∗|m∗ µ∗ |h|dv dv∗

+ Ck

∫
R3×R3

χδ−1 |v − v∗|
(
|v|k−1 |v∗|+ |v| |v∗|k−1

)
µ∗ |h|dv dv∗

≤ 4π

∫
R3×R3

χδ−1 µ(v∗) |h| |v|k|v − v∗|dv dv∗ + 8π

∫
R3×R3

δ (|v|+ |v∗|) |v − v∗|m∗ µ∗ |h|dv dv∗

+ Ck

∫
R3×R3

δ (|v|+ |v∗|) |v − v∗| 〈v∗〉k−1 〈v〉k−1 µ∗ |h|dv dv∗

≤ 4π

∫
R3×R3

χδ−1 µ(v∗) |h| |v|k|v − v∗|dv dv∗ +O(δ) ‖h‖L1(νm).

Putting together the estimates (4.14), (4.15), (4.16) and (4.17), we get∥∥B2
δh
∥∥
L1(m)

≤ O(δ) ‖h‖L1(νm) + γk

∫
R3×R3

χδ−1 µ(v∗) |h| |v|k|v − v∗|dv dv∗ ≤ (O(δ) + γk) ‖h‖L1(νm)

which concludes the proof. �

4.5. Pointwise estimates on the remainder. The goal of the subsection is to establish estimates on
Q+ in L∞ spaces with polynomial and exponential weights. As a preliminary step, we shall first establish
a representation result for the gain part of the collision operator Q+ when applied to radially symmetric
functions. The following result is adapted from [47, Lemma 3.6], see also [99, 100]. We give however a
full proof of the result for several reasons: the statement as well as the step 1 of the proof are modified,
and the final step 4 of the proof below was omitted in the quoted papers.

Lemma 4.6. Let F and G ∈ L1(R3) be some non-negative radially symmetric functions. Then Q+(G,F ) =
Q+(F,G) defined in (4.8) is radially symmetric and, denoting r = |v|, we have

(4.18) Q+(G,F )(r) =

∫ +∞

0

∫ +∞

0

1(r′)2+(r′∗)
2>r2 BG(r′∗)F (r′) dr′ dr′∗,

with

B := 64π2 r
′r′∗
r

min{r, r∗, r′, r′∗}, r∗ :=
√

(r′)2 + (r′∗)
2 − r2.

Proof of Lemma 4.6. We proceed in several steps.

Step 1: Integral representation of the operator on the whole domain. We claim that

(4.19) Q+(F,G)(v) = 8

∫
R3

∫
R3

∫
R3

G(v′∗)F (v′) δCm δCe dv∗ dv′ dv′∗

where
Cm :=

{
(v, v∗, v

′, v′∗) ∈ (R3)4, v + v∗ = v′ + v′∗
}

and
Ce :=

{
(v, v∗, v

′, v′∗) ∈ (R3)4, |v|2 + |v∗|2 = |v′|2 + |v′∗|2
}
.

In order to prove the claim, we use the identity (see [19, Lemma 1] )

(4.20) ∀Φ ∈ C(R3), ∀w ∈ R3,

∫
S2

Φ(|w|σ − w) dσ =
1

|w|

∫
R3

Φ(y) δy·w+ 1
2 |y|2=0 dy.

The proof is straightforward by completing the square in the Dirac function∫
R3

Φ(y) δy·w+ 1
2 |y|2=0 dy =

∫
R3

Φ(y) δ |y+ω|2−|ω|2
2 =0

dy,

then changing variables to the spherical coordinates y = −ω + r σ

· · · =
∫ +∞

r=0

∫
S2

Φ(−ω + rσ) δ |r|2−|ω|2
2 =0

r2 dσ dr,
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and finally performing the change of variable s = (r2 − |ω|2)/2 on the radial variable

· · · =
∫ +∞

s=− |ω|
2

2

∫
S2

Φ(−ω + rσ) δs=0 r dσ ds = |ω|
∫
S2

Φ(|ω|σ − ω) dσ.

We start from the definition (4.8), (4.3) of Q+ and we write

Q+(G,F )(v) =

∫
R3

∫
S2
|v − v∗|G(v∗ − (|w|σ − w))F (v + (|w|σ − w)) dv∗ dσ

=2

∫
R3

∫
R3

F (v + y)G(v∗ − y) δy·w+ 1
2 |y|2=0 dv∗ dy

=2

∫
R3

∫
R3

∫
R3

F (v + y)G(v∗ − z) δy·w+ 1
2 |y|2=0 δy−z=0 dv∗ dy dz

where we have set w := (v − v∗)/2 and we have used (4.20). We conclude by performing the change of
variables v′ := v + y, v′∗ := v∗ − z and observing that

δy·w+ 1
2 |y|2=0 δy−z=0 = 4 δCm δCe ,

because δy−z=0 = δCm and

∀ (v, v′∗, v
′
∗, v
′
∗) ∈ Cm,

1

4

(
|v′|2 + |v′∗|2 − |v|2 − |v∗|2

)
=

1

4

(
|v′ − v − v∗|2 + |v′|2 − |v|2 − |v∗|2

)
=

1

2
{(v′ − v) · (v − v∗) + |v′ − v|2} = y · w − 1

2
|y|2.

Step 2. The fact that Q+(G,F ) is radially symmetric when applied to two radial functions F and G is
straightforward by using rotational changes of variable in the collision integral. The identity Q+(F,G) =
Q+(G,F ) is obtained by the change of variable σ → −σ in (4.19). We can then write for radially
symmetric functions F and G

Q+(G,F )(r) =

∫ +∞

0

∫ +∞

0

∫ +∞

0

K δCe G(r′∗)F (r′) dr∗ dr′ dr′∗

with

(4.21) K := 8 (r∗)
2(r′)2(r′∗)

2

∫
S2

∫
S2

∫
S2
δCm dσ∗ dσ′ dσ′∗

with the transparent notation
r = |v|, r∗ = |v∗|, r′ = |v′|, r′∗ = |v′∗|,

σ∗ =
v∗
|v∗|

, σ′ =
v′

|v′|
, σ′∗ =

v′∗
|v′∗|

.

Using the distributional identity

δr2∗=(r′)2+(r′∗)
2−r2 1r∗≥0 =

1

2r∗
δ
r∗=
√

(r′)2+(r′∗)
2−r2 1(r′)2+(r′∗)

2−r2≥0

we obtain

(4.22) Q+(G,F )(r) =

∫ +∞

0

∫ +∞

0

1(r′)2+(r′∗)
2>r2

K

2r∗
G(r′∗)F (r′) dr′ dr′∗

where now r∗ is defined by r∗ :=
√

(r′)2 + (r′∗)
2 − r2.

Step 3. Let us prove that

(4.23)

∫
S2

∫
S2

∫
S2
δCm dσ∗ dσ′ dσ′∗ =

32π

rr∗r′r′∗
A,

with

A :=

∫ +∞

0

sin(ru) sin(r∗u) sin(r′u) sin(r′∗u)
du

u2
.
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We use the following representation of Dirac masses on R3:

δCm =
1

(2π)3

∫
R3

ei(z,v+v∗−v′−v′∗) dz

which yields, thanks to a spherical change of variable on z with u = |z| and e = z/|z|,∫
S2

∫
S2

∫
S2
δCm dσ∗ dσ′ dσ′∗ =

1

(2π)3

∫ +∞

0

∫
S2

∫
S2

∫
S2

∫
S2
eiu(e,v+v∗−v′−v′∗) dedσ∗ dσ′ dσ′∗ u

2 du.

Observe that this formula is invariant under rotation of the variable v: this can be proved by using
appropriate rotations on the integration variables e, σ∗, σ

′, σ′∗. We can therefore add an average over
σ = v/|v|, and then remove the spherical average over e, which is no more necessary:∫

S2

∫
S2

∫
S2
δCm dσ∗ dσ′ dσ′∗ =

1

(2π)3

∫ +∞

0

∫
S2

∫
S2

∫
S2

∫
S2
eiu(e0,v+v∗−v′−v′∗) dσ dσ∗ dσ′ dσ′∗ u

2 du

for some fixed unit vector e0 ∈ S2 (the volume of the two spherical averages removed and added cancel).
We then compute ∫

S2
eiu(e0,w) dσ = 2π

∫ π

0

eiu|w| cos θ sin θ dθ =
4π sin(|w|u)

|w|u
,

and straightforwardly deduce (4.23).

Step 4. We claim that for any r, r∗, r
′, r′∗ > 0 satisfying the conservation of energy condition r2 + r2

∗ =
(r′)2 + (r′∗)

2, it holds

(4.24) A =
π

2
min {r, r∗, r′, r′∗} .

Indeed, by Lebesgue dominated convergence theorem, we have

A = lim
ε→0

Aε with Aε :=

∫ +∞

ε

sin(ru) sin(r∗u) sin(r′u) sin(r′∗u)
du

u2
.

Using the identities sin z = (eiz − e−iz)/(2i) and cos z = (eiz + e−iz)/2, we have

4 sin(ru) sin(r∗u) sin(r′u) sin(r′∗u)

= cos((r + r∗ + r′ + r′∗)u)− cos((r + r∗ + r′ − r′∗)u)

− cos((r + r∗ − r′ + r′∗)u) + cos((r + r∗ − r′ − r′∗)u)

− cos((r − r∗ + r′ + r′∗)u) + cos((r − r∗ + r′ − r′∗)u)

+ cos((r − r∗ − r′ + r′∗)u)− cos((r − r∗ − r′ − r′∗)u).

We observe that thanks to an integration by part, for any a ∈ R, we have∫ +∞

ε

cos(a u)
du

u2
=

cos(a ε)

ε
− a

∫ ∞
ε

sin(a u)
du

u

=
1

ε
− a

∫ +∞

0

sin(a u)
du

u
+O(a2 ε)

=
1

ε
− π

2
|a|+O(a2 ε).

All together, we get

− 8

π
A = − 8

π
lim
ε→0

Aε

= |r + r∗ + r′ + r′∗| − |r + r∗ + r′ − r′∗|
− |r + r∗ − r′ + r′∗|+ |r + r∗ − r′ − r′∗|
− |r − r∗ + r′ + r′∗|+ |r − r∗ + r′ − r′∗|
+ |r − r∗ − r′ + r′∗| − |r − r∗ − r′ − r′∗|.

Now assume first r > r∗, r
′ > r′∗ and r > r′, so that the energy conservation condition implies that

r > r′ > r′∗ > r∗, and in particular r − r∗ > r′ − r′∗ > 0. Hence any of the terms r, r∗, r
′, r′∗ is smaller
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than the sum of the three other terms. Using all these inequalities, the above expression then simplifies
into

− 8

π
A = (r + r∗ + r′ + r′∗)− (r + r∗ + r′ − r′∗)

− (r + r∗ − r′ + r′∗) + |r + r∗ − r′ − r′∗|
− (r − r∗ + r′ + r′∗) + (r − r∗ + r′ − r′∗)
+|r − r∗ − r′ + r′∗|+ (r − r∗ − r′ − r′∗)

= −2 r∗ − 2 r′∗ + |(r − r′)− (r′∗ − r∗)|+ |(r − r′) + (r′∗ − r∗)|
= −2 r∗ − 2 r′∗ + 2 max {r − r′, r′∗ − r∗} .

Now, from the elementary inequality

∀x, y ≥ 1, x2 + y2 − 1 ≤ (x+ y − 1)2,

we deduce that

r = r∗

√( r′
r∗

)2

+
(r′∗
r∗

)2

− 1 ≤ r∗
∣∣∣∣ r′r∗ +

r′∗
r∗
− 1

∣∣∣∣ = r′ + r′∗ − r∗

where we have removed the absolute value due to the inequalities above. We thus obtain max{r−r′, r′∗−
r∗} = r′∗ − r∗. As a consequence, we get

− 8

π
A = −2 r∗ − 2 r′∗ + 2 (r′∗ − r∗) = −4r∗ = −4 min{r, r∗, r′, r′∗}.

We then conclude (4.24) by using symmetries: the cases r < r∗, r
′ < r′∗, and r < r′ are treated by using

the three swappings v ↔ v∗, v
′ ↔ v′∗ and (v, v∗) ↔ (v′, v′∗) leaving invariant the energy conservation

identity.

Step 5. Conclusion. We conclude by gathering (4.22) with (4.21), (4.23) and (4.24). �

We can now prove the pointwise estimates with polynomial weight on the collision operator.

Lemma 4.7. Assume k > 3. Then we have the following bilinear estimate on the Q+ operator defined
in (4.8):

(4.25) ∀ f, g ∈ L∞(〈v〉k+1), ‖Q+(f, g)‖L∞(〈v〉k)

≤ C(k)
(
‖f‖L∞(〈v〉k+1)‖g‖L∞(〈v〉k) + ‖g‖L∞(〈v〉k+1)‖f‖L∞(〈v〉k)

)
for some constant C(k) > 0 depending on k.

Moreover, we have, for any k > 3 and δ > 0, the following more precise linear estimate on the
remainder operator B2

δ (defined in (4.10)):

(4.26) ∀h ∈ L∞(〈v〉k+1),
∥∥B2

δh
∥∥
L∞(〈v〉k)

≤
(

4

k − 1
+ η(k, δ)

)
‖h‖L∞(ν 〈v〉k),

for some constructive η(k, δ) such that η(k, δ)→ 0 as δ → 0 with k fixed.

Remark 4.8. Observe that a similar estimate is easily proved for the loss part of the collision operator
Q−(g, f) as soon as k > 3. These estimates for Q+ recover, by another method, some estimates in [9], in
a more precise form and with the sharp constant (and weaker moment condition). They are different in
nature from convolution-like estimates

(4.27) ‖Q+(f, g)‖L∞(〈v〉k) ≤ C
(
‖g‖L1(〈v〉k+1)‖f‖L∞(〈v〉k+1) + ‖f‖L1(〈v〉k+1)‖g‖L∞(〈v〉k+1)

)
which hold for any k ≥ 2 and any f, g ∈ (L1 ∩ L∞)(〈v〉k+1), as proved for instance in [7] or in [92,
Theorem 2.1 and Remark 3].

Proof of Lemma 4.7. We split the proof in two steps along the two parts of the statement.

Step 1. The bilinear estimate (4.25). Define the functions

∀ r > 0, F (r) := sup
|v|=r

|f(v)|, G(r) := sup
|v|=r

|g(v)|,
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so that ∣∣Q+(g, f)(v)
∣∣ ≤ Q+(G,F )(|v|).

Observing that now F and G are radially symmetric functions, for (r′, r′∗) ∈ R2
+ we get

{(r′)2 + (r′∗)
2 ≥ r2} ⊂ {r′ ≥ r/

√
2} ∪ {r′∗ ≥ r/

√
2}.

We can estimate Q+(G,F ) by using the representation formula in Lemma 4.6 and the following splitting

Q+(G,F )(r) ≤ C0

r

∫ ∞
r/
√

2

dr′
∫ ∞

0

dr′∗G(r′)F (r′∗) r
′ (r′∗)

2 +
C0

r

∫ ∞
r/
√

2

dr′∗

∫ ∞
0

dr′G(r′)F (r′∗) (r′)2 r′∗

=: I1 + I2

where we have used min{r, r∗, r′, r′∗} ≤ r′∗ in the first term, min{r, r∗, r′, r′∗} ≤ r′ in the second term and
we have set C0 := 64π2.

For the first term, we set mk := (1 + |v|2)k/2 and we remark that as soon as k > 3, we have, for r ≥ 1,

I1 =
C0

r

(∫ +∞

r/
√

2

r′G(r′) dr′

) (∫ +∞

0

F (r′∗) (r′∗)
2 dr′∗

)

≤ C0

r(k − 3)

[
sup
R+

(Gmk+1)

] [
sup
R+

(Fmk)

] ∫ +∞

r/
√

2

r′ dr′

(1 + (r′)2)
k+1
2

≤ C02(k−1)/2

(k − 1)(k − 3)

1

mk(r)
‖g‖L∞(mk+1) ‖f‖L∞(mk),

so that

∀ r > 0, I1(r)mk(r) ≤ C02(k−1)/2

(k − 1)(k − 3)
‖g‖L∞(mk+1) ‖f‖L∞(mk).

Because the terms I1 and I2 are symmetric (the change of variable (r′, r′∗) → (r′∗, r
′) exchanges the role

played by F and G), we obtain the same estimate for I2 where we exchange the role played by f with g,
and this concludes the proof of (4.25).

Step 2. Let us prove the following linearized estimate

(4.28)
∥∥[Q+(µ, f) +Q+(f, µ)

]
1|v|≥δ−1

∥∥
L∞(〈v〉k)

≤
(

16π

k − 1
+ η(k, δ)

)
‖f‖L∞(〈v〉k+1)

for some constant η(k, δ)→ 0 as δ → 0, for k > 3 fixed. It implies the desired inequality (4.26) since

4π (1 + |v|2)1/2 1|v|≥δ−1 ≤ 4π (1 + |v|) 1|v|≥δ−1 ≤ ν(v) + 4π 1|v|≥δ−1 ≤ ν(v) + δ ν(v).

Setting G := µ and F := m−1
k+1 we have|Q

+(µ, f)| ≤ ‖f‖L∞(〈v〉k+1)Q
+(G,F )

|Q+(f, µ)| ≤ ‖f‖L∞(〈v〉k+1)Q
+(F,G)

and since Q+(G,F ) = Q+(F,G) (cf. Lemma 4.6), it is enough to establish the estimate (4.28) for the
term Q+(G,F ) only.

For any ε ∈ (0, 1) and (r′, r′∗) ∈ R2
+, we have

{(r′)2 + (r′∗)
2 ≥ r2} ⊂ {r′ ≥

√
ε r} ∪ {r′∗ ≥ (1− ε) r},

so that we may estimate Q+(G,F ) thanks to the following splitting

Q+(G,F )(r) ≤ C0

r

∫ +∞

√
ε r

dr′
∫ ∞

0

dr′∗G(r′)F (r′∗) r
′ (r′∗)

2

+
C0

r

∫ ∞
(1−ε) r

dr′∗

∫ +∞

0

dr′G(r′)F (r′∗) (r′)2 r′∗ =: I1 + I2

where we have used min{r, r∗, r′, r′∗} ≤ r′∗ in the first term, and min{r, r∗, r′, r′∗} ≤ r′ in the second term.
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For the first term, we have

I1 =
C0

r

(∫ +∞

√
εr

r′ e−(r′)2/2

(2π)3/2
dr′

) (∫ +∞

0

(r′∗)
2

(1 + (r′∗)
2)

k+1
2

dr′∗

)
≤ C0

r

e−ε r
2/2

(2π)3/2

Θ

k − 2
,

with Θ ∈ (0, 1). On the other hand, for the second term, we have for any r ≥ 1

I2 =
C0

r

(∫ +∞

0

(r′)2 e
−(r′)2/2

(2π)3/2
dr′

) (∫ +∞

(1−ε)r

r′∗

(1 + (r′∗)
2)

k+1
2

dr′∗

)

=
C0

4πr(k − 1)

1

(1 + (1− ε)2 r2)
k−1
2

≤ 16π

k − 1

1

(1− ε)k−1

1

rmk−1(r)

where we recall that C0 = 64π2.
By combining these two estimates together, we get for any r ≥ 1

Q+(G,F )(r)mk(r) 1r≥δ−1 ≤ 16π

k − 1
+ φ(k, δ, ε)

with φ = φ1 + φ2 and 
φ1(k, δ, ε) := C1

k−1

[
1

(1−ε)k−1 supr≥δ−1
m1(r)
r − 1

]
,

φ2(k, δ, ε) := C2

k−2

[
supr≥δ−1 mk(r)e−ε r

2/2
]
,

for some numerical constants C1, C2 > 0. We deduce that (4.28) holds with η(k, δ) := φ(k, δ, δ) for
instance.

Step 3. Coming back to the definition of B2
δh we split it into three pieces

|B2
δh(v)| ≤

∫
R3×S2

1|v|≥R (µ′∗ |h′|+ µ′∗ |h′|) |v − v∗| dv∗ dσ

+

∫
R3×S2

1|v|≤R (1−Θδ)(µ
′
∗ |h′|+ µ′∗ |h′|) |v − v∗| dv∗ dσ

+

∫
R3×S2

1|v|≤R (1−Θδ)µ |h∗| |v − v∗|dv∗ dσ =: I1 + I2 + I3.

For the first term I1 we use (4.28) and we get

‖I1‖L∞(〈v〉k) = sup
r≥0

(I1(r)mk(r)) ≤ 16π

k − 1
+ η(k,R−1).

For the second term I2 we use the sharp form of the convolution inequality (4.27) as stated in [92,
Theorem 2.1] and we get for k > 3

I2(r)mk(r) ≤ mk(R)
∥∥(Q+

δ (µ, |h|) +Q+
δ (|h|, µ)

)
1|v|≤R

∥∥
L∞

≤ Cmk(R) ‖h‖L∞(〈v〉k) sup
|v|≤R

∫
R3

∫
S2

(1−Θδ)
1

〈v′〉k〈v′∗〉k
|v − v∗|dv∗ dσ

≤ Cmk(R) ‖h‖L∞(〈v〉k) sup
|v|≤R

∫
R3

∫
S2

(1−Θδ)
1

(1 + |v′|2 + |v′∗|2)k/2
|v − v∗|dv∗ dσ

≤ Cmk(R) ‖h‖L∞(〈v〉k) sup
|v|≤R

∫
R3

∫
S2

(1−Θδ)
1

(1 + |v|2 + |v∗|2)k/2
|v − v∗|dv∗ dσ
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for some constant C > 0. Observe that we can also write the same control on the third term I3 by a
simpler argument:

I3(r)mk(r) ≤ Cmk(R) ‖h‖L∞(〈v〉k) sup
|v|≤R

∫
R3

∫
S2

(1−Θδ)
1

〈v〉k〈v∗〉k
|v − v∗|dv∗ dσ

≤ Cmk(R) ‖h‖L∞(〈v〉k) sup
|v|≤R

∫
R3

∫
S2

(1−Θδ)
1

(1 + |v|2 + |v∗|2)k/2
|v − v∗|dv∗ dσ.

We then use
(1−Θδ) ≤

(
1|v−v∗|≥δ−1 + 1|v−v∗|≤2δ + 1cos θ≥1−2δ

)
which gives rise to three terms to be controlled. The term associated with the third part is o(δ) thanks
to the L1 integration on the sphere, the second term is O(δ) thanks to the term |v − v∗| in the collision
kernel, and for the first term, if we assume δ small enough so that δ−1 ≥ 2R, then we deduce that
|v∗| ≥ δ−1/2 which gives a decay O(δk−2). We finally deduce that

‖I2‖L∞(〈v〉k) + ‖I3‖L∞(〈v〉k) ≤ o(δ) ‖h‖L∞(〈v〉k).

Then the proof of (4.26) follows by gathering the preceding estimates on I1, I2, I3. �

Remark 4.9. The reader can check that the above proof fails for Lebesgue spaces Lq, q ∈ (1,+∞): in
fact the loss of weight in a bilinear inequality of the form Lq ×Lq → Lq seems strictly greater than what
is allowed by ν.

Let us now consider the case of a stretched exponential weight.

Lemma 4.10. Consider the weight m = eκ|v|
β

with κ > 0, β ∈ (0, 2). Then we have the following
bilinear estimate on Q+ defined in (4.8):

(4.29) ‖Q+(g, f)‖L∞(νβm) ≤ C
(
‖f‖L∞(m) ‖g‖L∞(νm) + ‖g‖L∞(m) ‖f‖L∞(νm)

)
,

for any f, g ∈ L∞(νm) and for some constant C > 0 depending on m.
Moreover, for any δ > 0, we have the following linear estimate on the remainder operator B2

δ :

(4.30) ∀h ∈ L∞(νm),
∥∥B2

δh
∥∥
L∞(m)

≤ η(δ) ‖h‖L∞(νm) ,

for some constructive constant η(δ) such that η(δ)→ 0 as δ → 0.

Remark 4.11. Observe that by inspection Q−(h, µ) is bounded in L∞(m). However again such estimates
are new for Q+ to our knowledge. They complement the L1 integral estimates in [87]. These estimates
show that the bilinear operator Q+ is bounded for the norm L∞(νm) for β ∈ [1, 2).

Proof of Lemma 4.10. We prove (4.29) in step 1 and (4.30) in step 2.

Step 1. The bilinear estimate (4.29). We proceed as in step 1 of Lemma 4.7. Consider f, g ∈ L∞(νm)
and introduce the associated radially symmetrized functions F,G as before. We may estimate Q+(G,F )
given by Lemma 4.6 thanks to the following splitting

Q+(G,F )(r) ≤C0

r

∫ +∞

0

∫ +∞

0

1(r′)2+(r′∗)
2≥r2 1r′≥r′∗G(r′)F (r′∗) r

′ (r′∗)
2 dr′ dr′∗

+
C0

r

∫ +∞

0

∫ +∞

0

1(r′)2+(r′∗)
2≥r2 1r′∗≥r′G(r′)F (r′∗) (r′)2 r′∗ dr′ dr′∗ =: I1 + I2

where we have used min{r, r∗, r′, r′∗} ≤ r′∗ in the first term, min{r, r∗, r′, r′∗} ≤ r′ in the second term and
we have set again C0 := 64π2.

We estimate the two terms in a symmetric way as{
I1(r) ≤ ‖g‖L∞(m) ‖f‖L∞(〈v〉m) J(r),

I2(r) ≤ ‖g‖L∞(〈v〉m) ‖f‖L∞(m) J(r),

with

J(r) =
C0

r

∫ +∞

0

∫ +∞

0

1ρ≥r 1r′∗≥r′ (m
′)−1 (m′∗)

−1 (r′)2 dr′ dr′∗
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where we denote ρ2 := (r′)2 + (r′∗)
2. We introduce the notations x := r′/ρ, y := r′∗/ρ, and we remark

that by inspection

∀x ∈ [0, 1/
√

2], xβ + (1− x2)β/2 − 1 ≥ η xβ

for some explicit η = η(β) ∈ (0, 1). As a consequence, making the change of variables (r′, r′∗) 7→ (r′, ρ)

and noticing that the condition r′ ≤ r′∗ is equivalent to the condition x ≤ 1/
√

2, we get

J(r) =
C0

r

∫ +∞

r

dρ

∫ ρ/
√

2

0

dr′ e−κ ((r′)β+(r′∗)
β) (r′)2 ρ

r′∗

≤C0

√
2

r

∫ +∞

r

e−κ ρ
β

dρ

∫ +∞

0

e−κη (r′)β (r′)2 dr′ ≤ C e−κ r
β

rβ
,

for some constant C which depends on C0, β, κ.
Notice that in order to get the last inequality above we may proceed as follows:

• If β ∈ (1, 2) we use the inequality 1 ≤ ρβ−1/rβ−1 and we simply integrate exactly the resulting
function by using its anti-derivative∫ +∞

r

e−κ ρ
β

dρ ≤ r1−β
∫ +∞

r

ρβ−1e−κ ρ
β

dρ = r1−β e
−κ rβ

β − 1
.

• If β ∈ (0, 1), we write

I(r) :=

∫ +∞

r

e−κ ρ
β

dρ =

∫ +∞

r

ρ1−β ρβ−1 e−κ ρ
β

dρ

=

[
ρ1−β e

−κ ρβ

−κβ

]+∞

r

+
(1− β)

κβ

∫ +∞

r

ρ−β e−κ ρ
β

dρ

≤r
1−βe−κ ρ

β

κβ
+
r−β(1− β)

κβ
I(r)

which implies for r ≥ r0 with r−β0 (1− β)/(κβ) ≤ 1/2:∫ +∞

r

e−κ ρ
β

dρ ≤ 2r1−βe−κ ρ
β

κβ
.

The estimate for small values of r, say r ∈ [0, r0], is a consequence of (4.25). This thus concludes the
proof of (4.29).

Step 2. The linearized estimate. Estimate (4.29) implies the following linearized estimate

(4.31)
∥∥[Q+(µ, h) +Q+(h, µ)]1|v|≥R

∥∥
L∞(m)

≤ O(δβ) ‖h‖L∞(νm) .

We then proceed as in the Step 3 of Lemma 4.7:

|B2
δh(v)| ≤

∫
R3×S2

1|v|≥R (µ′∗ |h′|+ µ′∗ |h′|) |v − v∗| dv∗ dσ

+

∫
R3×S2

1|v|≤R (1−Θδ)(µ
′
∗ |h′|+ µ′∗ |h′|) |v − v∗| dv∗ dσ

+

∫
R3×S2

1|v|≤R (1−Θδ)µ |h∗| |v − v∗|dv∗ dσ =: I1 + I2 + I3.

The estimate (4.31) implies

‖I1‖L1(m) ≤ O(δβ) ‖h‖L∞(νm) .

Then the same estimates as in the Step 3 of the proof of Lemma 4.7 yield

‖I2‖L∞(m) + ‖I3‖L∞(m) ≤ o(δ) ‖h‖L∞(〈v〉k)

(the truncation 1|v|≤R means that any weight can be chosen on the left hand side) which concludes the
proof of (4.30). �
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4.6. Dissipativity estimate on the coercive part. Let us summarize in the following lemma the
estimates available for B2

δ .

Lemma 4.12. Consider p, q ∈ [1,∞] and a weight function m satifying one of the conditions (W1),
(W2), (W3) of Theorem 4.2. Then the remainder collision operator B2

δ (defined in (4.10)) satisfies

(4.32) ∀h ∈ Lqv(νm),
∥∥B2

δh
∥∥
Lqv(m)

≤ Λm,q(δ) ‖h‖Lqv(νm) ,

and

(4.33) ∀h ∈ LqvLpx(ν m),
∥∥B2

δh
∥∥
LqvL

p
x(m)

≤ Λm,q(δ) ‖h‖LqvLpx(νm) ,

where Λm,q(δ) is some constructive constant (depending on m and q) such that

• Λm,q(δ)→ 0 as δ → 0 for the conditions (W1) and (W2);
• Λm,q(δ)→ φq(k) as δ → 0 for the condition (W3) when m := 〈v〉k, k > 2, where

φq(k) :=
( 4

k + 2

)1/q( 4

k − 1

)1−1/q

.

Remark 4.13. Remark that φq(k) goes to zero when k goes to +∞ and

k > k∗q :=
3 +

√
49− 48/q

2
=⇒ φq(k) < 1,

by the arithmetic-geometric inequality: we have( 4

k + 2

)1/q( 4

k − 1

)1−1/q

≤ 1

q

4

k + 2
+

(
1− 1

q

)
4

k − 1

and
1

q

4

k + 2
+

(
1− 1

q

)
4

k − 1
< 1⇐⇒ k > k∗q .

Proof of Lemma 4.12. We analyze separately the conditions (W1), (W2) and (W3) on the function m.

Case (W1): p = q = 2 with Gaussian weight. Arguing as in [87, Proposition 2.3] one can prove the
following

(4.34) ‖Acδh‖L2(µ−1/2) ≤ o(δ) ‖h‖L2(µ−1/2).

Let us recall the core of the proof, which relies on the careful inspection of the explicit bound from above
on the kernel of Acδ, inspired by the celebrated calculations of Hilbert and Grad, as reported for instance
in [39, Chapter 7, Section 2]:

|Acδh(v)| ≤
∫
R3

kcδ(v, v
′) |h(v′)|dv′

with (when µ = (2π)−3/2e−|v|
2/2)

Kc
δ(v, v

′) ≤ C (1−Θδ)

{
|v − v′|−1 exp

[
−|v − v

′|2

8
−
(
|v|2 − |v′|2

)2
8|v − v′|2

]
+ |v − v′| exp

[
−
(
|v|2 + |v′|2

)
4

]}
from which (4.34) is easily deduced.

Cases (W2) and (W3). Recall that [87, Proposition 2.1] establishes that for the stretch exponential

weight m = eκ |v|
β

it holds

(4.35) ∀h ∈ L1(νm),
∥∥B2

δh
∥∥
L1(m)

≤ Λm,q(δ) ‖h‖L1(νm) , Λm,q(δ)−→
δ→0

0,

where however the definition of Θδ is slightly different from ours. But it is immediate to extend the proof
to the present situation.

Estimate (4.32) is then obtained by piling up (4.12), (4.26), and (4.30), and using the Riesz-Thorin
interpolation theorem in order to obtain the Lq estimate when 1 < q <∞.
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Estimate (4.33). Now observe that all the estimates previously established on B2
δ are valid (with the

same proofs) for B̃2
δ . Then, since B̃2

δ is a nonnegative operator acting only in v, we have∫
T3

∣∣∣B̃2
δh
∣∣∣ dx ≤ B̃2

δ

(∫
T3

|h|dx
)

and sup
x∈T3

∣∣∣B̃2
δh
∣∣∣ ≤ B̃2

δ

(
sup
x∈T3

|h|
)

and therefore by interpolation

(4.36)
∥∥∥B̃2

δh
∥∥∥
Lpx
≤ B̃2

δ

(
‖h‖Lpx

)
for any p ∈ [1,+∞]. We then conclude thanks to (4.32) (used on B̃2

δ):∥∥B2
δh
∥∥
LqvL

p
x(m)

≤
∥∥∥B̃2

δh
∥∥∥
LqvL

p
x(m)

≤
∥∥∥B̃2

δ

(
‖h‖Lpx

)∥∥∥
Lqv(m)

≤ Λm,q(δ) ‖h‖LqvLpx(m).

�

Let us now prove dissipativity estimates for the operator Bδ.

Lemma 4.14. Consider a weight m and the space E := Wσ,q
v W s,p

x (m) with p, q ∈ [1,+∞] and σ, s ∈ N,
σ ≤ s. Then:

(W1) When m = µ−1/2, p = q = 2, there is λ0 = λ0(m, δ) ∈ (0, ν0) such that λ0(m, δ) → ν0 as δ → 0
and (Bδ + λ0) is dissipative in E.

(W2) When m = eκ |v|
β

, κ > 0, β ∈ (0, 2) and p, q ∈ [1,+∞], there is λ0 = λ0(m, δ) ∈ (0, ν0) such that
λ0(m, δ)→ ν0 as δ → 0 and (Bδ + λ0) is dissipative in E.

(W3) When m = 〈v〉k with any p, q ∈ [1,+∞] and k > k∗q , there is λ0 = λ0(k, q, δ) ∈ (0, ν0) such that{
λ0(k, q, δ)→ λ∗0(k, q) ∈ (0, ν0) when δ → 0,

λ∗0(k, q)→ ν0 when k → +∞,
and (Bδ + λ0) is dissipative in E.

Remark 4.15. As in the previous statements, k > k∗q could be relaxed down to k > k∗∗q .

Proof of Lemma 4.14. We consider separately each case. Observe first that the x-derivatives commute
with the operator Bδ, therefore without restriction we do the proof for s = 0.

Case (W1): p = q = 2 with Gaussian weight. We consider a solution ht to the linear equation

∂tht = Bδ ht = B2
δht − ν ht − v · ∇xht,

with given initial datum h0. We consider first σ = 0, and we calculate

d

dt
‖ht‖2L2(µ−1/2) ≤ 2

∫
T3×R3

∣∣B2
δh
∣∣ |h|dxdv − 2

∫
T3×R3

h2 ν dxdv

since the term involving v · ∇x cancels from its divergence (in x) structure. This implies

d

dt
‖ht‖2L2(µ−1/2) ≤ −2 (ν0 − o(δ)) ‖ht‖2L2(µ−1/2)

and concludes the proof of dissipativity. Since the x-derivatives commute with the equation we have in
the same manner

d

dt
‖∇sxht‖

2
L2(µ−1/2) ≤ −2 (ν0 − o(δ)) ‖∇sxht‖

2
L2(µ−1/2) .

Then we consider the case of derivatives in v, say first σ = 1 and s ≥ 1. Note that we can reduce to
the case s = 1 by differentiating in x the equation (using that in the definition of the norms (4.6) we
sum over derivatives ∂iv∂

j
x with |i| ≤ σ, |j| ≤ s, |i|+ |j| ≤ max{σ; s}). We compute the evolution of the

v-derivatives:
∂t∂vh = −v · ∇x∂vh− ∂xh+ ∂v(B2

δh− νh) = Bδ(∂vh)− ∂xh+Rh
with

(4.37) Rh := Q(h, ∂vµ) +Q(∂vµ, h)− (∂vAδ) (h) +Aδ(∂vh),
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((∂vAδ) (h) means that one differentiates the kernel of the operator as opposed to its argument h) where
we have used twice the relation

B2
δh = Q+(h, µ) +Q+(µ, h)−Q−(h, µ)−Aδ(h),

and the property

(4.38) ∂vQ
±(f, g) = Q±(∂vf, g) +Q±(f, ∂vg)

following from the translation invariance of the collision operator. We deduce that

d

dt
‖∇vh‖2L2(µ−1/2) ≤ −2 (ν0 − o(δ)) ‖∇vh‖2L2(µ−1/2)

−
∫
T3×R3

∇vh · ∇xhµ−1 dxdv + ‖Rh‖L2(µ−1/2) ‖∇vh‖L2(µ−1/2).

Using one integration by parts and the regularizing property of the operator Aδ, we have

‖(Aδ) (∂vh)‖2L2(µ−1/2) + ‖(∂vAδ) (h)‖2L2(µ−1/2) ≤ C ‖h‖
2
L2(µ−1/2)

for some constant C = Cδ > 0 (depending on δ). Moreover using the computation of Hilbert and Grad
(see above or again [39, Chapter 7, Section 2]), we have∥∥Q+(h, ∂vµ) +Q+(∂vµ, h)−Q−(∂vµ, h)

∥∥2

L2(µ−1/2)
≤ C ‖h‖2L2(µ−1/2)

for some constant C > 0. Therefore the operator R is bounded in L2(µ−1/2). Introducing the norm

‖h‖H1
x,v(µ−1/2)ε :=

(
‖h‖2L2(µ−1/2) + ‖∇xh‖2L2(µ−1/2) + ε ‖∇vh‖2L2(µ−1/2)

)1/2

for some given ε > 0, we deduce

d

dt
‖h‖2H1

x,v(µ−1/2)ε
≤− 2 (ν0 − o(δ))

(
‖h‖2L2(µ−1/2) + ‖∇xh‖2L2(µ−1/2) + ε ‖∇vh‖2L2(µ−1/2)

)
+ ε ‖∇vh‖L2(µ−1/2) ‖∇xh‖L2(µ−1/2) + C ε ‖∇vh‖L2(µ−1/2) ‖h‖L2(µ−1/2)

≤− 2 (ν0 − o(δ)− o(η))
(
‖h‖2L2(µ−1/2) + ‖∇xh‖2L2(µ−1/2) + ε ‖∇vh‖2L2(µ−1/2)

)
≤− 2 (ν0 − o(δ)− o(η)) ‖h‖2H1

x,v(µ−1/2)ε

which concludes the proof by taking ε small enough in terms of δ. The higher-order estimates can be
performed with the norm

‖h‖Wσ,2
v W 2,s

x (µ−1/2)ε
:=

 ∑
|i|≤σ, |j|≤s, |i|+|j|≤max{σ;s}

ε|i|
∥∥∂iv∂jxh∥∥2

L2(µ−1/2)

1/2

for some ε to be chosen small enough (in terms of δ).

Cases (W2) and (W3): p, q ∈ [1,+∞] with stretched exponential and polynomial weights. The proof
of these two cases are identical. We denote by m either a polynomial weight or a stretched exponential
weight, using the respective estimates established previously.

We consider again only the case s = 0 since x-derivatives commute with the equation, and we also
look first at the case σ = 0.

Consider first 1 ≤ p, q < +∞ and denote Φ′(z) := |z|p−1 sign(z). We compute

d

dt
‖ht‖LqvLpx(m) = ‖h‖1−q

LqvL
p
x(m)

(∫
R3

(∫
T3

(Bδ(h)) Φ′(h) dx

) (∫
T3

|h|p dx

) q
p−1

mq dv

)
.
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Observing that∫
T3

(Bδ(h)) Φ′(h) dx =

∫
T3

[
(B2
δ(h)) Φ′(h)− ν |h|p − 1

p
v · ∇x (|h|p)

]
dx

≤
(∫

T3

∣∣B2
δ(h)

∣∣p dx

) 1
p
(∫

T3

|h|p dx

)1− 1
p

− ν
∫
x

|h|p dx,(4.39)

we deduce that

d

dt
‖ht‖LqvLpx(m) ≤ ‖h‖

1−q
LqvL

p
x(m)

[(∫
R3

∥∥B2
δ(h)

∥∥
Lpx
‖h‖q−1

Lpx
mq dv

)
−
(∫

R3

ν ‖h‖q
Lpx
mq dv

)]
.

Denoting H = ‖h‖Lpx , we obtain thanks to (4.36)

d

dt
‖ht‖LqvLpx(m) ≤ ‖h‖

1−q
LqvL

p
x(m)

[(∫
R3

B̃2
δ(H) ν−1/q′ mHq−1mq−1 ν1/q′ dv

)
−
∫
R3

ν Hqmq dv

]
≤ ‖h‖1−q

LqvL
p
x(m)

[∥∥∥B̃2
δ(H)

∥∥∥
Lqv(mν−1/q′ )

‖H‖q−1
Lqv(mν1/q)

−
∫
R3

ν Hqmq dv

]
.

Using then (4.33) and

‖h‖LqvLpx(m) ≤ ν
−1/q
0 ‖h‖LqvLpx(mν1/q),

we finally deduce that

d

dt
‖ht‖LqvLpx(m) ≤ ‖h‖1−q

LqvL
p
x(m)

[
Λmν−1/q′ ,q(δ)− 1

]
‖h‖q

LqvL
p
x(mν1/q)

≤ ν
1/q−1
0

[
Λmν−1/q′ ,q(δ)− 1

]
‖h‖LqvLpx(mν1/q)(4.40)

≤ −ν−1
0 [1− Λmν−1/q′ ,q(δ)] ‖ht‖LqvLpx(m),

which concludes the proof of dissipativity in this case.
The cases p = +∞ and q = +∞ are then obtained by taking the corresponding limits in the above

estimate. The v-derivatives can be treated with the same line of arguments as in the case (W1). Arguing
as before we obtain

d

dt

(
‖h‖LqvLpx(m) + ‖∇xh‖LqvLpx(m)

)
≤ −ν1/q−1

0 [1− Λmν−1/q′ ,q(δ)]
(
‖ht‖LqvLpx(mν1/q) + ‖∇xht‖LqvLpx(mν1/q)

)
and

d

dt
‖∇vh‖LqvLpx(m) ≤ −ν

1/q−1
0 [1− Λmν−1/q′ ,q(δ)] ‖∇vh‖LqvLpx(m) + ‖∇xh‖LqvLpx(m) + ‖Rh‖LqvLpx(m),

where R is defined in (4.37). Using the Lemmas 4.4 and 4.7 when m is a polynomial weight, and (4.35)
and Lemma 4.10 when m is an exponential weight, and the regularization property of the operator Aδ,
we prove that

‖Rh‖LqvLpx(m) ≤ C
(∫

R3

‖ht‖qLpx ν m
q dv

) 1
q

,

for some constant C = Cδ > 0 (depending on δ). We then introduce the norm

‖h‖W 1,q
v W 1,p

x (m)ε
:= ‖h‖LqvLpx(m) + ‖∇xh‖LqvLpx(m) + ε ‖∇vh‖LqvLpx(m),
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for some ε > 0 to be fixed later, and we deduce

d

dt
‖h‖W 1,q

v W 1,p
x (m)ε

≤− ν1/q−1
0 [1− Λmν−1/q′ ,q(δ)]

[(∫
R3

‖h‖q
Lpx
ν mq dv

) 1
q

+

(∫
R3

‖∇xh‖qLpx ν m
q dv

) 1
q

+ ε

(∫
R3

‖∇vh‖qLpx ν m
q dv

) 1
q

]

+ C ε

(∫
R3

‖h‖q
Lpx
ν mq dv

) 1
q

+ ε ‖∇xh‖LqvLpx(m)

≤−
(
ν

1/q−1
0 [1− Λmν−1/q′ ,q(δ)]− o(ε)

) [(∫
R3

‖h‖q
Lpx
ν mq dv

) 1
q

+

(∫
R3

‖∇xh‖qLpx ν m
q dv

) 1
q

+ ε

(∫
R3

‖∇vh‖qLpx ν m
q dv

) 1
q

]
≤−

(
ν

1/q−1
0 [1− Λmν−1/q′ ,q(δ)]− o(ε)

)
‖h‖W 1,q

v W 1,p
x (m)ε

which concludes the proof by taking ε small enough in terms of δ. The higher-order estimates are
performed with the norm

‖h‖W s,q
v W s,p

x (m)ε :=
∑

|i|≤σ, |j|≤s, |i|+|j|≤max{σ;s}

ε|i|
∥∥∂iv∂jxh∥∥LqvLpx(m)

for some ε > 0 to be chosen small enough (in terms of δ). �

4.7. Regularization estimates in the velocity variable. In this subsection we prove a regularity
estimate on the truncated operator Aδ, which improves the result [87, Proposition 2.4]. In the latter
paper, it was established in [87, Proposition 2.4 (iii)], for a slightly weaker truncation function Θδ (and
the same proof would apply here), the boundedness of the operator Aδ from L1(〈v〉γ) into the space of
W 1,1
v functions with compact support. We prove here:

Lemma 4.16. For any s ∈ N the operator Aδ maps L1
v(〈v〉) into Hs

v functions with compact support,
with explicit bounds (depending on δ) on the L1

v(〈v〉)→ Hs
v norm and on the size of the support.

More precisely, there are two constants Cs,δ, Rδ > so that

∀h ∈ L1
v(〈v〉), suppAδh ⊂ B(0, Rδ), ‖Aδh‖Hsv ≤ Cs,δ ‖h‖L1

v(〈v〉).

Proof of Lemma 4.16. On the one hand, it is clear that the range of the operator Aδ is included into
compactly supported functions thanks to the truncation, with a bound on the size of the support related
to δ.

On the other hand, the proof of the smoothing estimate is a straightforward consequence of the
regularization property of the gain part Q+ of the collision operator discovered by P.-L. Lions [70, 71],
and we only sketch it. Let us recall that

Aδh = Q+
Bδ

(µ, h) +Q+
Bδ

(h, µ)−Q−Bδ(µ, h)

where Q+
Bδ

(resp. Q−Bδ) is the gain (resp. loss) part of the collision operator associated to the mollified
collision kernel Bδ = Θδ B. More precisely, we have

Q+
Bδ

(f, g) :=

∫
R3

∫
S2

Θδ f(v′) g(v′∗) |v − v∗|γ b(cos θ) dv∗ dσ

and, since we can decompose the truncation as Θδ = Θ1
δ(v) Θ2

δ(v − v∗) Θ3
δ(cos θ), we have the formula

Q−Bδ(µ, h) :=

∫
R3

∫
S2

Θδ µ(v)h(v∗) |v − v∗|γ b(cos θ) dv∗ dσ

= µ(v) Θ1
δ(v) (f ∗ νδ)(v), νδ ∈ Cc(R3).
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The regularity estimate is trivial for Q−Bδ(µ, h) thanks to the truncation and convolution structure, and

the regularity estimate for Q+
Bδ

follows immediately from the result discovered in [70, 71] in the form

proven in [92, Theorem 3.1]. �

4.8. Iterated averaging lemma. In this subsection we prove the key regularity results for our factor-
ization and enlargement theory. We begin with an “averaging lemma” (in the spirit of [52, 20]) for the
free transport equation. This first result requires regularity in the velocity variable. We shall then show
how to get rid of the assumption by a new iterated averaging lemma.

Lemma 4.17. Consider f ∈ L1([0, T ];L1(Td ×Rd)) and fin ∈ L1(Td ×Rd)) such that ∇vfin ∈ L1(Td ×
Rd)) and (in the weak sense)

∂tf + v · ∇xf = 0 on [0, T )× Td × Rd, f|t=0 = fin on Td × Rd.

For any fixed ϕ ∈ D(Rd), let us define

ρϕ(t, x) :=

∫
Rd
ft(x, v)ϕ(v) dv.

Then ρϕ satisfies

(4.41) ‖ρϕ(t, ·)‖W 1,1
x
≤
(

1 +
1

t

)
‖ϕ‖W 1,∞

(
‖fin‖L1

x,v
+ ‖∇vfin‖L1

x,v

)
.

Remark 4.18. It is worth mentioning that a similar result holds in L2. It may be compared with the
classical averaging lemma for the free transport equation: a typical statement (see [22, 21] as well as
[52, 42, 95, 67] and the references therein for more details) is

(4.42) ‖ρϕ(t, ·)‖
H

1/2
x
≤ (1 + t) ‖ϕ‖W 1,∞ ‖f0‖L2

x,v
.

Hence the gain of derivability in the x variable is weaker compared to (4.41), but there is no regularity
assumption on the initial datum. However, it is well known that (4.42) is false for p = 1 (see the discussion
in [52] and the related work [53]). In the estimate (4.41) we can cover the critical L1 case at the price
of assuming more initial regularity on the velocity variable. It shares some similarity with the results in
[20]. The proof makes use of the “gliding norms” introduced in [93].

Proof of Lemma 4.17. Introducing the differential operator

(4.43) Dt := t∇x +∇v,

we observe that Dt commutes with the free transport operator ∂t + v · ∇x, so that

∂t(Dtf) + v · ∇x(Dtf) = 0.

From the mass preservation for the free transport flow on ft and Dtft, we deduce

∀ t ≥ 0, ‖ft‖L1 = ‖f0‖L1 , ‖Dtft‖L1 = ‖D0f0‖L1 = ‖∇vf0‖L1 .

Finally we calculate

∇xρϕ(t, x) =

∫
Rd

(
Dt

t
−∇v

)
ft(x, v)ϕ(v) dv

=
1

t

∫
Rd

(Dtf) (t, x, v)ϕ(v) dv +

∫
Rd
f(t, x, v)∇vϕ(v) dv,

and we conclude the proof thanks to the previous estimates. �

Let us recall the notation Tn(t) := (AδSBδ)(∗n) for n ≥ 1, where SBδ(t) is the semigroup generated
by the operator Bδ. We remind the reader that the Tn(t) operators are merely time-indexed family of
operators which do not have the semigroup property in general.
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Lemma 4.19. Consider s ∈ R+, and a weight m so that the assumptions of Lemma 4.14 are satisfied

(hence Bδ is dissipative in W s′,1
x,v (m) for s′ ∈ [0, s+ 4] ∩ N).

Then the time indexed family Tn of operators satisfies the following: for any λ′0 ∈ (0, λ0) where λ0 is
provided by Lemma 4.14, there is some constructive constants C = C(λ′0, δ) > 0 and R = R(δ) such that
for any t ≥ 0

suppTn(t)h ⊂ K := B(0, R),

and

∀ t ≥ 0, ‖T1(t)h‖W s+1,1
x,v (K) ≤ C

e−λ
′
0 t

t
‖h‖W s,1

x,v(m), if s ≥ 1;(4.44)

∀ t ≥ 0, ‖T2(t)h‖
W
s+1/2,1
x,v (K)

≤ C e−λ
′
0 t ‖h‖W s,1

x,v(m), if s ≥ 0.(4.45)

Remark 4.20. Our proof extends verbatim to the case of W s,p
x,v spaces in (4.45), with p ∈ [1,+∞). The

important aspect of our estimates is the optimal time decay. The core idea is to exploit correctly the
combination of a v-regularizing operator Aδ and a transport semigroup SBδ . However the usual averaging
lemma degenerate in L1, where only a mere compactness property in space is retained. We here show
that by using the propagation of a time-dependent phase space regularity (thanks to the introduction of
the operator Dt), one can still keep track of some velocity regularity, and transfer it to the space variable,
while preserving at the same time the correct time decay asymptotics.

Proof of Lemma 4.19. Let us consider h ∈W s,1
x,v(m), s ∈ N. We have from Lemma 4.16 and the fact that

the x-derivatives commute with T1(t):

‖T1(t)h‖W s,1
x W s+1,1

v (K) = ‖Aδ SBδ(t)h0‖W s,1
x W s+1,1

v (K) ≤ C ‖SBδ(t)h‖W s,1
x,v(m) .

Using that B + λ0 is dissipative in W s,1
x,v(m), with λ0 > 0, from Lemma 4.14, we get

(4.46) ‖T1(t)h‖W s,1
x W s+1,1

v (K) ≤ C e
−λ0 t ‖h‖W s,1

x,v(m).

Assume now h ∈ W s,1
x W s+1,1

v (m) and consider the function gt = SBδ(t)(∂
α
xh), for any |α| ≤ s. Such

function satisfies

∂tgt + v · ∇xgt = Q(µ, gt) +Q(gt, µ)−Aδgt.
Using (1) that the operator Dt defined in (4.43) commutes with the free transport equation, and (2)

the translation invariance property (4.38) of the collision operator, we have

∂t(Dtgt) + v · ∇x(Dtgt) = Q(∇vµ, gt) +Q(gt,∇vµ) + Q(µ,Dtgt) +Q(Dtgt, µ)−Dt (Aδgt) .

With the notation of (4.9), we rewrite the last term as

Dt (Aδgt) = Dt

∫
R3

kδ(v, v∗) gt(v∗) dv∗

=

∫
R3

∇vkδ(v, v∗) gt(v∗) dv∗ −
∫
R3

kδ(v, v∗)∇v∗gt(v∗) dv∗ +

∫
R3

kδ(v, v∗) (Dtgt)(v∗) dv∗

= A1
δgt +A2

δgt +Aδ(Dtgt),

where we have performed one integration by part in the term of the middle and where A1
δ stands for the

integral operator associated with the kernel ∇vkδ and A2
δ stands for the integral operator associated with

the kernel ∇v∗kδ. All together, we may write

(4.47) ∂t(Dtgt) = Bδ(Dtgt) + Jδ(gt)

with

Jδf := Q(∇vµ, f) +Q(f,∇vµ) +A1
δf +A2

δf.

On this last term we have the following δ-dependent estimate obtained by gathering Lemmas 4.4 and
4.16:

‖Jδf‖L1(m) ≤ Cδ ‖f‖L1(νm).
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Then arguing as in Lemma 4.14, we have

d

dt

∫
T3×R3

|Dtgt|m dxdv ≤ −λ0

ν0

∫
T3×R3

|Dtgt| ν m dx dv + C ‖gt‖L1(νm)

and
d

dt

∫
T3×R3

|gt|mdxdv ≤ −λ0

ν0

∫
T3×R3

|gt| ν m dx dv.

Combining that last two differential inequalities we obtain, for any λ′0 ∈ (0, λ0) and for ε small enough

d

dt

(
eλ
′
0t

∫
T3×R3

(ε |Dtgt|+ |gt|) m dx dv

)
≤ 0,

which implies

(4.48) ∀ t ≥ 0, ‖Dtgt‖L1(m) + ‖gt‖L1(m) ≤ ε
−1 e−λ

′
0t ‖h‖W s,1

x W 1,1
v (m) .

Then we write

t∇xT1(t)(∂αxh) =

∫
R3

kδ(v, v∗) [(Dtgt)−∇v∗gt] (x, v∗) dv∗

= Aδ (Dtgt) +A2
δgt,

so that thanks to (4.48)

t ‖∇xT1(t)(∂αxh)‖L1(K) ≤ C
[
‖Dtgt‖L1(m) + ‖gt‖L1(m)

]
≤ C ε−1 e−λ

′
0t ‖h‖W s,1

x W 1,1
v (m) .

Together with estimate (4.46) and Lemma 4.16, for s ≥ 0, we conclude that

‖T1(t)(∂αxh)‖W 1,1
x W s+1,1

v (K) ≤
C e−λ

′
0t

t
‖h‖W s,1

x W 1,1
v (m) ,

which in turns implies (4.44).
We now interpolate between the last inequality for a given s ∈ [0, 1], i.e.

‖T1(t)(h)‖W s+1,1
x W s+1,1

v (K) ≤
C e−λ

′
0t

t
‖h‖W s,1

x W 1,1
v (m)

and

‖T1(t)h‖W s,1
x W s+1,1

v (K) ≤ C e
−λ0 t ‖h‖W s,1

x W 1,1
v (m)

obtained from (4.46) written for the same s, which gives

(4.49) ‖T1(t)h‖
W
s+1/2,1
x,v (K)

≤ C

(
e−λ

′
0t

t

)1/2 (
e−λ0 t

)1/2 ‖h‖W s,1
x W 1,1

v (m) ≤
C e−λ

′
0t

√
t
‖h‖W s,1

x W 1,1
v (m).

Putting together (4.49) and (4.46), for s ∈ [0, 1], we get

‖T2(t)h‖
W
s+1/2,1
x,v (K)

≤
∫ t

0

‖T1(t− τ)T1(τ)h‖
W
s+1/2,1
x,v (K)

dτ

≤ C
∫ t

0

e−λ
′
0(t−τ)

(t− τ)1/2
‖T1(τ)h‖W s,1

x W 1,1
v (m) dτ

≤ C

(∫ t

0

e−λ
′
0(t−τ)

(t− τ)1/2
e−λ0τ dτ

)
‖h‖W s,1

x,v(m)

≤ C e−λ
′
0t

(∫ t

0

e−(λ0−λ′0) τ

(t− τ)1/2
dτ

)
‖h‖W s,1

x,v(m)

≤ C ′ e−λ
′
0t ‖h‖W s,1

x,v(m),

for some other constant C ′ > 0, which concludes the proof. �
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Remark 4.21. The case when the Lebesgue integrability exponent p ∈ (1,+∞) is different from p = 1
is less degenerate, and the regularization result in finite time can also be obtained thanks to classical
averaging lemmas [52]. However we both need the precise asymptotic estimates and the case p = 1 in
the sequel of this paper.

Let us explain briefly the alternative argument for the regularity in the simplest case, namely when
p = 2 and s = 0. The classical averaging lemma (see [22, Lemma 1] and the proof of [21, Theorem
2.1]) can be stated as follows in its simplest form: any solution f ∈ C([0, T ];L2(T3 × R3)) to the kinetic
equation

∂tft + v · ∇xft = gt, f|t=0 = h,

satisfies for any ψ ∈ D(R3) the estimate∥∥∥∥∫
R3

ft(x, v∗)ψ(v∗) dv∗

∥∥∥∥
L2
t

(
H

1/2
x

) ≤ C
(
‖h‖L2

x,v
+ ‖g‖L2

t,x,v

)
where L2

t means the L2 norm on the whole real line of times. Observing that ft = SBδ(t)h satisfies the
above kinetic equation with

gt := Bδft = −ν ft − B2
δft

and that

‖gt‖L2(m) ≤ C ‖ft‖L2(ν2m) ≤ C e−λ0t ‖h‖L2(ν2m),

we deduce that

‖T1(t)h‖
L2
t (H

1/2
x,v (K))

≤ C ‖h‖L2(ν2m).

Now, using the Cauchy-Schwarz inequality, we have

‖T2(t)h‖H1/2(K) ≤ ‖h‖L2(ν2m)

∫ t

0

‖T1(t− s)‖L2(ν2m)→H1/2(K)‖T1(s)‖L2(ν2m) ds

≤ ‖h‖L2(ν2m)

(∫ t

0

‖T1(s)‖2L2(ν2m)→H1/2(K) ds

)1/2

×
(∫ t

0

‖T1(s)‖2L2(ν2m) ds

)1/2

≤ C ‖h‖L2(ν2m)

which allows to recover pointwise in time estimates.

4.9. Proof of the main hypodissipativity result. We may now conclude the proof of Theorem 4.2.
We consider p, q, s, σ and m that satisfy the assumptions of the theorem. We set E = Wσ,q

v W s,p
x (m) and

E := Hs′

x,v(µ
−1/2) with s′ ∈ N∗ large enough.

We apply Theorem 2.13. On the one hand, for s′ large enough, we have E ⊂ E . Then we see that
(A3) is fulfilled and (A1) is nothing but [89, Theorem 3.1]. On the other hand, assumption (A2) is a
direct consequence of Lemma 4.16, Lemma 4.14 and Lemma 4.19, together with Lemma 2.16. Indeed,
from Lemma 4.19 and Lemma 2.16 we have for instance

‖Tn(t)h‖Hs′x,v(µ−1/2) ≤ C e
−λ′0t‖h‖L1

x,v(〈v〉3),

so that

‖Tn+1(t)h‖E ≤ C e
−λ′0t‖h‖E .

This proves the exponential decay on the semigroup in E . Then one obtains a rate of decay in E
equal to the one in E as soon as λ0 (provided by Lemma 4.14) is strictly greater than the spectral gap
λ ∈ (0, ν0) in E (which required the condition k is large enough on the exponent of the weight in case
of a polynomial weight), which also then allows to take λ′0 strictly greater than the sepctral gap in E in
Lemma 4.19 and Lemma 2.16. This proves the last claim in the statement of Theorem 4.2.
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4.10. Structure of singularities for the linearized flow. From the previous study of the decay rate
of the linearized flow, we have obviously the following decomposition of the solution ht := SL(t)hin:

ht = Πhin + (ht −Πhin) .

In this decomposition the first part is infinitely regular, say in H∞(µ−1/2), and the second part decays
like O(e−λ t), where λ > 0 denotes the optimal spectral gap (for polynomial moments this requires the
condition k > k∗q ). We shall now make more precise the singularity structure of the second part, showing
on the one hand that its dominant part in this asymptotic behavior is as regular as wanted, and on
the other hand that its worst singularities are supported by the free motion characteristics. One way to
understand these statements is through a spectral decomposition of the semigroup, and the method we
expose here can be considered as a quantitative spectral decomposition in this context.

4.10.1. Asymptotic amplitude of the singularities. Let us consider for instance the space L1
x,v(m) where

the weight m satisfies the assumptions of Theorem 4.2. Other spaces can be considered, provided that
they fall within the scope of Theorem 4.2. We start from the following decomposition formula of the
semigroup

SL(t) = ΠL,0 +

n−1∑
`=0

(−1)` (Id−ΠL,0)SB ∗ (ASB)
∗`

(t) + (−1)n [(Id−ΠL,0)SL] ∗ (ASB)
∗n

(t)

that has been proved. We then use on the one hand that, given any s ∈ N and ε > 0, there is n large
enough so that ∥∥(ASB)

∗n
(t)h

∥∥
Hsx,v(µ−1/2)

≤ C e−(ν0−ε) t ‖h‖L1
x,v(m)

thanks to the previous study, and

‖[(Id−ΠL,0)SL]h‖Hsx,v(µ−1/2) ≤ C e
−λ t ‖h‖Hsx,v(µ−1/2)

with the optimal rate λ. Since ν0 > λ, by choosing ε > 0 small enough we deduce that∥∥[(Id−ΠL,0)SL] ∗ (ASB)
∗n

(t)h
∥∥
Hsx,v(µ−1/2)

≤ C e−λ t ‖h‖L1
x,v(m)

with the optimal rate λ. On the other hand, for all the other terms in the decomposition we use the
decay of SB(t) with exponential rate as close as wanted to −ν0 to deduce that, for any ε > 0∥∥∥∥∥

n−1∑
`=0

(−1)` (Id−ΠL,0)SB ∗ (ASB)
∗`

(t)h

∥∥∥∥∥
L1
x,v(m)

≤ C e−(ν0−ε) t ‖h‖L1
x,v(m).

This thus shows that for any s ∈ N and ε > 0 there is a decomposition of the linearized flow as

SL(t) = ΠL,0 + SsL(t) + SrL(t)

where SsL(t) satisfies

‖SsL(t)h‖Hsx,v(µ−1/2) ≤ C ‖h‖L1
x,v(m) e

−λ t

with the sharp rate λ > 0 and where SrL(t) satisfies

‖SrL(t)h‖L1
x,v(m) ≤ C ‖h‖L1

x,v(m) e
−(ν0−ε) t.

In words, the part Ss is as smooth as wanted, with Gaussian localization as in the small linearization
space, and decays in time with the sharp rate λ, and the part Sr decays in time exponentially fast in
the original space L1

x,v(m) with a rate as close as wanted to ν0, which corresponds to the onset of the
continuous spectrum. The latter part Sr carries all the singularities of the flow.
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4.10.2. Localization of the L2 singularities. We consider now the space L2
x,v(m) with a weight m so that

the assumptions of Theorem 4.2 are satisfied. (Again other spaces could be considered). We know that
the solution ht to the linearized problem remains uniformly bounded in this space along time. We now
consider the decomposition

L = K − v · ∇x − ν := K + B0

and apply our decomposition at order one:

SL(t) = ΠL,0 + (Id−ΠL,0)SB0
(t)− [(Id−ΠL,0)SL] ∗ (KSB0

) (t).

Then one checks with the help of the explicit formula

SB0
(t)h(x, v) = e−ν(v) t h(x− vt, v)

that the second term in the right hand side propagates the singularity along the characteristic lines of
the transport flow while damping their amplitude like e−ν(v) t. Finally for the third term we use that by
interpolation and averaging lemma (as in [92] and [22])

‖(KSB0
) (t)h‖Hαx,v,loc ≤

C

min{tθ; 1}
‖h‖L2

x,v(m)

for some small but non-zero α > 0 and some θ > 0. This proves the decomposition

SL(t)h ∈
[
ΠL,0 + (Id−ΠL,0)

(
e−ν(v) t h(x− vt, v)

)]
+O(t−θ)Hα

x,v,loc

where Hα
x,v,loc denotes some function which belongs to the fractional Sobolev space Hα

x,v when restricted

to any compact set. This captures the localization of L2 singularities.

5. The nonlinear Boltzmann equation

In this section, we are concerned with the proof of the main outcome of our theory: two new Cauchy
results for the nonlinear Boltzmann equation with optimal decay rates, and the proof of the exponential
H-theorem under a priori assumptions.

5.1. The main results. We consider the fully non-linear problem (4.1), first in the close-to-equilibrium
regime, then in the weakly inhomogeneous regime, and finally the far-from-equilibrium regime with a
priori bounds. Here and below we call normalized distribution a distribution with zero momentum, and
mass and temperature normalized to one (remember that the volume of the torus is normalized to one,
and therefore this definition is unchanged for spatially homogeneous distributions). This normalization
induces no loss of generality thanks to the conservation laws of the nonlinear flow. Let us first define the
notion of solutions we shall use

Definition 5.1 (Conservative solution). For some non-negative inital data fin ∈ L1
vL
∞
x (1 + |v|2), we say

that for T ∈ (0,+∞],

0 ≤ f ∈ L1
t,loc

(
[0, T ), L1

vL
∞
x (1 + |v|2)

)
∩ C0

t

(
[0, T ), L1

vL
∞
x (1 + |v|1)

)
is a conservative (distributional) solution on [0, T ) if it satisfies{

∂tf + v · ∇xf = Q(f, f) in the sense of distributions,

f|t=0 = fin almost everywhere,

and satisfies the conservation law

∀ t ≥ 0,

∫
T3×R3

ft(x, v)(1 + |v|2) dxdv =

∫
T3×R3

fin(x, v)(1 + |v|2) dx dv.

Remark 5.2. The solutions can also understood in the renormalized sense and in the mild sense, that is
in the sense of the almost everywhere equality

ft(x, v) = fin(x− vt, v) +

∫ t

0

Q(fτ , fτ )(x− v(t− τ), v) dτ.

Observe that thanks to the bilinear estimates available on Q, for solutions in L1
t,loc([0, T ), L1

vL
∞
x (1+|v|2)),

the last term of the right hand side is always well-defined as a measurable function.
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Theorem 5.3 (Nonlinear stability). We divide our main result into:

(I) A priori properties of conservative solutions. Consider a conservative solution as defined above
on [0, T ), T ∈ (0,+∞], with a uniform bound from below on the initial distribution

(5.1) ∀x ∈ T3, v ∈ R3, fin(x, v) ≥ ϕ(v) ≥ 0,

∫
R3

ϕ(v) dv ∈ (0,+∞).

Then this solution satisfies for any positive time t > 0:
∀ k > 0, ‖ft‖L1

x,v(1+|v|k) < +∞

∀x ∈ T3, v ∈ R3, ft(x, v) ≥ K1 e
−K2|v|2

for some K1,K2 > 0. In the case of a global solution (T = +∞), these estimates are uniform as time
goes to infinity.

Moreover when the initial data belongs to L1
vW

3,1
x (1 + |v|2) the moment estimate can be (strongly)

improved into ‖ft‖L1
vW

3,1
x (eκ|v|) < +∞ for some κ > 0. However for higher-order exponential moments

L1
vW

3,1
x (eκ|v|

β

), β ∈ (1, 2], κ > 0, if they are not finite initially they remain infinite for all times.
Finally these conservative solutions are a priori unique (without perturbative assumptions) at least

when restricted to L1
t,locL

1
vL
∞
x (1 + |v|k)∩C0

t L
1
vL
∞
x (1 + |v|k−1), k > 2, or, in the critical case k = 2, when

restricted to L1
t,locL

1
vW

3,1
x (1 + |v|2) ∩ C0

t L
1
vW

3,1
x (1 + |v|).

(II) Nonlinear stability. For any k > 2, there is some constructive constant ε = ε(k) > 0 such that
for any normalized non-negative initial data satisfying

‖fin − µ‖L1
vL
∞
x (1+|v|k) ≤ ε(k),

where µ is the Maxwellian equilibrium defined in (4.4), there exists a unique global conservative solution
in L∞t L

1
vL
∞
x (1 + |v|k) ∩ C0

t L
1
vL
∞
x to (4.1) with initial fin, which satisfies

∀ t ≥ 0, ‖ft − µ‖L1
vL
∞
x (1+|v|k) ≤ C1 e

−λ t ‖fin − µ‖L1
vL
∞
x (1+|v|k)

where λ is the optimal linearized rate in Theorem 4.2 and for some explicit constant C1 ≥ 1.

(III) Stability in stronger norms. Consider for p, q ∈ [1,+∞) any functional space

E = Wσ,1
v W s,p

x (m) ∩Wσ,q
v W s,p

x (m) ⊂ L1
vL
∞
x (1 + |v|2)

with s, σ ∈ N, σ ≤ s, s > 6/p and m satisfying one of the assumptions (W1), (W2), (W3) in
Theorem 4.2. In the case p = +∞ one can consider the same spaces but including additionally the case
s ≥ 0. Finally in the case q = +∞ of (W2) or (W3)) then consider the simpler functional spaces

E = Wσ,∞
v W s,p

x (m) ⊂ L1
vL
∞
x (1 + |v|2).

Then there is some constructive constant ε = ε(E) > 0 such that if the previous initial data satisfies
furthermore ‖fin − µ‖E ≤ ε(E), we have the estimate

∀ t ≥ 0, ‖ft − µ‖E ≤ C2 e
−λ t ‖fin − µ‖E .

with the optimal rate λ and for some constructive constant C2 ≥ 1.

Remarks 5.4. (1) The rate λ and constants in Theorem 5.3 on the nonlinear flow are obtained in
a constructive way and the rate is the same as for the linearized flow. In turn we have given
sufficient conditions in Theorem 4.2 for this rate to be the same as the sharp rate in the space
L2(µ−1/2). Finally in the latter space, the decay rate and constants were proved in [108] by non-
constructive argument based on Weyl’s theorem, and then the series of papers [12, 86, 88, 89]
provided constructive proof with explicit constants and estimates on the rate λ.

(2) Some refinements of these theorems could be considered: (1) extend these results to variable hard
potentials (γ ∈ (0, 1]); (2) extend these results to solutions M1

vW
s,p
x (m) that are merely measures
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in the velocity variable, by using the recent works [73, 74] at the spatially homogeneous level1.
We did not include these natural extensions in the statement as it is already long enough.

(3) It seems also that in the spatially homogeneous setting the optimal rate in (Wσ,1
v ∩Wσ,q

v )(m),
σ ≥ 0, q ∈ [1,+∞], with m satisfying (W3), provided by Theorem 5.5 is new (whereas it was
proved in the case (W2) in [87]).

(4) The fact that Gaussian moments do not appear in part (I) justifies the need for enlarging the
functional space of the decay estimates on the linearized flow. An interesting open question is
to clarify whether the nonlinear Boltzmann equation (starting with the spatially homogeneous
case) is indeed ill-posed in L2(µ−1/2) in the non-perturbative regime.

Theorem 5.5 (Weakly inhomogeneous solutions). Consider a normalized non-negative spatially homo-
geneous distribution gin = gin(v) ∈ L1

v(1 + |v|k), k > 2. Then there is some constructive constant ε > 0
depending on the mass, energy and k-moment of gin, such that for any normalized non-negative initial
data fin ∈ L1

vL
∞
x (1 + |v|k) satisfying

‖fin − gin‖L1
vL
∞
x (1+|v|k) ≤ ε,

there exists a unique global conservative solution in L∞t L
1
vL
∞
x (1 + |v|2) ∩ C0

t L
1
vL
∞
x (1 + |v|) to (4.1) with

initial data fin, which satisfies

(5.2) ∀ t ≥ 0, ‖ft − gt‖L1
vL
∞
x (1+|v|2) ≤ C ε,

where gt is the unique conservative solution to the spatially homogeneous Boltzmann equation starting
from gin, as well as the properties (I) above and

∀ t ≥ 0, ‖ft − µ‖L1
vL
∞
x (1+|v|2) ≤ C e

−λ t

where λ > 0 is the optimal linearized rate in Theorem 4.2 and for some constant C > 0.

Remarks 5.6. (1) It is possible to prove a posteriori estimates on ft in spaces of the form

Wσ,1
v W s,p

x (1 + |v|k) ∩Wσ,q
v W s,p

x (1 + |v|k) ⊂ L1
vL
∞
x (1 + |v|k)

(with the conditions (W3) on s, σ, p, q and k), by using some refined technical convolution in-
equalities on the collision operator from [92]. We leave this question, as well as that of a general
a posteriori regularity theory, to further studies.

(2) Theorems 5.3 and 5.5 provide the largest class of unique solutions constructed so far to our knowl-
edge (in L1

vL
∞
x (1 + |v|2+0) close to equilibrium or close to spatially inhomogeneous solutions). It

is an interesting open question whether existence and uniqueness can be obtained in the space
L1
vL
∞
x (1 + |v|2) (or L1

vW
3,1
x (1 + |v|2) where we have proved above that a priori uniqueness holds

for conservative solutions) with a perturbation condition.

Theorem 5.7 (Exponential H-theorem with a priori bounds). Let (ft)t≥0 be a normalized non-negative
smooth solution of (4.1) such that for k, s large enough

sup
t≥0

(
‖ft‖Hs(Td×R3) + ‖ft‖L1(1+|v|k)

)
< +∞,

and such that its spatial density

∀x ∈ T3, ρin(x) =

∫
Rd
fin(x, v) dv ≥ α > 0

is uniformly positive on the torus.

Then this solution satisfies

∀ t ≥ 0, ‖ft‖L1
vL
∞
x (1+|v|2) ≤ C e

−λ t

and

∀ t ≥ 0,

∫
Td×R3

ft log
ft
µ

dx dv ≤ C e−λ t

1Note that in this case the lower bound assumption (5.1) should be changed into: ϕ non-negative measure with positive

mass and different from a single Dirac mass.
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for some constructive constant C > 0, and where λ > 0 is the optimal linearized rate in Theorem 4.2.

Remark 5.8. Our relaxation rate in L1
vL
∞
x (1 + |v|2) norm is optimal. However the linearization of the

relative entropy would suggest the relaxation rate O(e−2λ t) for the relative entropy since∫
Td×R3

ft log
ft
µ

dxdv =

∫
Td×R3

(
ft
µ

log
ft
µ
− ft
µ

+ 1

)
dxdv

and z log z−z+1 ∼ z2/2 at z = 1. This statement needs however proper justification; first of all in order
to be true it would require for the solution fr to have tails decaying as µ, which is expected to be wrong
outside specific perturbative regimes. Therefore it is an interesting open question to know whether the
relaxation rate of the relative entropy for perturbative solutions with polynomial tail lies between e−λ t

and e−2λ t. The importance of tail’s decay was already outlined by Cercignani in his conjecture [37].

5.2. Strategy of the Proof of Theorem 5.3.

Part (I): The moment bounds are inspired by the arguments in the spatially homogeneous case [75, 87,
73, 2] and more precisely by the techniques developed in [2]. The lower bounds is obtained from the
results in [97, 85, 82, 1, 23]. The a priori uniqueness is inspired by the proof of uniqueness in the spatially
homogeneous case [82, 72, 73]: more precisely it extends to the spatially inhomogenenous case the method
presented by Lu in [72] (see also [73]).

Part (II) and (III): The study of the nonlinear stability is based on energy methods. Such methods are
often used in nonlinear PDE’s, and use the coercivity properties of the linearized operator. However in the
present situation the time decay estimates obtained on the linearized semigroup do not imply coercivity
inequalities on some Dirichlet form due to the absence of symmetry structure. To resolve this issue we
introduce a new non-symmetric energy method. We introduce in the next subsection a dissipative Banach
norm, for which some suitable coercivity is recovered. This norm involves the linearized evolution flow
for all times. More precisely we prove:

(1) Bilinear estimates to control the nonlinear remainder in the equation for any given initial datum
gin ∈Wσ,q

v (m).
(2) The key a priori estimate for k > 2 moments which provides the “linearisation trap”.
(3) A local-in-time existence result.

We then conclude the proof by standard continuation method.
The proof of Theorem 5.5 is based on the previous linearized stability estimates in functional spaces

large enough to be compatible with the Cauchy theory of the spatially homogeneous equation in the large,
and a classical argument on the dynamics, inspired from [9]. It is sketched in Figure 1: the spatially
homogeneous solutions are represented as a subset a general solutions. By proving local-in-time stability
in L1

vL
∞
x spaces, we can capture a general solution around this subset. If this time is large enough, which

is granted if the perturbation between fin and gin is small enough, then ft is driven towards equilibrium
thanks to the relaxation estimates known for gt. Finally we use the linearized stability estimates once
the stability neighborhood is entered by ft.

5.3. Proof of Theorem 5.3, part (I).

5.3.1. A priori moment bounds. Polynomial moments estimates are now a classical tool in the theory
of the spatially homogeneous Boltzmann equation. Exponential moments estimates for the spatially
homogeneous Boltzmann equation are more recent, see [16, 18, 50] and the references therein. In the
latter references exponential moments (in integral or pointwise forms) are shown to be propagated. In the
papers [78, 87, 73, 2] a theory of appearance of exponential moments was developed, still in the spatially
homogeneous case. We shall extend this theory to the inhomogeneous framework, taking advantage of
the a priori bounds on the solutions.

Lemma 5.9. Consider for T ∈ (0,+∞] a conservative solution

0 ≤ f ∈ L1
t,loc

(
[0, T ), L1

vL
∞
x (1 + |v|2)

)
∩ C0

t

(
[0, T ), L1

vL
∞
x (1 + |v|)

)
with initial datum bounded uniformly from below as in (5.1).
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Figure 1. Sketch of the construction of weakly inhomogeneous solutions.

Then the solution f has the following properties: for any k > 2 and T ′ ∈ (0, T ) there is an explicit
constant C(k, T ′) > 0 depending on k > 2, on the L∞t ([0, T ′], L1

vL
∞
x (1 + |v|)) norm of the solution, on

the lower bound (5.1) on the initial datum, and on T ′, so that

(5.3) ∀ t ∈ (0, T ′],

∫
T3×R3

ft(x, v) |v|k dxdv ≤ C(k, T ′) max

{
1

tk−2
, 1

}
.

Remark 5.10. Observe that our moment estimate is not uniform in time. This is due to the lack of
known uniform-in-time estimates from below on solutions to the nonlinear Boltzmann equation with
such a low regularity. This will however not cause any problem for our uniform-in-time stability results
since the “trapping mechanism” around the linearized regime takes over in finite time for the solutions
we considered.

Proof of Lemma 5.9. Using the Duhamel formulation and the above bounds on the solution we have for
T ′ ∈ (0, T ):

∀ t ≥∈ [0, T ′], x ∈ T3, v ∈ R3, ft(x, v) = e−
∫ t
0
Q−(fτ ,fτ )(x−v(t−τ),v) dτ fin(x− vt, v)

+

∫ t

0

e−
∫ τ
0
Q−(fτ′ ,fτ′ )(x−v(τ−τ ′),v) dτ ′ Q+(fτ , fτ )(x− v(t− τ), v) dτ ≥ e−c(T

′)t(1+|v|) ϕ(v)

for some constant c(T ′) > 0 depending on T ′ (through the L∞t ([0, T ′], L1
vL
∞
x (1 + |v|2)) norm of the

solution).
We deduce that there is a constant K(T ′) > 0 so that

∀ t ∈ [0, T ′], x ∈ T3, v ∈ R3,

∫
R3

ft(x, v∗) |v − v∗|dv∗ ≥ K(T ′) (1 + |v|).

Consider now the moments of the solutions

Mk[ft] :=

∫
T3×R3

ft(x, v) (1 + |v|k) dxdv, k ≥ 0,
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and apply the Lemma 4.5 to get for k > 2 the following inequality in the sense of distribution

d

dt
Mk[ft] =

∫
T3×R3×R3×S2

ft(x, v) ft(x, v∗)
[
|v′|k + |v′∗|k − |v|k − |v∗|k

]
|v − v∗|dv dv∗ dσ dx

≤Ck
∫
T3×R3×R3

ft(x, v) ft(x, v∗) (1 + |v|k) (1 + |v∗|2) dxdv

− 2

∫
T3×R3×R3

ft(x, v) ft(x, v∗) |v|k |v − v∗|dxdv dv∗

≤C ′kMk[ft]−KkMk+1[ft]

≤C ′kMk[ft]−K ′kM
k−1
k−2

k [ft]

for some constants Ck, C
′
k,Kk,K

′
k > 0 depending on the L1

vL
∞
x (1 + |v|2) upper bound on the solution

and the previous lower bound. By standard interpolation and Gronwall inequality argument this leads
to the bound

∀ t ∈ (0, T ′], Mk[ft] ≤
C(k, T ′)

tk−2

for some constant C(k, T ′) > 0 which depends on k > 2, T ′ > 0 and on the bounds on the solution. �

Lemma 5.11. Consider for T ∈ (0,+∞] a conservative solution

0 ≤ f ∈ L1
t,loc

(
[0, T ), L1

vW
3,1
x (1 + |v|2)

)
∩ C0

t

(
[0, T ), L1

vW
3,1
x (1 + |v|)

)
with initial datum bounded uniformly from below as in (5.1).

Then for any T ′ ∈ (0, T ), there exist explicit constants κ,C > 0 (depending on the bounds assumed on
the solution, on the lower bound (5.1) on the initial datum, and on T ′ > 0) such that

(5.4) ∀ t ∈ [0, T ′], ‖ft‖L1
vW

3,1
x (eκmin{t,1}|v|) ≤ C.

Proof of Lemma 5.11. As a first step let us extend the polynomial moment bounds to the derivatives of
the solution. Let us define

M̃k(t) :=
∑
|α|≤3

cαMk[∂αx ft]

for some constants cα > 0 to be fixed later. Arguing as in the previous lemma and using the Sobolev
embedding W 3,1

x ↪→ L∞x , we get

d

dt
Mk[ft] ≤ C ′kMk[ft]−K ′kM

k−1
k−2

k [ft]

for some constants depending on time. For the first derivatives we write (with the notation s = sign(∂xf))

d

dt
Mk[∂xft] =

∫
T3×R3×R3×S2

∂xft(x, v) ft(x, v∗)
[
|v′|ks′ + |v′∗|ks′∗ − |v|ks− |v∗|ks∗

]
|v − v∗|dv dv∗ dσ dx

≤Ck
∫
T3×R3×R3

|∂xft(x, v)| ft(x, v∗) (1 + |v|k) (1 + |v∗|2) dx dv

− 2

∫
T3×R3×R3

|∂xft(x, v)| ft(x, v∗) |v|k |v − v∗|dx dv dv∗

+ 2

∫
T3×R3×R3

|∂xft(x, v)| ft(x, v∗) (1 + |v|) (1 + |v∗|k+1) dxdv dv∗

≤CkMk[∂xft]−KkMk+1[∂xft] + CMk+1[ft].

We calculate similarly for any |α| ≤ 3:

d

dt
Mk[∂αx ft] ≤ CkMk[∂αx ft]−KkMk+1[∂αx ft] + C

∑
β<α

Mk+1[∂βxft].

Finally choosing suitable constants cα > 0, we deduce

d

dt
M̃k(t) ≤ C ′k M̃k(t)−K ′k M̃k+1(t) ≤ C ′k M̃k(t)−K ′′k M̃k(t)

k−1
k−2
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which shows that

∀ t ∈ (0, T ′], M̃k(t) ≤ Ck max

{
1

tk−2
, 1

}
.

We now consider exponential moments and extend the argument in [2] to spatially inhomogeneous
solutions in the torus. Our goal is to estimate the quantity

E(t, z) :=
∑
|α|≤3

cα

∫
T3×R3

|∂αx ft(x, v)| exp
(
z|v|

)
dx dv =

∑
|α|≤3

cα

∞∑
k=0

Mk[∂αx ft]
zk

k!

where z will depend on time. For use below let us define the truncated sum as

En(t, z) :=
∑
|α|≤3

cα

n∑
k=0

Mk[∂αx ft]
zk

k!

for n ∈ N, z ≥ 0, and t ≥ 0. We also define

In(t, z) :=
∑
|α|≤3

cα

n∑
k=0

Mk+1[∂αx ft]
zk

k!

and

S`(t) :=
∑
|α|≤3

cα

k∑̀
k=1

(
`

k

)
(Mk+1[∂αx ft]M`−k[∂αx ft] +Mk[∂αx ft]M`−k+1[∂αx ft]) ,

where k` is the integer part of (`+ 1)/2.
Let us prove the following inequality: there exists some constant C > 0 independent of n such that

for any `0 ≥ 2 the following holds:

(5.5)

n∑
`=`0

z`

`!
S`(t) ≤ C En(t, z) In(t, z).

The first part of the sum in the left hand side of (5.5) can be bounded as:∑
|α|≤3

cα

n∑
`=`0

z`

`!

k∑̀
k=1

(
`

k

)
Mk+1[∂αx ft]M`−k[∂αx ft] =

∑
|α|≤3

cα

n∑
`=`0

k∑̀
k=1

Mk+1[∂αx ft]
zk

k!
M`−k[∂αx ft]

z`−k

(`− k)!

≤
∑
|α|≤3

cα

n∑
k=1

Mk+1[∂αx ft]
zk

k!

n∑
`=max{`0,2k−1}

M`−k[∂αx ft]
z`−k

(`− k)!

≤C In(t, z)En(t, z).

We carry out a similar estimate for the other part:∑
|α|≤3

cα

n∑
`=`0

z`

`!

k∑̀
k=1

(
`

k

)
Mk[∂αx ft]M`−k+1[∂αx ft] =

∑
|α|≤3

cα

n∑
`=`0

k∑̀
k=1

Mk[∂αx ft]
zk

k!
M`−k+1[∂αx ft]

z`−k

(`− k)!

≤
∑
|α|≤3

cα

n∑
k=1

Mk[∂αx ft]
zk

k!

n∑
`=max{`0,2k−1}

M`−k+1[∂αx ft]
z`−k

(`− k)!

≤C En(t, z) In(t, z).

This concludes the proof of (5.5).
First we notice that in order to prove (5.4) it is enough to prove the following: there are some constants

T0 ∈ (0, T ) and κ,C > 0 (which depend only on b and the initial mass and energy) such that

(5.6) ‖ft‖L1
vW

3,1
x (eκt|v|) ≤ C for t ∈ [0, T0].

Indeed, since the assumptions are satisfied on the whole time interval [0, T ), for t ≥ T0 it is then possible
to apply (5.6) starting at time (t− T0).
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Hence, we aim at proving the estimate (5.6). Let us denote

E0 = En(0, 0) = E(0, 0) = ‖fin‖L1
vW

3,1
x
.

Consider κ > 0 to be fixed later, n ∈ N and define T0 > 0 as

T0 := min
{

1 ; sup
{
t > 0 s.t. En(t, κt) < 4E0

}}
.

The definition is consistent and the previous polynomial moment estimates ensure that T0 > 0 for each
given n. The bound of 1 is not essential, and is included just to ensure that T0 is always finite. We note
that a priori such T0 depends on the index n in the sum En but we will prove a uniform bound on it.

Choose an integer `0 ≥ 3, to be fixed later. Arguing as in [2], by classical functional inequalities we
have

∀ t ∈ [0, T ), ` ≥ `0,
d

dt
M`[ft] ≤ A` S`(t)−KM`+1[ft]

with S` defined as before, K > 0 uniform, and A` positive decreasing and going to zero as ` → ∞. We
can extend this argument to higher derivatives at the price of an additional error term as before:

∀ t ∈ [0, T ), ` ≥ `0,
d

dt
M`[∂

α
x ft] ≤ A` S`(t)−KM`+1[∂αx ft] + C

∑
β<α

M`+1[∂βxft].

By linear combination with careful choice of the constants cα we deduce that

∀ t ∈ [0, T ), ` ≥ `0,
d

dt
M̃`(t) ≤ A` S`(t)−K M̃`+1(t)

for some uniform K > 0 and A` positive decreasing going to zero as `→ 0.
In addition, we know from the previous polynomial estimates that

(5.7) ∀ t ∈ [0, T ),

`0∑
`=0

M̃`(t) t
` ≤ C`0 .

Taking any κ ∈ (0, 1) and using the product rule we get:

d

dt

n∑
`=`0

M̃`(t)
(κt)`

`!
≤

n∑
`=`0

(κt)`

`!

(
A` S`(t)−K M̃`+1(t)

)
+ κ

n∑
`=`0

M̃`(t)
(κt)`−1

(`− 1)!

≤
n∑

`=`0

(at)`

`!
A` S`(t) + (κ−K) In(t, κt) + (K + κ)

`0∑
`=1

M̃`(t)
(κt)`−1

(`− 1)!

≤
n∑

`=`0

(κt)`

`!
A` S` + (κ−K) In(t, κt) +

(K + κ)

t
C`0 ,

where we have used that κ < 1 and inequality (5.7) in the last step. Hence, from the inequality (5.5) we
obtain

d

dt

n∑
`=`0

M̃`(t)
(κt)`

`!
≤ In(t, κt)

[
C A`0 E

n(t, κt) + (κ−K)
]

+
(K + κ)

t
C`0 .

Next, choose κ ≤ min{1,K/2} and `0 large enough so that

∀ t ∈ [0, T0], C A`0 E
n(t, κt) ≤ C A`0 4E0 ≤

K

4
.

Hence

(5.8)
d

dt

n∑
`=`0

M̃`(t)
(κt)`

`!
≤ −K

4
In(t, κt) +

(K + κ)

t
C`0 ≤ −

1

t

[
K

4κ
(En(t, κt)− E0)− (K + κ)C`0

]
where for the last inequality we have used that (thanks to the conservation of the total mass)

In(t, κt) ≥ (En(t, κt)− E0)

κt
.
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We make the additional restriction that κ < E0/(6C`0), which together with κ ≤ min{1,K/2} implies
that

K

4κ
E0 > (K + κ)C`0 .

Then we have

(5.9)
d

dt

n∑
`=`0

M̃`(t)
(κt)`

`!
≤ 0

for any time t ∈ [0, T0] for which En(t, κt) ≥ 2E0 holds. This is true in particular when
∑n
`=`0

M̃`(t)
(κt)`

`! ≥
2E0. We deduce that

(5.10) ∀ t ∈ [0, T0],

n∑
`=`0

M̃`
(κt)`

`!
≤ 2E0.

In order to finish the argument we need to bound the initial part of the full sum (from ` = 0 to `0 − 1.)
Indeed, we note that from (5.7),

(5.11) ∀ t ∈ [0, T0],

`0−1∑
`=0

M̃`(t)
(κt)`

`!
≤ E0 + κC`0 ,

so, recalling that 6κC`0 < E0 and using (5.10) and (5.11) we get

En(t, κt) =

`0−1∑
`=0

M̃`(t)
(κt)`

`!
+

n∑
`=`0

M̃`(f)
(κt)`

`!
≤ 3E0 + κC`0 ≤

19

6
E0

for t ∈ [0, T0], uniformly in n. Finally, gathering all conditions imposed along the proof on the parameter
κ, we choose

(5.12) κ := min

{
1,
K

2
,
E0

6C`0

}
independently of n. We conclude, from the definition of T0, that T0 = 1 for all n. Sending n → ∞, we
deduce the result. �

5.3.2. Non appearance of “superlinear” exponential moments.

Lemma 5.12. Consider for T ∈ (0,+∞] a conservative solution

0 ≤ f ∈ L1
t,loc

(
[0, T ), L1

vW
3,1
x (1 + |v|2)

)
∩ C0

t

(
[0, T ), L1

vW
3,1
x (1 + |v|)

)
with initial datum bounded uniformly from below as in (5.1). Assume that for β ∈ (1, 2] the initial
condition satisfies

∀κ > 0, ‖fin‖L1
vW

3,1
x (eκ |v|

β
)

= +∞.

Then we have

∀ t ≥ 0, ∀κ > 0, ‖ft‖L1
vW

3,1
x (eκ |v|

β
)

= +∞.

Proof of Lemma 5.12. We only sketch the proof in the case β = 2 and leave to the reader the general
case. The key idea is to define

EnR(t, z) :=
∑
|α|≤3

cα

n∑
k=0

(∫
T3×R3

|∂αx ft| (1 + |v|)2k 1|v|≤R dxdv

)
zk

k!

for some parameter R > 0, and then consider EnR(t, κ(1 + κ′t)) with κ arbitrary and κ′ to be fixed later.
Observe that EnR(t, z) is always well-defined and finite for all time and value of z due to the truncations.
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We calculate (dropping out the positive terms)

d

dt
EnR (t, κ(1 + κ′t)) ≥−K

∑
|α|≤3

cα

n∑
k=0

(∫
T3×R3

|∂αx ft| 1|v|≤R (1 + |v|)2k+1 dxdv

)
(κ(1 + κ′t))

k

k!

+ κκ′
∑
|α|≤3

cα

n∑
k=1

(∫
T3×R3

|∂αx ft| 1|v|≤R (1 + |v|)2k dx dv

)
(κ(1 + κ′t))

k−1

(k − 1)!
.

We deduce that for κ′ large enough

d

dt
EnR (t, κ(1 + κ′t)) ≥ −K

∑
|α|≤3

cα

(∫
T3×R3

|∂αx ft| 1|v|≤R (1 + |v|)2n+1 dxdv

)
(κ(1 + κ′t))

n

n!
.

Since the right hand side goes to zero as n→ +∞ we deduce the a priori estimate

d

dt
E∞R (t, κ(1 + κ′t)) ≥ 0.

We hence deduce by passing to the limit R→∞ that E∞∞(t, κ(1 +κ′t)) = +∞ for t ≥ 0 which concludes
the proof. �

5.3.3. A priori lower bounds. The proof of the Maxwellian lower bound in part (I) of Theorem 5.3 is a
straightforward application of [85] and we shall therefore skip the proof. In the paper [85] an a priori
bound was assumed on the entropy but it can be removed using the non-concentration estimates on the
iterated gain term first discovered in [82] and then developed in [1]. We refer to the more recent preprint
[23] where these issues are discussed.

5.3.4. A priori uniqueness for conservative solutions. This subsection is related to the Cauchy theory for
unique solution to the spatially homogeneous Boltzmann for hard spheres in L1

v(1 + |v|2). Let us refer
first to [41] for the idea of the key a priori estimate on moment of the difference of two solutions and [5, 6]
for the first uniqueness result in a space of the form L1

v(1 + |v|k) (with k > 2). Then we refer to [82, 72]
(and later [73] following the same approach) for the more recent optimal results. In these papers, there
are mainly two approaches. The first one [82] relies on a subtle variants of the Povzner inequality, and
the second one [72] (see also [73]) is more direct and relies on the estimate of the tail of the distribution
at initial times. We shall elaborate upon this second approach in this subsection.

Lemma 5.13 (A priori uniqueness in L1
vL
∞
x (1 + |v|k), k > 2). Consider for T ∈ (0,+∞] and k > 2 two

conservative distributional solutions

ft, gt ∈ L1
t,loc

(
[0, T ), L1

vL
∞
x (1 + |v|k)

)
∩ C0

t

(
[0, T ), L1

vL
∞(1 + |v|k−1)

)
with initial data fin, gin satisfying the lower bound assumption (5.1). Then for any T ′ ∈ [0, T ) there is
some constant C(T ′) > 0 (depending on the bounds assumed on the solutions, on the lower bound (5.1)
on the initial datum, and on T ′ > 0) such that

(5.13) ∀ t ∈ [0, T ′], ‖ft − gt‖L1
x,v(1+|v|2) ≤ C(T ′) ‖fin − gin‖L1

x,v(1+|v|2).

Proof of Lemma 5.13. Arguing as before we get

∀ t ∈ [0, T ′],

∫
R3

ft(x, v∗) |v − v∗|dv∗ ≥ K(T ′) (1 + |v|)

for some constant depending on the L∞t ([0, T ′], L1
vL
∞(1 + |v|k−1)) norm of f and the lower bound (5.1)

on fin.
We then write the estimate (arguing as in the previous section)

∀ t ∈ [0, T ′],
d

dt
‖ft‖L1

vL
∞
x (1+|v|k) ≤ C ‖ft‖L1

vL
∞
x (1+|v|2) ‖ft‖L1

vL
∞
x (1+|v|k) −K ‖ft‖L1

vL
∞
x (1+|v|k+1)

which shows that ‖ft‖L1
vL
∞
x (1+|v|3) is time-integrable. Similarly we deduce that ‖gt‖L1

vL
∞
x (1+|v|3) is time-

integrable on [0, T ′]. Finally we obtain the continuity of the flow in the topology L1
vL
∞
x (1 + |v|2):

d

dt
‖ft − gt‖L1

vL
∞
x (1+|v|2) ≤ C

(
‖ft‖L1

vL
∞
x (1+|v|3) + ‖gt‖L1

vL
∞
x (1+|v|3)

)
‖ft − gt‖L1

vL
∞
x (1+|v|2)
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and thus

∀ t ∈ [0, T ′], ‖ft − gt‖L1
vL
∞
x (1+|v|2) ≤ C e

∫ t
0

(
‖fτ‖L1

vL
∞
x (1+|v|3)+‖gτ‖L1

vL
∞
x (1+|v|3)

)
dτ ‖fin − gin‖L1

vL
∞
x (1+|v|2)

and the claimed uniqueness property follows. �

The next lemma follows an idea first introduced for the spatially homogeneous Boltzmann equation in
[82, 72], using the reformulation in [73].

Lemma 5.14 (A priori uniqueness in the critical case k = 2). Consider for T ∈ (0,+∞] two conservative
distributional solutions

ft, gt ∈ L1
t,loc

(
[0, T ), L1

vW
3,1
x (1 + |v|2)

)
∩ C0

t

(
[0, T ), L1

vW
3,1
x (1 + |v|)

)
with initial data fin, gin satisfying the lower bound assumption (5.1).

Then for any T ′ ∈ (0, T ), there is an explicit function Ψ : R+ → R+ which depends on T ′ > 0, fin and
gin, which is continuous and satisfies Ψ(0) = 0 and Ψ(r) > 0 for r > 0, such that

(5.14) ∀ t ∈ [0, T ′], ‖ft − gt‖L1
x,v(1+|v|2) ≤ Ψ

(
‖fin − gin‖L1

x,v(1+|v|2)

)
.

Proof of Lemma 5.14. We fix T ′ ∈ (0, T ) for the whole proof. Arguing exactly as in the first part of
Lemma 5.9, we deduce that there is a constant K(T ′) > 0 so that

∀ t ∈ [0, T ′], x ∈ T3, v ∈ R3,


∫
R3

ft(x, v∗) |v − v∗|dv∗ ≥ K(T ′) (1 + |v|),∫
R3

gt(x, v∗) |v − v∗|dv∗ ≥ K(T ′) (1 + |v|),

and

∀ t ∈ (0, T ′],


M̃k(t) ≤ Ck(T ′) min

{
1

tk−2
, 1

}
M̃k(t) ≤ Ck(T ′) min

{
1

tk−2
, 1

}
for some constant Ck(T ′) depending on T ′ > 0 and k > 2, and where M̃k was defined in the proof of
Lemma 5.9 (recall that it involves the derivatives ∂αx , |α| ≤ 3).

Let us denote dt := ft − gt and st := ft + gt.
We have by usual calculations

d

dt

∫
T3×R3

|dt| (1 + |v|2) dx dv ≤C
(∫

T3×R3

|dt|dx dv

) (
sup
x∈T3

∫
R3

|st| (1 + |v|3) dv

)
+ C

(∫
T3×R3

|dt| (1 + |v|) dxdv

) (
sup
x∈T3

∫
R3

|st| (1 + |v|2) dv

)
≤C1 min

{
1

t
, 1

} (∫
T3×R3

|dt|dx dv

)
+ C2

(∫
T3×R3

|dt| (1 + |v|) dxdv

)
which provides a simple Gronwall-like estimates for times bounded away from zero.

Let us now consider small times. Define

r := min
{
‖din‖L1

x,v(1+|v|2) ; T ′
}
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and let us estimate the L1
x,v(1 + |v|2) norm of the difference for the times t ∈ [0, r]. Then calculate

∀ t ∈ [0, r], ‖dt‖L1
x,v(1+|v|2) ≤

∫
T3×R3

dt (1 + |v|2) dx dv + 2

∫
T3×R3

(dt)+ (1 + |v|2) dxdv

≤
∫
T3×R3

din (1 + |v|2) dxdv + 2

∫
T3×R3

ft (1 + |v|2) dx dv

≤
∫
T3×R3

|din| (1 + |v|2) dx dv + 2

∫
T3×R3

ft (1 + |v|2) dxdv

≤r + 2

∫
|v|≤R

ft (1 + |v|2) dxdv + 2

∫
|v|>R

ft (1 + |v|2) dxdv

≤r + 2 (1 +R2) ‖dt‖L1
x,v

+ 2

∫
|v|>R

ft (1 + |v|2) dxdv

for some parameter R > 0 to be chosen later, where we have used the conservation of the energy of our
solutions and the inequality (dt)+ ≤ ft.

The second term in the right hand side above can be estimated as

d

dt

∫
T3×R3

|dt|dx dv ≤ C
∫
T3×R3

dt(st)∗ |v − v∗|dxdv dv∗ ≤ C ′
(∫

T3×R3

|dt| (1 + |v|) dxdv

)
.

Hence

∀ t ∈ [0, r], ‖dt‖L1
x,v
≤ ‖din‖L1

x,v(1+|v|2) + C ′
∫ t

0

(
‖fτ‖L1

x,v(1+|v|2)‖gτ‖L1
x,v(1+|v|2)

)
dτ ≤ C ′′ r.

Finally the third term of the right hand side can be estimated as∫
|v|>R

ft (1 + |v|2) dxdv =

∫
T3×R3

ft (1 + |v|2) dxdv −
∫
|v|≤R

ft (1 + |v|2) dxdv

=

∫
T3×R3

fin (1 + |v|2) dxdv −
∫
|v|≤R

ft (1 + |v|2) dxdv

=

∫
T3×R3

fin (1 + |v|2) dxdv −
∫
|v|≤R

fin (1 + |v|2) dxdv

−
∫ t

0

∫
|v|≤R

Q(fτ , fτ ) (1 + |v|2) dxdv dτ

≤
∫
|v|>R

fin (1 + |v|2) dx dv +

∫ t

0

∫
|v|≤R

Q−(fτ , fτ ) (1 + |v|2) dxdv dτ

≤
∫
|v|>R

fin (1 + |v|2) dx dv + C ′′′ r (1 +R2)

where we have used again the conservation of energy and the evolution equation integrated against
(1 + |v|2) 1|v|≤R.

Combining the three estimates we deduce that

∀ t ∈ [0, r], ‖dt‖L1
x,v(1+|v|2) ≤ r + 2C ′′ r (1 +R2) + 2

∫
|v|>R

fin (1 + |v|2) dxdv + C ′′′ r (1 +R2).

We finally choose for instance R = r−1/3 and define

Ψ0(r) := r + 2C ′′ r
(

1 + r−2/3
)

+ 2

∫
|v|>r−1/3

fin (1 + |v|2) dx dv + C ′′′ r
(

1 + r−2/3
)

which depends on the profiles fin and gin via the tail estimate in the right hand side and also via the
constants depending on the mass and energy.

We have therefore

∀ t ∈ [0, r], ‖dt‖L1
x,v(1+|v|2) ≤ Ψ0 (r) .
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To conclude with the final stability estimate in the case r < T ′, we write

∀ t ∈ [0, T ′], ‖dt‖L1
x,v(1+|v|2) ≤‖dr‖L1

x,v(1+|v|2) +

∫ t

r

(
d

dτ
‖dτ‖L1

x,v(1+|v|2)

)
dτ

≤Ψ0 (r) +

∫ t

r

(
C1 min

{
1

τ
, 1

}
‖dτ‖L1

x,v
+ C2 ‖dτ‖L1

x,v(1+|v|)

)
dτ.

If T ′ ≥ r ≥ 1 the proof is clear by a Gronwall estimate, for r < 1 we write first (assuming T ′ ≥ 1 for
notational simplicity, the case T ′ < 1 is similar)

∀ t ∈ [0, T ′], ‖dt‖L1
x,v(1+|v|2) ≤ Ψ0 (r) + C1

∫ 1

r

‖dτ‖L1
x,v

dτ

τ
+ (C1 + 2C2)

∫ T ′

1

‖dτ‖L1
x,v(1+|v|2) dτ

and for the second term of the right hand side we use the estimate on ‖dτ‖L1
x,v

:∫ 1

r

‖dτ‖L1
x,v

dτ

τ
≤
∫ 1

r

(
‖din‖L1

x,v
+ C

∫ τ

0

‖dτ ′‖L1
x,v

dτ ′
)

dτ

τ
≤ r| ln r|+ C

∫ 1

0

‖dτ ′‖L1
x,v
| ln τ ′|dτ ′.

We thus deduce

∀ t ∈ [0, T ′], ‖dt‖L1
x,v(1+|v|2) ≤ Ψ0 (r) + r| ln r|+ C ′1

∫ 1

0

‖dτ‖L1
x,v
| ln τ |dτ + C ′2

∫ T ′

1

‖dτ‖L1
x,v(1+|v|2) dτ

which yields the result for some nonlinear function Ψ = Ψ(r) by the Gronwall lemma. �

5.4. Proof of Theorem 5.3, parts (II) and (III).

5.4.1. A dissipative Banach norm. In this subsection we construct a Banach norm for which the semigroup
is not only dissipative, but also has a stronger dissipativity property: the damping term in the energy
estimate controls the norm of the graph of the collision operator.

Observe that in this theorem, the rate of decay is possibly worse than in Theorem 4.2. It shall not
however cause any problem when searching for the rate of decay of the nonlinear equation, as the latter
can be recovered by a bootstrap argument once the stability is proved.

Proposition 5.15. Consider the space E = Wσ,q
v W s,p

x (m) with the same assumptions as in Theorem 4.2,
with a norm denoted by ‖ · ‖E , and define the equivalent norm

(5.15) |||h|||E := η ‖h‖E +

∫ +∞

0

‖SL(τ)h‖E dτ, η > 0.

Then there exists η > 0 (small enough) and λ1 ∈ (0, λ) such that for any hin ∈ E, Πhin = 0 (let us
recall that Π is the projection on the eigenspace associated to the eigenvalue 0 thanks to the formulas
(2.1) and (4.7)), the solution h(t) := SL(t)hin to the linearized flow (4.5) satisfies:

∀ t ≥ 0,
d

dt
|||ht|||E ≤ −λ1 |||ht|||Eν ,

where

Eν := Wσ,q
v W s,p

x (ν1/qm) ⊂ E
and ||| · |||Eν is defined from ‖ · ‖Eν as in (5.15):

|||h|||Eν := η ‖h‖Eν +

∫ +∞

0

‖SL(τ)h‖Eν dτ.

Proof of Theorem 5.15. From the decay property of L provided by Theorem 4.2 we have

‖SL(τ)h‖E ≤ C e
−λ t ‖h‖E .

Therefore we deduce that

C1(η) ‖h‖E ≤ |||h|||E ≤ C2(η) ‖h‖E
for some constants C1(η), C2(η) > 0 depending on η, i.e. the norms ‖ · ‖E and ||| · |||E are equivalent for
any η > 0.
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Let us now compute the time derivative of the norm ||| · |||E along ht which solves the linear evolution
problem (4.5). Observe that Πht = 0 for any time t ≥ 0 due to the mass, momentum and energy
conservation of the linearized Boltzmann equation.

Since the x-derivatives commute with the linearized operator, we can set s = 0 without loss of gen-
erality. We consider first σ = 0 and p, q ∈ [1,+∞). We denote again Φ′(z) := |z|p−1 sign(z) and we
have

d

dt
|||ht|||E = η ‖ht‖1−qE

∫
R3

(∫
T3

L(ht) Φ′(ht) dx

)
‖ht‖q−pLpx

mq dv +

∫ +∞

0

∂

∂t
‖ht+τ‖E dτ =: I1 + I2.

Concerning the first term I1 we have, arguing as in the proof of Lemma 4.14 (cases (W2)-(W3)):

I1 = η ‖ht‖1−qE
∫
R3

(∫
T3

(Aδ + Bδ) (ht) Φ′(ht) dx

)
‖ht‖q−pLpx

mq dv

where we have dropped the transport term thanks to its divergence structure. Thanks to the dissipativity
of Bδ proved in Lemma 4.14 and the bounds on Aδ in Lemma 4.16 we get

I1 ≤ η (C ‖h‖E −K ‖h‖Eν )

for some constants C,K > 0.
The second term is computed exactly:

I2 =

∫ +∞

0

∂

∂t
‖ht+τ‖E dτ =

∫ +∞

0

∂

∂τ
‖ht+τ‖E dτ = −‖h‖E .

The combination of the two last equations yields the desired result

d

dt
|||ht|||E ≤ −K |||ht|||Eν

with K > 0, by choosing η small enough.
Then the cases p = +∞ and q = +∞ are obtained by passing to the limit.
Finally the case of a higher-order v-derivative is treated by an argument close to the one in Lemma 4.14.

For instance the case σ = s = 1 is proved by introducing the norms{ |||h|||Eε := |||h|||E + |||∇xh|||E + ε |||∇vh|||E ,

|||h|||Eν,ε := |||h|||Eν + |||∇xh|||Eν + ε |||∇vh|||Eν ,
for some second parameter ε > 0 small enough. Arguing as before we obtain

d

dt

(
|||ht|||LqvLpx(m) + |||∇xht|||LqvLpx(m)

)
≤ −K1

(
|||ht|||LqvLpx(mν1/q) + |||∇xht|||LqvLpx(mν1/q)

)
and

d

dt
|||∇vht|||LqvLpx(m) ≤ −K2 |||∇vht|||LqvLpx(mν1/q) + |||∇xht|||LqvLpx(m) + |||Rht|||LqvLpx(m),

where R is defined in (4.37). Using (a) the Lemmas 4.4 and 4.7 when m is a polynomial weight, (b)
(4.35) and Lemma 4.10 when m is an exponential weight, (c) the regularization property of the operator
Aδ, (d) the equivalence of the norms ||| · ||| and ‖·‖, we prove that

|||Rht|||LqvLpx(m) ≤ C |||ht|||LqvLpx(mν1/q))

for some constant C > 0. We deduce that for ε small enough

d

dt
|||ht|||Eε ≤ −K3 |||ht|||Eν,ε

for some K3 > 0. The higher-order estimates are performed with the norm
|||h|||Eε :=

∑
|i|≤σ, |j|≤s, |i|+|j|≤max{σ;s}

ε|i| |||∂iv∂jxh|||LqvLpx(m)

|||h|||Eν,ε :=
∑

|i|≤σ, |j|≤s, |i|+|j|≤max{σ;s}

ε|i| |||∂iv∂jh|||LqvLpx(mν1/q)

for some ε > 0 to be chosen small enough. �
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5.4.2. The bilinear estimates. Let us summarize the bilinear estimate available on the nonlinear term in
the equation (4.1).

Lemma 5.16. Consider the space Wσ,q
v W s,p

x (m) with s, σ ∈ N, σ ≤ s, s > 6/p, s ≥ 0 when p = +∞,
with m satisfying one of the assumptions (W1), (W2), (W3) of Theorem 4.2. Then in the case q < +∞
we have

‖Q(g, f)‖Wσ,q
v W s,p

x (mν1/q−1) ≤ C
(
‖g‖Wσ,1

v W s,p
x (m) ‖f‖Wσ,q

v W s,p
x (mν1/q)+‖g‖Wσ,q

v W s,p
x (mν1/q) ‖f‖Wσ,1

v W s,p
x (m)

‖g‖Wσ,1
v W s,p

x (mν) ‖f‖Wσ,q
v W s,p

x (m) + ‖g‖Wσ,q
v W s,p

x (m) ‖f‖Wσ,1
v W s,p

x (mν)

)
for some constant C > 0, which implies

‖Q(g, f)‖Wσ,1
v W s,p

x (m)∩Wσ,q
v W s,p

x (mν1/q−1) ≤ C
(
‖g‖(Wσ,1

v ∩Wσ,q
v )W s,p

x (m) ‖f‖Wσ,1
v W s,p

x (mν)∩Wσ,q
v W s,p

x (mν1/q)

+ ‖g‖Wσ,1
v W s,p

x (mν)∩Wσ,q
v W s,p

x (mν1/q) ‖f‖(Wσ,1
v ∩Wσ,q

v )W s,p
x (m)

)
and in the case q = +∞ we have simply

‖Q(g, f)‖Wσ,∞
v W s,p

x (mν−1) ≤ C ‖g‖Wσ,∞
v W s,p

x (m) ‖f‖Wσ,∞
v W s,p

x (m).

Proof of Lemma 5.16. For σ = s = 0 and q < ∞ this estimate is an immediate consequence of the
convolution inequalities on Q established in [8], together with the inequality m(m′m′∗)

−1 ≤ Cm∗. (For

the specific case of stretch exponential weight m = eκ |v|
β

, κ > 0 and β ∈ (0, 2), we also refer to [87]
where the proof is explicitely written). In the case q = +∞ we use Lemmas 4.7 and 4.10.

Finally the x and v derivatives are treated thanks to the distributive properties{ ∇xQ(g, f) = Q(∇xg, f) +Q(g,∇xf)

∇vQ(g, f) = Q(∇vg, f) +Q(g,∇vf)

and Sobolev embeddings. �

5.4.3. The a priori stability estimate.

Lemma 5.17 (A priori stability estimate). Consider s, σ ∈ N, p, q ∈ [1,+∞] with σ ≤ s, s > 6/p, or
s ≥ 0 when p = +∞, with m satisfying one of the assumptions (W1), (W2), (W3) of Theorem 4.2.
Then consider the spaces  E

q := Wσ,q
v W s,p

x (m)

Eqν := Wσ,q
v W s,p

x (mν1/q)

if q < +∞, or simply

E∞ := E∞ν = Wσ,∞
v W s,p

x (m)

if q = +∞. Consider a solution

ft = µ+ ht ∈ E
to the nonlinear Boltzmann equation, with Πht = 0.

Then for q < +∞, ht satisfies the estimate

(5.16)
d

dt
|||ht|||Eq ≤ (C |||ht|||Eq∩E1 −K) |||ht|||1−qEq |||ht|||

q
Eqν
≤ (C |||ht|||Eq∩E1 −K) |||ht|||Eq

for some constants C,K > 0, which also writes

d

dt

(
1

q
|||ht|||qEq

)
≤ (C |||ht|||Eq∩E1 −K) |||ht|||qEqν .

When q = +∞ we have the cleaner estimate

(5.17)
d

dt
|||ht|||E∞ ≤ (C |||ht|||E∞ −K) |||ht|||E∞

for some constants C,K > 0.
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Proof of Lemma 5.17. Assume first σ = s = 0 and consider q ∈ [1,+∞) and p ∈ [1,+∞), and denote
Φ(z) = |z|p/p. We calculate

d

dt
|||ht|||LqvLpx(m) = I1 + I2

with

I1 := η ‖ht‖1−qLqvL
p
x(m)

∫
R3

(∫
T3

Lht Φ′(ht) dx

)
‖ht‖q−pLpx

mq dv

+ ‖ht‖1−qLqvL
p
x(m)

∫ +∞

0

∫
R3

(∫
T3

(SL(τ) (Lht) Φ′(eτL ht) dx

)
‖SL(τ)ht‖q−pLpx

mq dv dτ

and

I2 := η ‖ht‖1−qLqvL
p
x(m)

∫
R3

(∫
T3

Q(ht, ht) Φ′(ht) dx

)
‖ht‖q−pLpx

mq dv

+ ‖ht‖1−qLqvL
p
x(m)

∫ +∞

0

∫
R3

(∫
T3

(SL(τ)Q(ht, ht)) Φ′(eτL ht) dx

)
‖SL(τ)ht‖q−pLpx

mq dv dτ.

In Proposition 5.15 we proved that choosing η > 0 it holds

I1 ≤ −K ‖ht‖1−qLqvL
p
x(m) |||ht|||

q
LqvL

p
x(mν1/q)

for some K > 0.

For the second term, the Hölder inequality implies∫
R3

(∫
T3

Q(ht, ht) Φ′(ht) dx

)
‖ht‖q−pLpx

mq dv ≤
∫
R3

‖Q(ht, ht)‖Lpx‖ht‖
q−1
Lpx

mq dv

≤‖Q(ht, ht)‖LqvLpx(mν1/q−1)‖ht‖
q−1
LqvL

p
x(mν1/q)

and similarly∫
R3

(∫
T3

(eτLQ(ht, ht)) Φ′(eτL ht) dx

)
‖eτL ht‖q−pLpx

mq dv ≤
∫
R3

∥∥eτLQ(ht, ht)
∥∥
Lpx

∥∥eτL ht∥∥q−1

Lpx
mq dv

≤
∥∥eτLQ(ht, ht)

∥∥
LqvL

p
x(mν1/q−1)

∥∥eτL ht∥∥q−1

LqvL
p
x(mν1/q)

.

Using the bilinear estimate in Lemma 5.16 and the semigroup decay in Theorem 4.2 (noticing that
ΠQ(ht, ht) = 0) we get the following estimates

‖Q(ht, ht)‖LqvLpx(mν1/q−1) ≤ C ‖ht‖(L1
v∩L

q
v)L∞x (m) ‖ht‖L1

vL
p
x(mν)∩LqvLpx(mν1/q)

and∫ +∞

0

‖SL(τ)Q(ht, ht)‖LqvLpx(mν1/q−1) dτ ≤C ′
(∫ +∞

0

e−λ τ dτ

)
‖ht‖(L1

v∩L
q
v)L∞x (m) ‖ht‖L1

vL
p
x(mν)∩LqvLpx(mν1/q)

≤C ′′ |||ht|||(L1
v∩L

q
v)L∞x (m) |||ht|||L1

vL
p
x(mν)∩LqvLpx(mν1/q)

for some constant C,C ′, C ′′ > 0. We deduce that

I2 ≤ C ′′′ ‖ht‖1−qLqvL
p
x(m) |||ht|||(L1

v∩L
q
v)L∞x (m) |||ht|||

q
L1
vL

p
x(mν)∩LqvLpx(mν1/q)

and thus (using Sobolev embeddings or passing to the limit p→∞)

d

dt
|||ht|||E ≤ (C |||ht|||E −K) ‖ht‖1−qE |||ht|||qEν .

This concludes the proof in the case σ = s = 0, q < +∞ and p = +∞. In the case p < +∞ and
0 < σ ≤ s, one uses the distributive property of the derivatives and Sobolev embeddings.

The case q = +∞ is handled similarly by using the final estimates in Lemma 5.16. We use the previous
argument with q < +∞ unchanged and take the limit q →∞ in the bilinear estimates to get

d

dt
|||ht|||L∞v Lpx(m) ≤ −K |||ht|||L∞v Lpx(m) + |||Q(ht, ht)|||L∞v Lpx(mν−1).



70 M.P. GUALDANI, S. MISCHLER, C. MOUHOT

The bilinear estimate in Lemma 5.16 for q = +∞ and the semigroup decay in Theorem 4.2 (noticing that
ΠQ(ht, ht) = 0) yield

‖Q(ht, ht)‖L∞v Lpx(mν−1) ≤ C ‖ht‖L∞v L∞x (m) ‖ht‖L∞v Lpx(m)

and ∫ +∞

0

‖SL(τ)Q(ht, ht)‖L∞v Lpx(mν−1) dτ ≤C ′
(∫ +∞

0

e−λ τ dτ

)
‖ht‖L∞v L∞x (m) ‖ht‖L∞v Lpx(m)

≤C ′′ ‖ht‖L∞v L∞x (m) ‖ht‖L∞v Lpx(m)

for some constant C,C ′, C ′′ > 0. We deduce that

|||Q(ht, ht)|||L∞v Lpx(mν−1) ≤ C ′′′ ‖ht‖2L∞v Lpx(m)

and thus (using Sobolev embeddings or passing to the limit p→∞)

d

dt
|||ht|||E∞ ≤ (C |||ht|||E∞ −K) ‖ht‖E∞ .

�

5.4.4. Final proof. We consider the close-to-equilibrium regime and the spaces E and Eν as before. We
will construct solutions through the following iterative scheme

∂th
n+1 = Lhn+1 +Q(hn+1, hn), n ≥ 1,

with the initialization

∂th
0 = Lh0, h0

0 = h0
in = hin, |||hin|||Eq ≤ ε/2.

The functions hn, n ≥ 0 are well-defined in E for all times t ≥ 0 thanks to the study of the semigroup in
Theorem 4.2 and the stability estimates proven below.

We split the proof into four steps. The first two steps of the proof establish the stability and convergence
of the iterative scheme, and they are mainly an elaboration upon the key a priori estimate of the previous
subsection. The third step consists of a bootstrap argument in order to recover the optimal decay rate
of the linearized semigroup. The fourth step details the modifications to the argument for q = +∞.

Step 1. Stability of the scheme. Let us first assume q < +∞ and prove by induction the following control

(5.18) ∀n ≥ 0, ∀ t ≥ 0, Bn(t) :=

(
1

q
|||hnt |||

q
Eq +K

∫ t

0

|||hnτ |||
q
Eqν

dτ

)
≤ εq

under a smallness condition on ε.
The case n = 0 follows from Theorem 5.15 and the fact that |||hin|||qEq ≤ (ε/2)q:

sup
t≥0

(
|||h0

t |||
q
Eq +K

∫ t

0

|||h0
τ |||

q
Eqν

dτ

)
≤ εq.

Let us now assume that (5.18) is satisfied at rank n and let us prove it for n+1. A similar computation
as in Lemma 5.17 yields

d

dt

(
1

q
|||hn+1

t |||qEq
)

+K |||hn+1
t |||qEqν ≤ C

(
|||hnt |||Eq |||hn+1

t |||Eqν + |||hn+1
t |||Eq |||hnt |||Eqν

)
|||hn+1

t |||q−1
Eqν
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for some constants C,K > 0. Hence by Hölder’s inequality we get

Bn+1(t) =
1

q
|||hn+1

t |||qEq +K

∫ t

0

|||hn+1
τ |||qEqν dτ

≤1

q
|||hin|||qEq + C

(
sup
τ≥0
|||hnτ |||Eq

) (∫ t

0

|||hn+1
τ |||qEqν dτ

)

+ C

(∫ t

0

|||hnτ |||
q
Eqν

dτ

)1/q (
sup
τ≥0
|||hn+1

τ |||Eqν dτ

) (∫ t

0

|||hn+1
τ |||qEqν dτ

)1−1/q

≤1

q
|||hin|||qEq +

(
min

{
C,

C

K1/q

})
B1/q
n Bn+1(t)

≤1

q
|||hin|||qEq +

(
min

{
C,

C

K1/q

})
εBn+1(t)

from which it follows

∀ t ≥ 0, Bn+1(t) ≤ 2

q
|||hin|||qEq ≤ ε

q

as soon as (
min

{
C,

C

K1/q

})
ε ≤ 1

2
.

The induction is proven.
Passing to the limit q → +∞ it holds

sup
t≥0
|||ht|||E∞ ≤ ε

assuming that the initial data satisfies |||hin|||E∞ ≤ ε/2. Observe that the smallness condition on ε is
uniform as q → +∞, which is crucial in this limiting process.

Step 2. Convergence of the scheme. Let us now denote by dn := hn+1 − hn. It satisfies

∀n ≥ 0, ∂td
n+1 = Ldn+1 +Q(dn+1, hn+1) +Q(hn+1, dn)

and

∂td
0 = Ld0 +Q(h1, h0).

Let us denote by

An(t) :=

(
1

q
|||dnt |||

q
Eq +K

∫ t

0

|||dnτ |||
q
Eqν

dτ

)
and let us prove by induction that

∀ t ≥ 0, ∀n ≥ 0, An(t) ≤ (C̄ ε)qn

for some constant C̄ > 0 uniform as ε goes to zero and as q goes to infinity.
The case n = 0 is obtained by using the estimate

d

dt

(
1

q
|||d0

t |||
q
Eq

)
+K |||d0

t |||
q
Eqν
≤ C

(
|||h1

t |||Eq |||h0
t |||Eqν + |||h1

t |||Eqν |||h
0
t |||E

)
|||h0

t |||
q−1
Eqν

and the previous bounds on h0, h1 to deduce

∀ t ≥ 0, A0(t) =
1

q
|||d0

t |||
q
Eq +K

∫ t

0

|||d0
τ |||

q
Eqν

dτ ≤ C ε2 ≤ ε

for ε small enough.
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The propagation of the induction is obtained by estimating (similarly as before)

An+1(t) =
1

q
|||dn+1

t |||qEq +K

∫ t

0

|||dn+1
τ |||qEqν dτ

≤1

q
|||dnin|||

q
Eq + C

∫ t

0

(
|||dn+1

τ |||Eqν |||h
n+1
τ |||Eq + |||dn+1

τ |||E |||hn+1
τ |||Eqν

)
|||dn+1

τ |||q−1
Eqν

dτ

+ C

∫ t

0

(
|||dnτ |||Eqν |||h

n+1
τ |||Eq + |||dnτ |||Eq |||hn+1

τ |||Eqν
)
|||dn+1

τ |||q−1
Eqν

dτ

≤2C εAn+1(t) + 2C εAn(t)1/q An+1(t)1−1/q

where we have used dnin ≡ 0 for any n ≥ 0. Using the induction assumption on An(t) we deduce that

An+1(t) ≤ 2C εAn+1(t) + 2C ε C̄n εnAn+1(t)1−1/q

and if ε is small enough so that 2C ε ≤ 1/2 we get

An+1(t) ≤ 4C C̄n εn+1An+1(t)1−1/q =⇒ An+1(t) ≤ (4C)q C̄qn εq(n+1)

which concludes the proof with C̄ = 4C.
Hence for ε small enough, the series

∑
n≥0A

n(t) is summable for any t ≥ 0, and the sequence hn has

the Cauchy property in L∞t (E), which proves the convergence of the iterative scheme. The limit h as n
goes to infinity satisfies the equation in the strong sense when the norm E involves enough derivatives,
or else in the mild sense.

Finally observe again that the smallness condition on ε is uniform as q → +∞, and by passing to the
limit one gets by induction

sup
t≥0
|||dnt |||E∞ ≤ (C̄ ε)n

which shows again that the sequence hn is Cauchy in L∞t (E∞). This proves the convergence of the
iterative scheme.

Step 3. Rate of decay. We now consider the solution h constructed so far, first in the case q < +∞. From
Step 1 we take the limit n→∞ in the stability estimate and get

sup
t≥0

(
1

q
|||ht|||qEq +K

∫ t

0

|||hτ |||qEqν dτ

)
≤ εq.

We can then apply Lemma 5.17 to the solution ht:

d

dt

(
1

q
|||ht|||qEq

)
≤ (C |||ht|||Eq −K) |||ht|||qEqν ≤

(
C q1/q ε−K

)
|||ht|||qEqν ≤

(
C q1/q ε−K

)
νq0

|||ht|||qEq ,

where we have used the previous stability bound. This implies that

|||ht|||Eq ≤ e
− K

2ν
q
0
t
|||hin|||Eq

under the smallness condition C q1/q ε −K ≤ −K/2 on ε. Moreover since |||ht|||Eq converges to zero as
t→ +∞, we integrate the previous a priori estimate from t to +∞ to get

K

2

∫ +∞

t

|||hτ |||qEqν dτ ≤ 1

q
|||ht|||qEq ≤

e
− q K

2ν
q
0
t

q
|||hin|||qEq ,

which implies

(5.19)

∫ +∞

t

‖hτ‖qEqν dτ ≤ 2

Kη
‖ht‖qEq ≤ C e

− q K
2ν
q
0
t
‖hin‖qEq .

We shall now perform a bootstrap argument in order to ensure that the solution ht enjoys to same
optimal decay rate O(e−λ t) as the linearized semigroup in Theorem 4.2. Assume that the solution is
known to decay as

(5.20) ‖ht‖Eq ≤ C e
−λ0 t
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for some constant C > 0, and let us prove that it indeed decays like

‖ht‖Eq ≤ C
′ e−λ1 t

with λ1 = min{λ0 +K/(4νq0), λ}, possibly for some other larger constant C ′ > 0. Hence in a finite number
of steps, it proves the desired decay rate O(e−λ t).

Assume (5.20) and write a Duhamel formulation:

ht = SL(t)hin +

∫ t

0

SL(t− τ)Q(hτ , hτ ) dτ.

We go back to the original norm and we deduce from Theorem 4.2 and Lemma 5.16

‖ht‖Eq ≤ C e
−λ t ‖hin‖Eq + C

∫ t

0

e−λ (t−τ) ‖hτ‖Eq ‖hτ‖Eqν dτ.

Assume λ0 < λ and denote λ1 = min{λ0 +K/(4νq0), λ}. We simply estimate∫ t

0

e−λ (t−τ) ‖hτ‖Eq ‖hτ‖Eqν dτ ≤
∫ t

0

e−λ1 (t−τ) ‖hτ‖Eq ‖hτ‖Eqν dτ

≤C e−λ1 t

(∫ t

0

e(λ1−λ0) τ ‖hτ‖Eqν dτ

)
‖hin‖Eq

and then by integration by parts∫ t

0

e(λ1−λ0) τ ‖hτ‖Eqν dτ ≤
∫ t

0

‖hτ‖Eqν dτ + (λ1 − λ0)

∫ t

0

e(λ−λ0) τ

(∫ t

τ

‖hτ ′‖Eqν dτ ′
)

dτ

≤C ‖hin‖Eq + (λ1 − λ0)

(∫ t

0

(t− τ)1−1/q e(λ1−λ0−K/(2νq0 )) τ dτ

)
‖hin‖Eq

≤C ‖hin‖Eq
where in the last line we have used (5.19). All in all we deduce

‖ht‖Eq ≤ C e
−λ1 t ‖hin‖Eq .

This proves the claim and concludes the proof of the estimate

‖ht‖Eq ≤ C e
−λ t ‖hin‖Eq

in the case q < +∞, where λ = λ(q) > 0 is the sharp rate of the linearized semigroup in Theorem 4.2,
and the constant C is uniform as q → +∞.

Step 4. The case q = +∞. It is obtained by passing to the limit in the previous estimate and using that
λ(q)→ λ(∞) > 0 under our assumptions, thanks to Theorem 4.2. One gets

‖ht‖E∞ ≤ C e
−λ t ‖hin‖E∞

with again the sharp rate λ > 0 of the linearized semigroup.

5.5. Proof of Theorem 5.5. We now consider the weakly inhomogeneous solutions. We split the proof
into three steps.

Step 1. The spatially homogeneous evolution. Consider the spatially homogeneous initial datum gin ∈
L1
vL
∞
x (1 + |v|k), k ≥ 2. From [87, Theorem 1.2] we know that it gives rise to a unique conservative

spatially homogeneous solution gt ∈ L1
v(1 + |v|2) which satisfies

‖gt − µ‖L1
v(1+|v|k) ≤ C e

−λt

with explicit and optimal exponential rate.

Step 2. Local-in-time stability. We consider the estimate in L1
vL
∞
x (1+ |v|k), k > 2. We want to construct

a solution ft that is L1
vL
∞
x (1 + |v|k)-close to the spatially homogeneous solution gt previously considered

on a finite time interval.
Arguing as before we have the a priori bound

∀ t ≥ 0, ft(x, v) ≥ fin(v) e−C (1+|v|) t
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where C > 0 depends on the L∞t,locL
1
vL
∞
x (1 + |v|) norm of the solution.

Since fin is close to a non-zero spatially homogeneous solution gin(v), choosing if necessary ε(Mk)
small enough we have

∀ t ≥ 0,

∫
R3

ft(x, v∗) |v − v∗|dv∗ ≥e−C
′ t

∫
|v∗|≤R

fin(x, v∗) |v − v∗|dv∗

≥e−C
′ t

(∫
R3

gin(v∗) |v − v∗|dv∗ − ε (1 + |v|)
)

≥e−C
′ t
(
Kgin

− ε
)

(1 + |v|) ≥ K e−C
′ t (1 + |v|)

for some constants C ′,K > 0. We have used∫
R3

gin(v∗) |v − v∗|dv∗ ≥ Kgin
(1 + |v|)

which follows from the inequalities
∫
R3 gin(v∗) |v−v∗|dv∗ ≥ |v| (by convexity) and

∫
R3 gin(v∗) |v∗|dv∗ > 0.

Remark 5.18. The constant Kgin
depends in general on the mass, energy and on the shape of gin, more

precisely on how it concentrates at zero velocity (recall that the momentum is normalized to zero). This
is illustrated by the following counter-example

gn(v) :=

(
1− 1

n2

)
ϕ0 +

(
1

n2

)
ϕ−n + ϕn

2

where ϕ0 approximates δ0 and ϕ±n approximates δ±n as n→ 0, which satisfies as n→∞∫
R3

gn dv = 1,

∫
R3

gn |v|2 dv ∼ 1,

∫
R3

gn |v|dv ∼ 0.

However, when a moment k > 2 is assumed on gin, it is easy to give a bound on Kgin
based on the

higher moments estimates since∫
R3

gin(v∗) |v∗|dv∗ ≥
(∫

R3 gin(v∗) |v∗|2 dv∗
)(k−1)/(k−2)(∫

R3 gin(v∗) |v∗|k dv∗
)1/(k−2)

.

We then consider k′ ∈ (2, k) and we define the difference dt := ft − gt and the sum st := ft + gt. We
then write the evolution equation

∂tdt + v · ∇xdt = 2Q(dt, dt) + 2Q(gt, dt),

from which we deduce the following a priori estimate arguing as in the previous section

d

dt
‖dt‖L1

vL
∞
x (1+|v|k′ ) ≤ C1 ‖dt‖L1

vL
∞
x (1+|v|2) ‖dt‖L1

vL
∞
x (1+|v|k′+1)

+ C2 ‖gt‖L1
vL
∞
x (1+|v|k′+1) ‖dt‖L1

vL
∞
x (1+|v|k′ ) −K e−C

′ t ‖dt‖L1
vL
∞
x (1+|v|k′+1)

for some constants C1, C2 > 0. Observe however that here we have to keep track of the time-dependence
of the constant in the negative part of the right hand side. Under the following a priori smallness
assumption

(5.21) C1 ‖dt‖L1
vL
∞
x (1+|v|2) ≤ K e−C

′ t

we have

‖dt‖L1
vL
∞
x (1+|v|k′ ) ≤ 2 ε exp

(
C2

∫ t

0

‖gτ‖L1
v(1+|v|k′+1) dτ

)
≤ 2 ε exp

(
C2 Cg

∫ t

0

min{1, t−β} dτ

)
≤ eC

′
g t 2 ε

for some β < 1.
We then define

T1 = T1(ε) =
− log ε

QC ′g
∈ (0,+∞)

for Q to be chosen later, which yields

∀ t ∈ [0, T1] , eC
′
g t 2 ε ≤ 2 ε1−1/Q and K e−C t ≥ K ε

C
C′gQ .
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We then choose ε small enough so that

∀ t ∈ [0, T1], C1 ‖dt‖L1
vL
∞
x (1+|v|2) ≤ C1 e

C′g t 2 ε ≤ 2 ε1−1/Q ≤ K ε
C
C′gQ ≤ K e−C t

which is always possible as soon as

1− 1

Q
>

C

C ′gQ

which can be ensured (uniformly as ε goes to zero) by taking Q large enough. This then implies the
smallness condition (5.21) and thus justifies the a priori estimate. We deduce the a priori bound

∀ t ∈ [0, T1], ‖dt‖L1
vL
∞
x (1+|v|k′ ) ≤ 2 ε1−1/Q.

Observe that T1(ε)→ +∞ as ε→ 0. The actual construction and uniqueness of these solutions relies on
the part (I) of Theorem 5.3: one uses the continuity of the flow (5.13) and the scheme

d

dt
dn+1
t + v · ∇xdn+1

t = 2Q(dnt , d
n+1
t ) + 2Q(gt, d

n
t ).

We skip the details of these standard arguments.

Step 3. The trapping mechanism. Let δ be the smallness constant of the stability neightborhood in the
part (II) of Theorem 5.3 in L1

vL
∞
x (1 + |v|k′). Then from the step 1 we know that there is some time

T2 > 0 depending on gin such that

∀ t ≥ T2, ‖gt − µ‖L1
v(1+|v|k′ ) ≤

δ

2
.

We then choose ε small enough such that T1(ε) ≥ T2(M) and thus

‖fT2
− gT2

‖L1
vL
∞
x (1+|v|k′ ) ≤

δ

2
,

from the step 3.
It holds

‖fT2 − µ‖L1
vL
∞
x (1+|v|k′ ) ≤ ‖fT2 − gT2‖L1

vL
∞
x (1+|v|k′ ) + ‖gT2

− µ‖L1
v(1+|v|k′ ) ≤ δ

and we can therefore use the perturbative Theorem 5.3 for t ≥ T2 which concludes the proof.

5.6. Proof of Theorem 5.7. We now turn to the proof of the exponential H-theorem. Let us first
recall existing results for polynomially decaying solutions of the nonlinear equation:

Theorem 5.19 ([40]). Let (ft)t≥0 be a non-negative non-zero smooth solution of (4.1) such that for
k, s ≥ 0 big enough

sup
t≥0

(
‖ft‖Hs(T3×R3) + ‖ft‖L1(1+|v|k+1)

)
≤ C < +∞

with initial data satisfying the lower bound (5.1).
Then for k′ ∈ (2, k), there exists an explicit polynomial function ϕ = ϕ(t) which goes to zero as t goes

to infinity such that

∀ t ≥ 0, ‖ft − µ‖L1
vL
∞
x (1+|v|k′ ) ≤ ϕ(t)

where µ is the global Maxwellian equilibrium associated with f (same mass, momentum and temperature).

Proof of Theorem 5.19. This theorem is a consequence of [40, Theorem 2] about convergence to equilib-
rium for a priori smooth solutions with bounded moments and satisfying a Gaussian lower bound, and
of part (I) of Theorem 5.3 where we indeed establish such lower bounds. Note that the convergence in
[40, Theorem 2] is measured in relative entropy, but it is a simple computation based on the Csiszár-
Kullback-Pinsker inequality (see for instance [111, Chapter 9]) and some interpolation to translate it into
stronger norms such as the one we propose in the statement. �
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Finally, combining all the previous results we can prove Theorem 5.7 as follows: we use Theorem 5.19
for initial times and Theorem 5.3 for large times. The former theorem provides an explicit time for the
solution to enter the trapping neightborhood in L1

vL
∞
x (1 + |v|k′)) norm of the latter theorem. Then we

write∫
Td×R3

ft log
ft
µ

dxdv =

∫
Td×R3

(
ft
µ

log
ft
µ
− ft
µ

+ 1

)
µdxdv ≤

∫
Td×R3

∣∣∣∣log
gt
µ

∣∣∣∣ ∣∣∣∣ftµ − 1

∣∣∣∣ µdxdv

for some gt = gt(x, v) ∈ [min{µ(v); ft(x, v)},max{µ(v); ft(x, v)}] from the mean-value theorem. On the
one hand, if ft(x, v) ≥ µ(v) then∣∣∣∣log

gt(x, v)

µ(v)

∣∣∣∣ ≤ log
ft(x, v)

µ(v)
≤ log

(
1 +
‖ht‖L∞
µ(v)

)
≤ max

{
1, sup
t≥0
‖ht‖L∞

}
logµ(v)−1 = K1 (1 + |v|2).

Moreover, if ft(x, v) ≤ µ(v) one can use the exponential lower bound ft(x, v) ≥ Ae−a |v|2 , a > 1/2, to get∣∣∣∣log
gt(x, v)

µ(v)

∣∣∣∣ ≤ log
µ(v)

ft(x, v)
≤ K2 (1 + |v|2).

Using the bounds on the solution we hence finally deduce∫
Td×R3

ft log
ft
µ

dx dv ≤ C
∫
Td×R3

|ft − µ| (1 + |v|2) dx dv

and we conclude the proof using the estimate of convergence in L1
vL
∞
x (1 + |v|2).

5.7. Structure of singularities for the nonlinear flow. Let us now study the singularity structure
of the nonlinear flow provided by the perturbative theorems 5.3 and 5.5. We shall prove the following
two properties as we did for the linearized flow: first we show that the dominant part of the flow in the
asymptotic behavior is as regular as wanted. Second, we prove that its worst singularities are supported
by the free motion characteristics.

5.7.1. Asymptotic amplitude of the singularities. Let us consider for instance the space L1
vL
∞
x (1 + |v|k),

k > 2 (other spaces satisfying the assumption of the perturbative theorems could be used obviously).
We consider some initial data fin = µ+ hin ≥ 0 in this space and assume without loss of generality that
Πhin = 0 (which implies Πht = 0 for any later time).

We start from the decomposition of the semigroup

SL(t)hin = SsL(t)hin + SrL(t)hin

we have introduced in Subsection 4.10. Then we write a Duhamel formulation

ht =SL(t)hin +

∫ t

0

SL(t− τ)Q(hτ , hτ ) dτ

=

(
SsL(t)hin +

∫ t

0

SsL(t− τ)Q(hτ , hτ ) dτ

)
+

(
SrL(t)hin +

∫ t

0

SrL(t− τ)Q(hτ , hτ ) dτ

)
=:N s(t) +N r(t)

(we have used here that ΠQ(hτ , hτ ) = 0). Since
‖SsL(t)h‖Hsx,v(µ−1/2) ≤ C ‖h‖L1

x,v(1+|v|k) e
−λ t

‖SrL(t)h‖L1
x,v(1+|v|k) ≤ C ‖h‖L1

x,v(1+|v|k) e
−(ν0−ε) t,

and the nonlinear flow is known to have the decay

‖ht‖L1
x,v(1+|v|k) ≤ C e

−λ t,

we deduce that 
‖N s(t)‖Hsx,v(µ−1/2) ≤ C e

−λ t

‖N r(t)‖L1
x,v(1+|v|k) ≤ C e

−min{ν0−ε; 2λ} t

(the factor 2 in the exponent of the second inequality comes from the quadratic nature of the nonlinearity).
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Then one can perform a boostrap argument in order to deduce finally ht = N̄ s(t) + N̄ r(t) with
∥∥N̄ s(t)

∥∥
Hsx,v(µ−1/2)

≤ C e−λ t∥∥N̄ r(t)
∥∥
L1
x,v(m)

≤ C e−(ν0−ε) t.

Let us sketch the bootstrap argument. If 2λ ≥ ν0−ε we are done. Suppose therefore that 2λ < ν0−ε.
Then plug the decomposition ht = N s(t) +N r(t) into the Duhamel formulation:

ht =SL(t)hin +

∫ t

0

SL(t− τ)Q(hτ , hτ ) dτ

=

(
SsL(t)hin +

∫ t

0

SsL(t− τ)Q(hτ , hτ ) dτ

)
+ SrL(t)hin +

∫ t

0

SrL(t− τ)Q (N r(τ),N r(τ)) dτ

+

∫ t

0

SrL(t− τ)Q (N r(τ),N s(τ)) dτ +

∫ t

0

SrL(t− τ)Q (N s(τ),N s(τ)) dτ.

Then observe that in the decomposition of the linearized flow one has

‖SrL(t)h‖Hsx,v(µ−1/2) ≤ C ‖h‖Hsx,v(µ−1/2) e
−λ t.

Therefore if one defines

Ñ s(t) :=

(
SsL(t)hin +

∫ t

0

SsL(t− τ)Q(hτ , hτ ) dτ

)
+

∫ t

0

SrL(t− τ)Q (N s(τ),N s(τ)) dτ

and

Ñ r(t) := SrL(t)hin +

∫ t

0

SrL(t− τ)Q (N r(τ),N r(τ)) dτ +

∫ t

0

SrL(t− τ)Q (N r(τ),N s(τ)) dτ,

one checks that 
∥∥∥Ñ s(t)

∥∥∥
Hsx,v(µ−1/2)

≤ C e−λ t∥∥∥Ñ r(t)
∥∥∥
L1
x,v(1+|v|k)

≤ C e−min{ν0−ε; 3λ} t

(notice the factor 3 in argument of the exponential). Hence by iterating this argument a finite number
of times, one gets the conclusion.

In a way similar to the linear setting, the nonlinear flow splits in two parts. The first one has the
following properties: (1) it is as smooth as wanted , (2) has Gaussian decay in the small linearization
space, (3) the exponential time decay rate is sharp. The second part of the solution decays exponentially
in time with a rate as close as wanted to ν0, the onset of the continuous spectrum, and carries all the
singularities.

5.7.2. Localization of the L2 singularities. We consider now the space L∞x,v(1 + |v|k), k > 6 (again other
spaces could be considered). We know that the solution ht to the nonlinear equation remains uniformly
bounded in this space along time and decays exponentially fast to zero as time goes to infinity. We
start again from the Duhamel formula. In Subsection 4.10 we showed the following decomposition of the
linearized semigroup

SL(t)hin ∈ (Id−ΠL,0)
(
e−ν(v) t hin(x− vt, v)

)
+O(t−θ)Hα

x,v,loc

for some small α > 0 and some θ > 0. We can then prove arguing exactly as in [22] that∫ t

0

SL(t− τ)Q(hτ , hτ ) dτ ∈ Hα
x,v,loc

for some small α > 0, due to the velocity-averaging nature of the bilinear collision operator. This proves
finally that the nonlinear solution satisfies

ht ∈ (Id−ΠL,0)
(
e−ν(v) t hin(x− vt, v)

)
+O(t−θ)Hα

x,v,loc
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which captures the localization of the L2 singularities.

5.8. Open questions. A first natural question is whether our methods could be extended to the case
of Boltzmann equations with long-range interactions. In the case of non-cutoff hard and moderately soft
potentials, the linearized operator has a spectral gap [91, 57] and we expect our factorization method to be
applicable in this case by using a different decomposition of the linearized collision operator, such as the
one used in [86] in order to quantify the spectral gap in velocity only. In the case of very soft potentials,
the linearized collision operator does not have a spectral gap anymore and the expected time decay rate
is a stretched exponential. It is an interesting question to investigate whether our factorization method
could be used when generalized coercivity estimates replace spectral gap estimates. Another direction
opened by this work is the question of obtaining spectral gap estimates in physical space for kinetic
equations in the whole space confined by a potential (a work is in progress in the case of the kinetic
Fokker-Planck equation in the whole space).

We end up with what seems to us the most interesting open question suggested by this study. In
contrast with many dispersive or fluid PDE’s, the Boltzmann equation (and kinetic equations in general)
does not seem to have a clear notion of critical space, and it has been debatted whether such a notion
would indeed apply to it. Our perturbative study proves that the space L1

vL
∞
x (1+ |v|2+0) is supercritical.

But what is more interesting is that as far as the velocity variable is concerned the space L1
v(1 + |v|2) is

critical, as shown by the studies [82, 72] in the spatially homogeneous case. Therefore we can now focus
on the spatial variable only in order to identify a critical space “below” L∞x . A first step in this direction
would be to use averaging lemma on the nonlinear flow in order to prove perturbative well-posedness
in L1

vL
p
x(1 + |v|2+0) for some p < +∞ possibly large but not infinite. A natural conjecture is then to

ask for the critical space in the variable x to be compatible with the incompressible hydrodynamic limit
(which is “blind” to the functional space used in the velocity variable roughly speaking) and therefore to
be L3

x(T3) as for the three-dimensional incompressible Navier-Stokes equations.

References

[1] Abrahamsson, F. Strong L1 convergence to equilibrium without entropy conditions for the Boltzmann equation.

Comm. Partial Differential Equations 24, 7-8 (1999), 1501–1535.
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[66] Hilbert, D. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Chelsea Publishing Company,

New York, N.Y., 1912 (1953).
[67] Jabin, P.-E. Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma (8) 1 (2009),

71–138.

[68] Kato, T. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of
the 1980 edition.

[69] Lieb, E. H., and Loss, M. Analysis, second ed., vol. 14 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2001.

[70] Lions, P.-L. Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II. J. Math.

Kyoto Univ. 34, 2 (1994), 391–427, 429–461.
[71] Lions, P.-L. Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math.

Kyoto Univ. 34, 3 (1994), 539–584.
[72] Lu, X. Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation.

J. Statist. Phys. 96, 3-4 (1999), 765–796.

[73] Lu, X., and Mouhot, C. On measure solutions of the Boltzmann equation, part I: moment production and stability

estimates. J. Differential Equations 252, 4 (2012), 3305–3363.
[74] Lu, X., and Mouhot, C. On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium.

J. Differential Equations 258, 11 (2015), 3742–3810.
[75] Mischler, S., and Mouhot, C. Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar

solutions and tail behavior. J. Stat. Phys. 124, 2-4 (2006), 703–746.

[76] Mischler, S., and Mouhot, C. Stability, convergence to self-similarity and elastic limit for the Boltzmann equation

for inelastic hard spheres. Comm. Math. Phys. 288, 2 (2009), 431–502.
[77] Mischler, S., and Mouhot, C. Stability, convergence to the steady state and elastic limit for the Boltzmann equation

for diffusively excited granular media. Discrete Contin. Dyn. Syst. 24, 1 (2009), 159–185.
[78] Mischler, S., Mouhot, C., and Rodriguez Ricard, M. Cooling process for inelastic Boltzmann equations for hard

spheres. I. The Cauchy problem. J. Stat. Phys. 124, 2-4 (2006), 655–702.
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