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Abstract. Motivated by the question of existence of global solutions, we obtain pointwise
upper bounds for radially symmetric and monotone solutions to the homogeneous Landau
equation with Coulomb potential. The estimates say that blow up in the L∞ norm at some finite
time T occurs only if a certain quotient involving f and its Newtonian potential concentrates
near zero, which implies blow up in more standard norms, such as the L3/2 norm. This quotient
is shown to be always less than a universal constant, suggesting that the problem of regularity
for the Landau equation is in some sense critical.

The bounds are obtained using the comparison principle both for the Landau equation and
for the associated mass function. In particular, the method provides long-time existence results
for a modified version of the Landau equation with Coulomb potential, recently introduced by
Krieger and Strain.

1. Introduction

This manuscript is concerned with the Cauchy problem for the homogeneous Landau equa-
tion: such equation takes the general form

∂tf(v, t) = Q(f, f), f(v, 0) = fin(v), v ∈ R3, t > 0, (1.1)

where Q(f, f) is a quadratic operator known as the Landau collisional operator

Q(f, f) = div

(∫
R3

A(v − y) (f(y)∇vf(v)− f(v)∇yf(y)) dy

)
. (1.2)

The term A(v) denotes a positive and symmetric matrix

A(v) := Cγ

(
Id− v ⊗ v

|v|2

)
ϕ(|v|), v 6= 0, Cγ > 0,

which acts as the projection operator onto the space orthogonal to the vector v. The function
ϕ(|v|) is a scalar valued function determined from the original Boltzmann kernel describing how
particles interact. If the interaction strength between particles at a distance r is proportional
to r1−s, then

ϕ(|v|) := |v|γ+2, γ =
(s− 5)

(s− 1)
. (1.3)

Note that s = 2 corresponds to the Coulomb potential, in which case γ = −3 [18, Chap-
ter 1, Section 1.4]. Any solution to (1.1)-(1.2) is an integrable and nonnegative scalar field
f(v, t) : R3 × [0, T ] → R+. Equation (1.1) describes the evolution of a plasma in spatially
homogeneous regimes, which means that the density function f depends only on the velocity
component v. Landau’s original intent in deriving this approximation was to make sense of the
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Boltzmann collisional operator, which always diverges when considering purely grazing colli-
sions.

The Cauchy problem for (1.1)-(1.3) is very well understood for the case of hard potentials,
which correspond to γ ≥ 0 above. Desvillettes and Villani showed the existence of global
classical solutions for hard potentials and studied its long time behavior, see [3, 4, 18] and
references therein. In this case there is a unique global smooth solution, which converges
exponentially to an equilibrium distribution, known as the Maxwellian function

M(v) =
1

(2π)3/2
e−
|v|2
2 .

Analyzing the soft potentials case, γ < 0, has proved to be more difficult: using a probabilistic
approach, the authors in [19, 5, 1] show uniqueness and existence of weak solutions for γ ∈
[−2, 0]. For γ ∈ [−3,−2] it is known (i) existence for small time or (ii) global in time existence
with smallness assumption on initial data [1, 2]. Finally, for the Coulomb case γ = −3, Fournier
[6] showed the uniqueness of weak solutions as long as they remain in L∞.

Villani [17] introduced the so called H-solutions, which enjoy (weak) a priori bounds in a
weighted Sobolev space. However, the issue of their uniqueness and regularity (i.e. no finite
time break down occurs) has remained open, even for smooth initial data: see [18, Chapter 1,
Chapter 5] for further discussion.

Guo in [10] employs a completely different approach based on perturbation theory for the
existence of periodic solutions to the spatially inhomogeneous Landau equation in R3. He shows
that if the initial data is sufficiently close to the unique equilibrium in a certain high Sobolev
norm then a unique global solution exists. Moreover, as remarked in [10], this approach also
extends to the case of potentials (1.3) where γ might even take values below −3.

Due to the lack of a global well-posedness theory, several conjectures about possible finite-
time blow up for general initial data have been made throughout the years. In [18] Villani
discussed the possibility that (1.1)-(1.3) could blow up for γ = −3. Note that for smooth
solutions (1.1)-(1.3) with γ = −3 can be rewritten as

∂tf = div(A[f ]∇f − f∇a[f ]) = Tr(A[f ]D2f) + f2, (1.4)

where

A[f ] := A(v) ∗ f =
1

8π|v|

(
Id− v ⊗ v

|v|2

)
∗ f, ∆a = −f.

Equation (1.4) can be thought of as a quasi-linear nonlocal heat equation. Supports for blow-
up conjectures were given by the fact that (1.4) is reminiscent of the well studied semilinear
heat equation

∂tf = ∆f + f2. (1.5)

Blow up for (1.5) is known to happen for every Lp norm, p > 3/2, see [7].
However, despite the apparent similarities, equation (1.4) behaves differently from (1.5).

The Landau equation admits a richer class of equilibrium solution: every MaxwellianM solves
Q(M,M) = 0 which holds, in particular, for those with arbitrarily large mass.

From a different perspective, Krieger-Strain [11] considered a modified version of (1.4)

∂tf = a[f ]∆f + αf2, (1.6)
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and showed global existence of smooth radial solutions starting from radial initial data when
α < 2/3. This range for α later was expanded to any α < 74/75 by means of a non-local
inequality obtained by Gressman, Krieger and Strain [8]. Note that when α = 1, the above
equation can be written in divergence form,

∂tf = div(a[f ]∇f − f∇a[f ]). (1.7)

These results put in evidence how a non-linear equation with a non-local diffusivity such as
(1.7) behaves drastically different from (and better than) (1.5).

Our main results in this manuscript are twofold. The first one gives necessary conditions
for the finite time blow up of solutions to (1.4). The second (unconditional) result says that
solutions to (1.7) do not blow up at all, and in fact become instantaneously smooth (even for
initial data that might be initially unbounded). Both results deal only with radially symmetric,
decreasing initial conditions; more precisely we assume that{

fin ≥ 0,
∫
R3 fin dv = 1,

∫
R3 fin|v|2 dv = 3, fin ∈ L∞(R3),∫

R3 fin log(fin) dv <∞, and |v| ≤ |w| ⇒ fin(v) ≥ fin(w).
(1.8)

The normalization of the initial data is standard and follows a standard change of variables.
The main results are the following.

Theorem 1.1. Let fin be as in (1.8). Then there exists T0 > 0 and f : R3× (0, T0)→ R+ such
that f is smooth and solves (1.4) for t ∈ (0, T0), with f(·, 0) = fin. Moreover, T0 is maximal in

the sense that either T0 =∞ or else the L3/2 norm of f accumulates near v = 0 as t→ T−0 , in
particular

lim
t→T−0

‖f(·, t)‖Lp(B1)
=∞, ∀ p > 3/2.

In fact, the above theorem is a consequence of the following sharper result.

Theorem 1.2. There is a constant ε0, with ε0 ≥ 1/96, such that if above T0 <∞ then

lim sup
r→0+

sup
t∈(0,T0)

{
r2
∫
Br
f(v, t) dv∫

Br
a[f ](v, t) dv

}
≥ ε0.

Neither of the above theorems are enough to guarantee long time existence of classical solu-
tions to (1.4). However, Theorem 1.2 suggests that (1.4) is in some sense “critical” for regularity.
It can be shown (see Proposition 5.6) that for any nonnegative f ∈ L1(R3)

r2
∫
Br
f(v) dv∫

Br
a[f ](v) dv

≤ 3, ∀ r > 0.

In particular, if the ε0 in Theorem 1.2 could be shown to be at least 3 (or in general if the upper
bound in the last inequality could be improved to something less than ε0) it would immediately
follow that solutions to the Landau equation (1.4) cannot blow up in finite time. It is not clear
if this can be guaranteed for general f without at least using some partial time regularization.

On the other hand, methods used in the proof of Theorem 1.1 and Theorem 1.2 yield long
time existence for the modified Landau equation (1.7) (again, in the radial case).

Theorem 1.3. Let fin be as in (1.8) and such that for some p > 6,

fin ∈ Lpweak(R
3).



4 M. Gualdani, N. Guillen

Then, there exists a function f : R3 × R+ → R, smooth for positive times, with f(·, 0) = fin
which solves, for t > 0,

∂tf = a[f ]∆f + f2.

We approach the analysis from the point of view of nonlinear parabolic equations. The
nonlocal dependence of the coefficients on the solution prevents the equation from satisfying a
comparison principle: if v0 is a contact point of two functions f and g, i.e. f(v0) = g(v0) and
everywhere else f(v) ≤ g(v), it does not follow that Q(f, f)(v0) ≤ Q(g, g)(v0). More precisely,
for the case where Q(f, f) corresponds to (1.2) one cannot expect an inequality such as

Tr(A[f ]D2f)(v0) ≤ Tr(A[g]D2g)(v0).

In fact due to the nonlocality of A one only has A[f ](v0) ≤ A[g](v0). Equality A[f ](v0) =
A[g](v0) holds only when f ≡ g for every v ∈ R3. The maximum principle is not useful either,
since at a maximum point for f we only obtain ∂tf ≤ −f∆a[f ], which does not rule out growth
of the maximum of f . The same observations apply to Q(f, f) corresponding to (1.7).

On the other hand, if one could construct (using only properties of f that are independent
of t) a function U(v) such that

Tr(A[f ])D2U) + fU ≤ 0 in R3

( respectively, a[f ]∆U + fU ≤ 0 in R3 ),

then the comparison principle (for linear parabolic equations) would guarantee that f ≤ cU for
all times provided f(t = 0) ≤ cU . Our main observation is that (under radial symmetry) the
above can be made to work with U(v) = |v|−γ , γ ∈ (0, 1). From here higher local integrability of
f can be propagated, and from there higher regularity follows by standard elliptic regularization.

A previous attempt by the authors, also based on upper barrier arguments (but meant to
cover any bounded, fast decaying initial data), was ultimately undone by a computational error.
However, Theorems 1.1-1.3 show that the use of upper barriers to study (1.4) is fruitful at least
for radially symmetric and decreasing initial conditions. On the other hand, the authors in [9]
have shown a local L∞-regularization estimate using De Giorgi iteration method for γ > −2.

Remark 1.4. After the submission of this article, the authors have learned of related work of
Silvestre [16] on the Boltzmann equation, covering the spatially inhomogeneous. In [16] a priori
estimates rely on maximum principle arguments and make use of the regularity for parabolic
integro-differential equations, particularly recent work of Schwab and Silvestre [15].

1.1. Outline. The rest of the paper is organized as follows. After a brief review in Section 2
on nonlinear parabolic theory that will be needed to construct local solutions to the non-linear
problems, in Section 3 we outline the symmetry properties of (1.4). Section 4 deals with short
time existence. In Section 5 we present a barrier argument that will allow to prove conditional
non-blow up results for the Landau equation and global well-posedness for the modified Landau
equation in Section 6.

1.2. Notation. Universal constants will be denoted by c, c0, c1, C0, C1, C. Vectors in R3 will
be denoted by v, w, x, y and so on, the inner product between v and w will be written (v, w).
BR(v0) denotes the closed ball of radius R centered at v0, if v0 = 0 we simply write BR. The
identity matrix will be noted by I, the trace of a matrix X will be denoted Tr(X). The initial
condition for the Cauchy problem will always be denoted by fin.
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The letter Ω denotes a general compact subset of R3. Q ⊂ R3 ×R+ is a space-time cylinder
of parabolic diameter R with R > 0 a general constant, unless otherwise specified. ∂pQ denotes
the parabolic boundary of Q.
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2. A rapid review of linear parabolic equations

We will work with two bilinear operators, namely the one associated to (1.4)

QL(g, f) := div(A[g]∇f − f∇a[g]) = tr[A[g]D2f ] + fg,

and the one associated to (1.7),

QKS(g, f) := div(a[g]∇f − f∇a[g]) = a[g]∆f + fg.

As it is well known, through QL (and also QKS) any g : R3 × R+ → R, gives rise to a linear
elliptic operator with variable coefficients, as follows:

φ→ QL(g, φ) := div(A[g]∇φ− φ∇a[g]) = tr(A[g]D2φ) + φg,

φ→ QKS(g, φ) := div(a[g]∇φ− φ∇a[g]) = a[g]∆φ+ φg.

Accordingly, given such a g and initial data fin, one considers the linear Cauchy problem,{
∂tf = Q(g, f) in R3 × R+,

f(·, 0) = fin,
(2.1)

both when Q = QL or Q = QKS .

Remarks 1. Note that QL(g, f) and QKS(g, f) can both be expressed as a divergence, so any
solution to (2.1) preserves its mass over time, i.e.

‖f(·, t)‖L1(R3) = ‖fin(·)‖L1(R3) =: Min for all t > 0.

Lemma 2.1. See ([12] Thm 5.1 Page 320) Let fin : R3 → R and g : R3 × R+ → R be non-
negative functions such that for some β ∈ (0, 1) we have

fin ∈ L1(R3) ∩ C2+β(R3),

A[g],∇a[g] ∈ Cβ,β/2(R3 × R+).
(2.2)

Then, for every δ > 0 there exists a unique f : R3 × R → R with f ∈ C2+β,1+β/2(R3 × R+)
which is a classical solution of{

∂tf = δ∆f +Q(g, f) in R3 × R+,

f(·, 0) = fin,
(2.3)

where Q(·, ·) denotes either Q = QL or Q = QKS .
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Next we summarize in three theorems several classical local regularity estimates for parabolic
equations of the form

∂tf = div (B∇f + fb) ,

where f : Q→ R and Q = BR(v0)×(t0−R2, t0) ⊂ Rd×R+ is the parabolic cylinder of radius R
centered at some points x0, t0. The first two theorems are respectively a local Hölder estimate
(from De Giorgi-Nash-Moser theory) and a L∞ estimate for f in terms of its boundary data
(Stampacchia estimate), see [12, Chapter III, Theorem 10.1, page 204] and [12, Chapter IV,
Theorem 10.1, page 351] as well as [14, Chapter VI, Theorem 6.29 p. 131] for the respective
proofs. The main point of these theorems is that they do not require any regularity assumption
on the diffusion matrix B (beyond ellipticity and boundedness).

Theorem 2.2. (De Giorgi-Nash-Moser estimate.) Suppose f is a weak solution of the equation

∂tf = div (B∇f + fb) ,

where b is a vector field and B is a symmetric matrix such that

λ I ≤ B(v, t) ≤ Λ I a.e. in Q.

Then, there is some α ∈ (0, 1) and C > 0 such that the following estimate holds:

[f ]Cα,α/2(Q1/2)
≤ C

(
‖f‖L∞(Q) +R2‖b‖L∞(Q)

)
, (2.4)

where Q1/2 := BR/2(x0)× (t0 − (R/2)2, t0) and α and C are determined by λ,Λ, R and d.

Theorem 2.3. (Stampacchia estimate.) If f is a weak solution of

∂tf ≤ div (B∇f + b) ,

with B and b as in the previous theorem, there exists a constant C > 0 such that

‖f‖L∞(Q) ≤ C
(
‖f‖L1(Q) + ‖b‖L∞(Q)

)
, (2.5)

as before, C is determined by λ,Λ, d and R.

The last theorem recalls interior classical regularity estimates when the coefficients are Hölder
continuous in time and space. See [12, Chapter IV] or also [14, Chapter III, Theorem 6.17] for
a proof.

Theorem 2.4. (Schauder estimates.) If B, b ∈ Cβ;β/2(Q), then there is a finite C such that

[D2f ]Cβ,β/2(Q1/2)
+ [∂tf ]Cβ,β/2(Q1/2)

≤ C
(
λ,Λ, R, ‖B‖Cβ;β/2(Q), ‖b‖Cβ;β/2(Q), ‖f‖L∞(Q)

)
.

3. Radial symmetry

This section is devoted to some technical lemmas. The proofs of the first two propositions
are rather technical and can be found in the Appendix.

Proposition 3.1. Suppose fin and g(·, t) are both radially symmetric, and let Q(·, ·) denote
either QL or QKS . Then any solution of the linear Cauchy problem

∂tf = Q(g, f), f(v, 0) = fin(v),

is radially symmetric for all t. Furthermore, if fin and g are radially decreasing, then so is f .
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Let h : R3 → R+, define

A∗[h](v) := (A[h](v)v̂, v̂), v 6= 0, v̂ := v|v|−1. (3.1)

There are two useful expressions for A∗[h] and a[h] when h is radially symmetric.

Proposition 3.2. Let h ∈ L1(R3) be radially symmetric and non-negative. Then

A∗[h](v) =
1

12π|v|3

∫
B|v|

h(w)|w|2 dw +
1

12π

∫
Bc|v|

h(w)

|w|
dw, (3.2)

a[h](v) =
1

4π|v|

∫
B|v|

h(w) dw +
1

4π

∫
Bc|v|

h(w)

|w|
dw. (3.3)

The second formula above is simply the classical formula for the Newtonian potential in
the case of radial symmetry; the formula for A∗[h] is new and the proof can be found in the
Appendix.

Lemma 3.3. Let h ∈ L1(R3) be a non-negative, spherically symmetric function

(1) If h is monotone decreasing with |v|, and∫
BR1
\BR0

h dv ≥ θ > 0,

for some δ > 0 and 0 < R0 < R1 then,

A[h](v) ≥ θR2
0

12π(1 +R3
1)

1

1 + |v|3
I. (3.4)

(2) If h is bounded, i.e. if ‖h‖L∞(R3) = h(0) < +∞, then

A[h](v) ≤ a[h]I ≤ 2

(‖h‖L∞(R3) + ‖h‖L1(R3)

1 + |v|

)
I, ∀ v ∈ R3. (3.5)

Proof. (1) Let A∗[h] be as in (3.2). If |v| ≥ R1, then

A∗[h](v) ≥ 1

12π|v|3

∫
BR1

h(w)|w|2 dw ≥ 1

12π|v|3

∫
BR1
\BR0

h(w)|w|2 dw

≥ R2
0

12π|v|3

∫
BR1
\BR0

h(w, t) dw ≥ θR2
0

12π|v|3
.

Note that Proposition (3.2) guarantees that A∗[h] is radially decreasing. Thus,

A∗[h](v) ≥ θR2
0

12πR3
1

, ∀ v ∈ BR1 .

Combining both estimates, we conclude that

A∗[h](v) ≥ θR2
0

12π(1 +R3
1)

1

1 + |v|3
.

(2) If h ∈ L∞, we may use (3.3) to obtain the estimate

A[h] ≤ a[h](v)I ≤

(
h(0)

4π|v|

∫
B|v|

dw +
1

4π

∫
Bc|v|

h(w) dw

)
I

≤
(
‖h‖L∞(R3) + ‖h‖L1(R3)

)
I, if |v| ≤ 1,
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and

A[h] ≤ a[h](v)I ≤
(‖h‖L1(R)

2π|v|

)
I ≤

(‖h‖L1(R)

1 + |v|

)
I if |v| ≥ 1.

�

Proposition 3.4. Let h be a positive and radially symmetric and decreasing function. For any
γ ∈ (0, 1) define Uγ(v) as

Uγ(v) := |v|−γ .
Then, for Q = QL or Q = QKS

Q(h, Uγ) ≤ Uγ
(
−1

3γ(1− γ)a[h]|v|−2 + h
)
.

Proof. As Uγ is radial

∇Uγ(v) = U ′γ(v) v
|v| , D2Uγ(v) = U ′′γ (v) v

|v| ⊗
v
|v| + U ′γ(v) 1

|v|(I−
v
|v| ⊗

v
|v|).

Thus, in the case Q = QL,

Q(h, Uγ) = tr(A[h]D2Uγ) + hUγ = A∗[h]U ′′γ +
a[h]−A∗[h]

|v|
U ′γ + hUγ .

In particular, since U ′γ = −γr−1Uγ , U ′′γ = γ(γ + 1)|v|−2Uγ , it follows that

QL(h, Uγ) = Uγ
(
γ(γ + 1)A∗[h]|v|−2 − γ(a[h]−A∗[h])|v|−2 + h

)
.

The thesis follows by noticing that A∗[h] ≤ 1
3a[h].

For the case Q = QKS , an analogous computation shows that

Q(h, Uγ) = Uγ
(
−γ(1− γ)a[h]|v|−2 + h

)
≤ Uγ

(
−1

3γ(1− γ)a[h]|v|−2 + h
)
,

where in the last inequality we used γ ∈ (0, 1) and a[h] ≥ 0. �

4. Short time existence.

In this section, the operator Q denotes either QL or QKS . For some nontrivial interval of
existence [0, T ), a smooth solution to{

∂tf = Q(f, f) in R3 × [0, T ),

f(·, 0) = fin,

will be obtained by taking the limit of a sequence of functions {fk}k≥0 constructed recursively
(as explained further below). The interval of existence [0, T ) is maximal in the sense that either
T = ∞ or else the L∞ norm of f(·, t) blows up as t approaches T , so the classical solution
cannot be extended to a longer time interval.

Remark 4.1. As mentioned in the Introduction, existence and uniqueness of bounded weak
solutions to (1.4) has been obtained respectively by Arsenev and Peskov [2] and by Fournier in
[6]. It is likely (but not at all obvious) that the method used in [6] will carry over to the case
of the isotropic equation (1.7). Thus, for the sake of completeness, we provide in this section a
detailed proof of existence (but not uniqueness) of a classical solution for the nonlinear problem
that covers the isotropic equation. For completely classical solutions this is certainly new for
the isotropic equation (1.7) with α = 1, although the methods used in the proof – a priori
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estimates for linear equations, which yield compactness for a sequence of approximate solutions
to the nonlinear problem– are fairly well known, but still somewhat different of the approach
used in [11] for the case α < 3/4. Uniqueness for classical solutions of (1.4) is contained in
Fournier’s result [6], since classical solutions are in particular weak solutions, and as it was just
mentioned above, it is likely that this result can be expanded to cover the equation (1.7).

For technical reasons we first assume that fin satisfies (1.8) and for some c > 0,

fin ∈ C2+β(R3), ‖fin‖C2+β(B1(v)) ≤
c

1 + |v|5
, ∀ v ∈ R3. (4.1)

The last inequality yields a rate of decay for the second derivatives of fin which somewhat
simplify the existence proof. The assumptions (4.1) are auxiliary, and will be removed (by an
approximation argument) in the proof of the Theorem 4.14 at the end of this section.

Fix δ > 0. A sequence {f δk}k≥0 will be constructed recursively, so that for every k

f δk ∈ L∞(R+, L
1(R3) ∩ L∞(R3)) ∩ C2+β,1+β/2(R3 × R+), (4.2)

for some α ∈ (0, 1) independent of k. The construction is done as follows: first, we set f0(v, t) :=
fin(v) for all v and t > 0. Next, assuming we have constructed f δk−1 ∈ L∞(R+, L

1(R3) ∩
L∞(R3))∩C2+β,1+β/2(R3×R+), define f δk as the unique classical solution to the linear Cauchy
problem {

∂tf = δ∆f +Q(f δk−1, f) in R3 × R+,

f(·, 0) = fin.
(4.3)

The fact that the sequence f δk is well defined and satisfies (4.2) follows by repeatedly applying
Lemma 2.1, making use of the fact that for every k ≥ 1, β′ ∈ (0, 1),

f δk satisfies (4.2) and solves (4.3)⇒ A[f δk ],∇a[f δk ] ∈ Cβ′,β′/2(R3 × [0,∞)). (4.4)

That this is so is essentially a consequence of the fact that A[f δk ] and ∇a[f δk ] are convolutions

of f δk with relatively nice kernels; we do not write out the explicit proof of the above fact here,
as the proof is essentially the same as that of Lemma 4.7, where a quantified version of the
assertion (4.4) is proved. Thus, we have entirely constructed the sequence {f δk}k≥0, each f δk
being also radially symmetric and monotone, thanks to Proposition 3.1 and (1.8).

Remark 4.2. Note that, for the purpose of iteration in k, the coefficients A[fin] and ∇a[fin]
(which are independent of time) are Hölder continuous in space thanks to (4.1).

Once we have constructed the sequence {f δk}k, we will focus in showing that it converges

locally uniformly in R3 × [0, T δ∗ ) (δ fixed, k → ∞) to some function f δ in R3 × [0, T δ∗ ), where
f δ is a classical solution of

∂tf
δ = δ∆f δ +Q(f δ, f δ), f δ = fin

The proof of this fact will take most of this section, it is achieved in Theorem 4.12. The selection
of T δ∗ will guarantee that either T δ∗ = ∞ or else ‖f δ(·, t)‖∞ blows up as t → T δ∗ . Then, we
take the limit δ → 0 along a subsequence, making sure f δ and its derivatives converge locally
uniformly to a solution of the original nonlinear problem, this is done in Theorem 4.14, where
the auxiliary assumption (4.1) is also removed.

We start by using a differential inequality argument to control the L∞-norm of the f δk uni-
formly in k and δ for at least some time interval depending only on ‖fin‖L∞(R3).
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Lemma 4.3. Let {f δk}k be the sequence defined above. Then, for every k ∈ N we have

f δk (0, t) ≤ fin(0)

1− fin(0)t
, ∀ t ∈

[
0,

1

fin(0)

)
.

Proof. Since fin(0) > 0 it is immediate that the estimate holds for k = 0. Arguing by induction,
suppose that

f δk−1(0, t) ≤
fin(0)

1− fin(0)t
, ∀ t ∈

[
0,

1

fin(0)

)
.

Let us prove the corresponding inequality for f δk . By virtue of f δk being smooth, radially symmet-

ric and monotone decaying, it follows that f δk (0, t) ≥ f δk (v, t) for all v and t and D2f δk (0, t) ≤ 0

for all t. Plugging this information on the equation solved classical by f δk , we obtain

∂tf
δ
k (0, t) = 2−k∆f δk (0, t) + tr(A[f δk−1](0, t)D

2f δk (0, t)) + f δk−1(0, t)f
δ
k (0, t)

≤ f δk−1(0, t)f δk (0, t).

Then, we may integrate the following differential inequality in time

∂tf
δ
k (0, t) ≤ f δk−1(0, t)f δk (0, t),

and it follows that

f δk (0, t) ≤ fin(0)e
∫ t
0 f

δ
k−1(0,s) ds ≤ fin(0)e

∫ t
0

fin(0)

1−fin(0)s
ds
, ∀ t ∈

[
0,

1

fin(0)

)
,

where the last inequality was due to the inductive hypothesis. Since∫ t

0

fin(0)

1− fin(0)s
ds = − log(1− fin(0)t),

it follows, as desired, that

f δk (0, t) ≤ fin(0)

1− fin(0)t
, ∀ t ∈

[
0,

1

fin(0)

)
.

�

Continuing with our analysis of the sequence {f δk}k, we introduce a quantity that will play a
crucial role in what follows: for every T > 0, δ > 0 let

M(fin, T, δ) := sup
k

∥∥∥f δk∥∥∥
L∞(R3×[0,T ])

= sup
k

sup
0≤t≤T

f δk (0, t). (4.5)

Lemma 4.3 shows that M(fin, T, δ) <∞ for at least every T < fin(0)−1 and any δ > 0. For the
rest of this section, we will be concerned only with those T ’s such that

M(fin, T, δ) <∞. (4.6)

Remark 4.4. In the following series of Lemmas and Propositions, culminating with Theorem
4.12, we will use a series of estimates that will depend on fin, T ,δ and the function M(fin, T, δ).
For the sake of brevity, throughout this section we will write the letters C(fin, T, δ), C0(fin, T, δ),
C1(fin, T, δ),C

′(fin, T, δ) (as well as c(fin, T, δ) et cetera) to denote constants that depend solely
on fin,T ,δ and M(fin, T, δ), with the understanding that the constants may change from one
line to the next.

The next proposition says that we can control the L∞-norm of the coefficients of the equation
(4.3) uniformly in k and δ, as long as (4.6) holds.
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Proposition 4.5. Let δ, k be arbitrary and M(fin, T, δ) as in (4.5). For any t ≤ T and v ∈ R3

we have the pointwise bounds

A[f δk ](v, t) ≤ a[f δk ](v, t)I ≤ 2(M(fin, T, δ) + 1))

1 + |v|
I, (4.7)

|∇a[f δk ](v, t)| ≤ M(fin, T, δ) + 1

1 + |v|2
. (4.8)

Proof. The bound (4.7) follows immediately from (3.2) in Lemma 3.3 applied to h = f δk . On
the other hand, from Newton’s formula (3.3) one sees immediately that

∇a[f δk ] = − v

4π|v|3

∫
B|v|

f δk (w, t) dw. (4.9)

Therefore,

|∇a[f δk ](v, t)| = 1

4π|v|2

∫
B|v|

f δk (w, t) dw.

Using the fact that ‖f δk (·, t)‖L1 = 1 yields

|∇a[f δk ](v, t)| ≤ 1

4π|v|2
∀ (v, t),

while

|∇a[f δk ](v, t)| ≤ 1

4π|v|2
4π

3
|v|3‖f δk (·, t)‖L∞

≤ 1

3
M(fin, T, δ), ∀ (v, t) ∈ B1(0)× [0, T ].

Using that 4π|v|2 ≥ 1+ |v|2 if |v| ≥ 1, we combine the previous inequalities to obtain the bound

|∇a[f δk ](v, t)| ≤ M(fin, T, δ) + 1

1 + |v|2
, (v, t) ∈ R3 × [0, T ],

which proves (4.8). �

For the purposes of controlling the size of f δk (v, t) for large v, it is necessary to bound the

second moment of f δk , in a manner which is uniform in k.

Proposition 4.6. Let T > 0 and δ ∈ (0, 1/10). For any k ∈ N, f δk satisfies the bound∫
R3

f δk (v, t)|v|2 dv ≤ 3 + 10 (1 +M(fin, T, δ))T, ∀ t ∈ [0, T ]. (4.10)

Proof. Let φ(v) be a smooth function with compact support. Using the equation solved by f δk ,
and integrating by parts, we obtain for every t > 0

d

dt

∫
f δk (v, t)φ(v) dv =

∫
f δk

(
δ∆φ+ tr(B[f δk−1]D

2φ) + 2(∇a[f δk−1],∇φ)
)
dv.
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Above B[f δk−1] denotes a[f δk−1]I or A[f δk−1] depending on whether Q = QKS or Q = QL.
Integrating in time, it follows that∫

f δk (v, t2)φ(v) dv −
∫
f δk (v, t1)φ(v) dv

=

∫ t2

t1

∫
f δk

(
δ∆φ+ tr(B[f δk−1]D

2φ) + 2(∇a[f δk−1],∇φ)
)
dvdt,

for all 0 ≤ t1 < t2. Next, we apply this identity to the sequence φj(v) = |v|2ηj(v), where

ηj ∈ C∞c (R3), and ηj(v) → 1 locally uniformly. Due to the integrability of f δk and the bounds
(4.7)-(4.8), we have enough decay at infinity to pass to the limit j → ∞ in the integral and
conclude that the identity also holds for the function φ(v) = |v|2. Therefore, given 0 ≤ t1 < t2
we have the identity,∫

f δk (v, t2)|v|2 dv −
∫
f δk (v, t1)|v|2 dv =

∫ t2

t1

∫
f δk

(
δ6 + 2tr(B[f δk−1]) + 4(∇a[f δk−1], v)

)
dvdt.

Now, the bounds (3.2)-(3.3) guarantee that in R3 × [0, T ] we have

tr(B[f δk−1]) ≤ 2M(fin, T, δ) + 2,

|(∇a[f δk−1], v)| ≤ (M(fin, T, δ) + 1)|v|
1 + |v|2

≤M(fin, T, δ) + 1.

Therefore, as long as t ∈ [0, T ]∣∣∣∣∫ t2

t1

∫
f δk

(
δ6 + 2tr(B[f δk−1]) + 4(∇a[f δk−1], v)

)
dvdt

∣∣∣∣
≤
∫ t2

t1

∫
f δk (δ6 + 8M(fin, T, δ) + 8) dvdt

≤ (6δ + 8 + 8M(fin, T, δ)) (t2 − t1).

Taking t1 = 0 it follows that for δ ∈ (0, 1/10)∫
f δk (v, t2)|v|2 dv ≤

∫
fin|v|2 dv + 10 (1 +M(fin, T, δ))T ∀ t ∈ [0, T ].

Since
∫
fin|v|2 dv = 3 by assumption (1.8), this proves the proposition. �

Next, we show how f δk−1 ∈ L∞(R+, L
1(R3) ∩ L∞(R3)) ∩ Cα,α/2(R3 × R+) implies Hölder

continuity of the coefficients appearing in Q(f δk−1, f), and emphasizing the estimate is uniform
in k for δ > 0 fixed whenever T is such that (4.6) holds.

Lemma 4.7. Let δ ∈ (0, 1/10) and T > 0 such that (4.6) holds. Then, there is an absolute
constant C > 0 such that for any α ∈ (0, 1) we have the following bound for every k ≥ 1,

[A[f δk ]]Cα,α/2(R3×[0,T ]) ≤ C
(

[f δk ]Cα,α/2(R3×[0,T ]) +M(fin, T, δ) + 1
)
,

[∇a[f δk ]]Cα,α/2(R3×[0,T ]) ≤ C
(

[f δk ]Cα,α/2(R3×[0,T ]) +M(fin, T, δ) + 1
)
.

Proof. Let η ∈ C∞(R3) be an even function such that η ≡ 1 in B1(0) and η ≡ 0 outside B2.
Let us write,

A[f δk ] = A1[f
δ
k ] +A2[f

δ
k ].
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Each Ai (i = 1, 2) is given by convolutions Ai[f
δ
k ] = Ki ∗ f δk with the respective kernels

K1(v) :=
1

8π|v|

(
Id− v ⊗ v

|v|2

)
η(v), K2(v) :=

1

8π|v|

(
Id− v ⊗ v

|v|2

)
(1− η(v)).

Let us show that A1, A2 are Hölder continuous in v ant t. We shall make use of the fact that
there is a constant C(η) such that∫

R3

|K1(v)| dv + sup
v
|K2(v)|+

3∑
i=1

sup
v
|∂iK2(v)|+

3∑
i,j=1

sup
v
|∂ijK2(v)| ≤ C(η),

where the matrix norm used is the standard L2 norm |A| = tr(AA∗)1/2. For A1 it is straight-
forward that

|A1(v1, t1)−A1(v2, t2)| ≤
∫
B2

|K1(w)||f δk (v1 − w, t1)− f δk (v2 − w, t2)| dw

≤
(∫

B2

|K1(w)| dw
)

sup
w∈B2(0)

|f δk (v1 − w, t1)− f δk (v2 − w, t2)|,

the above holding for any (vi, ti), then

[A1]Cα,α/2 ≤ C(η)[f δk ]Cα,α/2 .

Next we deal with A2, which in fact will be Lipschitz continuous. Fix e ∈ S2 and write
K2,e(v) := (K2(v)e, e). Using the equation for f δk and integration by parts,

∂t(A2[f
δ
k ](v)e, e) =

∫
Bc1

K2,e(w − v)∂tf
δ
k dw =−

∫
Bc1

(∇wK2,e(w − v), (A[f δk−1] + δI)∇wf δk ) dw

+

∫
Bc1

f δk (∇wa[f δk−1],∇wK2,e(w − v)) dw.

Integrating by parts once again,

−
∫
Bc1

(∇wK2,e(w − v), (A[f δk−1] + δI)∇wf δk ) dw =

∫
Bc1

divw((A[f δk−1] + δI) · ∇wK2,e(w − v))f δk dw

=

∫
Bc1

f δk tr(A[f δk−1]D
2
wK2,e(w − v)) dw

+

∫
Bc1

f δk∇wa[f δk−1] · ∇wK2,e(w − v)) dw

+ δ

∫
Bc1

f δk∆wK2,e(w − v) dw.

Gathering all of the above, it follows that

∂t(A2[f
δ
k ]e, e) =

∫
Bc1

f δk tr(A[f δk−1]D
2
wK2,e(w − v)) dw + 2

∫
Bc1

f δk (∇wa[f δk−1],∇wK2,e(w − v)) dw

+ δ

∫
Bc1

f δk∆wK2,e(w − v) dw.
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Therefore, we have the bound

|∂t(A2[f
δ
k ](v)e, e)| ≤ ‖D2K2,e‖L∞‖A[f δk−1]‖L∞‖f‖L1 + 2‖∇K2,e‖L∞‖∇a[f δk−1]‖L∞‖f‖L1

+ δ‖∆K2,e‖L∞‖f δk‖L1

≤ ‖K2,e‖C2

(
‖A[f δk−1]‖L∞ + ‖∇a[f δk−1]‖L∞ + δ

)
≤ ‖K2,e‖C2(3M(fin, T, δ) + 4),

where we used (4.7)-(4.8) and δ ∈ (0, 1/10) in the last inequality. Since ‖K2,e‖ ≤ C(η) for all e,

|∂t(A2[f
δ
k ](v)e, e)| ≤ 4C(η)(M(fin, T, δ) + 1).

This immediately implies a Lipschitz bound in time for A2, namely

|A2(v, t1)−A2(v, t2)| ≤ 12‖K2‖C2(M(fin, T, δ) + 1)|t1 − t2|, ∀ v ∈ R3, t1, t2 ≥ 0.

For the spatial regularity, from the definition of A2 and the triangle inequality it follows that

|A2(v1, t)−A2(v2, t)| ≤
∫
|K2(w − v1)−K2(w − v2)|f δk (w, t) dw

≤ C(η)|v1 − v2|
∫
f δk (w, t) dw ∀ vi ∈ R3, t ≥ 0.

Then, thanks to ‖f δk (·, t)‖L1 = 1, it follows that

|A2(v1, t)−A2(v2, t)| ≤ C(η)|v1 − v2|, ∀ vi ∈ R3, t > 0.

Finally, we combine the estimates in time and space to see that

|A2(v1, t1)−A2(v2, t2)|
≤ |A2(v1, t1)−A2(v2, t1)|+ |A2(v2, t1)−A2(v2, t2)|
≤ 15C(η)(M(fin, T, δ) + 1)(|v1 − v2|+ |t1 − t2|), ∀ (vi, ti).

Since |v1− v2|+ |t1− t2| ≤ |v1− v2|α + |t1− t2|α/2 when |v1− v2|, |t1− t2| ≤ 1, we conclude that

[A2]Cα,α/2(R3×[0,T ]) ≤ 15C(η)(M(fin, T, δ) + 1).

The proof of Hölder regularity for ∇a[f δk ](v, t) can be done in an entirely analogous manner,
writing the kernel as the sum of respectively integrable and C2 parts. One may also make a
slightly different argument, using the fact that since f δk is spherically symmetric, we have the
identity (4.9) which yields a similar bound. �

For the purposes of the proof of existence of solutions, we require several parabolic estimates
that are local in space but uniform up to the t = 0. Notice these are different to the interior
estimates stated in Section 2, namely Theorems 2.2, 2.3 and 2.4, which will be of chief impor-
tance in latter sections. The parabolic estimates hold in a space-time cylinder, which starts at
time t = 0, and are in terms of respective norm of the initial data. They guarantee in particular
that under the auxiliary assumptions (4.1) on fin the functions f δk will have spatial decay on
their second derivatives.

Lemma 4.8. (Hölder estimate for regular initial data) There exists some α ∈ (0, 1) and con-
stant c which only depends on δ, fin, T and [fin]C2+β(R3) such that for any v ∈ R3 and k ≥ 1

[f δk ]Cα,α/2(B1(v)×[0,T ]) ≤ c(δ,M(fin, T, δ), [fin]C1(B2(v))). (4.11)
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(Schauder estimate up to the initial time) Let β ∈ (0, 1). Then for any v ∈ R3, k ≥ 1,

[f δk ]C2+α,1+α/2(B1(v)×[0,T ]) ≤ C(‖f δk‖L∞(B2(v)×[0,T ]) + [fin]C2+β(B2(v))), (4.12)

where C = C(fin, T, δ).

Proof. For the proof of the first estimate we refer to [12, Thm. 10.1 Page 204]. Note that the
constant does not depend in any way on the regularity of the coefficients in the equation solved
by f δk , and depends only on the ellipticity constants, and the regularity of fin. The second
estimate follows from [12, Thm 10.1 page 351], noting that the space-time Hölder norm of the
coefficients A[f δk−1],∇a[f δk−1]is bounded by a constant C(fin, T, δ), thanks to 4.7 and the first

estimate (4.11) applied to f δk−1 (when k > 1, for k = 1 f δ0 ≡ fin which is regular in space and
constant in time). �

Next we show that the diffusion matrices A[f δk ] + δI are Hölder continuous in a manner
which is uniform in k (but possibly depending on δ). In this case, standard estimates for linear
parabolic equations will yield Hölder bounds on the second order spatial derivates and first
order temporal derivatives for f δk , these being uniform in k. Particularly, since we are assuming

a spatial decay for the second derivatives of fin (see (2.2)) the same will hold for f δk .

Proposition 4.9. Let δ ∈ (0, 1/10) and 0 < T < ∞ be such that (4.6) holds. Then there is a
constant C = C(δ, fin, T ) such that for any v ∈ R3, Moreover, there is a C depending only on
fin, δ, T , M(fin, T, δ) such that

‖D2f δk‖Cα(B1(v)×[0,T ]) ≤ C(1 + |v|5)−1 ∀ v ∈ R3. (4.13)

Proof. We will first show that f δk (v, t) decays as (1 + |v|5)−1 for v large. For that fix v ∈ R3,

then the spherically symmetry and radial monotonicity of f δk implies that

7

6
π|v|3f δk (v, t) ≤

∫
B|v|\B|v|/2

f δk (w, t) dw

≤ 4

|v|2

∫
R3

f δk (w, t)|w|2 dw.

Using the second moment bound (4.10) we arrive at the estimate

f δk (v, t) ≤ 4

π|v|5
(3 + 10(1 +M(fin, T, δ))T )

for all |v| ≥ 1 and t ∈ [0, T ]. Since f δk (v, t) ≤M(fin, T, δ) as long as t ≤ T we conclude that

f δk (v, t) ≤ C ′(fin, T, δ)

1 + |v|5
, ∀ (v, t) ∈ R3 × [0, T ], (4.14)

with C ′(fin, T, δ) := max{M, 4π (3 + 10(1 +M(fin, T, δ))T )}. The bound follows combining the
initial bound (4.1), the decay estimate(4.14) and the estimate (4.12) from Lemma 4.8. �

So far we have shown the existence of the sequence {f δk}, and proven several uniform estimates

which are uniform k for times T < T δ∗ . Moving towards obtaining a limit from this sequence,
we prove an iterative estimate on the size of the functions {f δk − f δk−1}k in R3× [0, T ], for δ > 0
fixed and T such that C(fin, T, δ) <∞.

Lemma 4.10. Let δ ∈ (0, 1/10) and T > 0 be such that (4.6) holds and let wδk := f δk−1− f δk for
each k ≥ 1. There is a number 0 < T0 < T , T0 = T0(fin, T, δ) such that
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(1) For each k ≥ 2,

‖wk(v, t)〈v〉4‖L∞(R3×[0,T0]) ≤
1

4
‖wk−1(v, t)〈v〉4‖L∞(R3×[0,T0]).

(2) For each k ≥ 2, and l = 1, ..., l0 we have

‖wδk(v, t)〈v〉4‖L∞(R3×[tl−1,tl]) ≤
1

4
‖wδk−1(v, t)〈v〉4‖L∞(R3×[tl−1,tl])

+ 2‖wδk(tl−1)〈v〉4‖L∞(R3).

Here l0 ∈ N is the largest such that (l0 − 1)T0 ≤ T and tl := min{lT0, T}.

Proof. We shall drop the superscript δ for convenience. Using the respective equations for fk−1
and fk we get that wk = fk−1 − fk satisfies

∂twk = δ∆wk + tr(A[fk−2]D
2wk) + fk−2wk

+ tr(A[wk−1]D
2fk) + fkwk−1, for t > 0, (4.15)

wk = 0 for t = 0.

Step 1. According to Proposition 4.9, there is a positive constant C(fin, T, δ) such that

|D2f δk (v, t)| ≤ C(fin, T, δ)(1 + |v|5)−1, ∀ v ∈ R3, t ∈ [0, T ]. (4.16)

The estimate (4.16) and the estimate (3.5) applied to wk−1 imply the inequality

|tr(A[wk−1]D
2fk(v, t))| ≤ C(fin, T, δ)

(‖wk−1(·, t)‖L∞(R3) + ‖wk−1(·, t)‖L1(R3)

1 + |v|5

)
,

which holds for any (v, t) ∈ R3 × [0, T ]. On the other hand, 〈v〉−4 ∈ L1(R3), therefore

‖wk(t)‖L1 =

∫
R3

|wk(v, t)|〈v〉4〈v〉−4 dv ≤ ‖wk(t)〈v〉4‖L∞‖〈v〉−4‖L1(R3).

Substituting this in the last estimate, we arrive at the bound,

|tr(A[wk−1]D
2fk(v, t))| ≤ C(fin, T, δ)‖wk−1(t)〈v〉4‖L∞(R3)(1 + |v|5)−1.

Step 2. Consider the function h0(v) := 〈v〉−4 = (1 + |v|2)−2, then

Dh0(v) = −4(1 + |v|2)−3 v,
D2h0(v) = −4(1 + |v|2)−3I + 24(1 + |v|2)−4v ⊗ v.

In particular,

∆h0 = 12
(
|v|2 − 1

)
〈v〉−8,

tr(A[fk−2]D
2h0) = −4〈v〉−6a[fk−2] + 24〈v〉−8(A[fk−2]v, v).

Using the inequalities ||v|2 − 1|, |v|2 ≤ 〈v〉2, the above leads to

|δ∆h0| ≤ 12δ〈v〉−6,
|tr(A[fk−2]D

2h0| ≤ 4〈v〉−6a[fk−2] + 24〈v〉−6a[fk−2].

Then, recalling that δ ∈ (0, 1/10)⇒ 12δ < 3/2 we combine the above inequalities into one,

|δ∆h0 + tr(A[fk−2]D
2h0)| ≤ 28 (1 + a[fk−2]) 〈v〉−6 ≤ 56(1 + C(fin, T, δ))h0,
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where we have used (4.7) to bound a[fk−2].

Step 3. Next, let

H0(v, t) := RA−1(eAt − 1)h0(v),

for A,R > 0 to be determined. It is immediate that

∂tH0 = AH0 +Rh0.

The last inequality in Step 2 implies that

|δ∆H0 + tr(A[fk−2]D
2H0)|+ fk−2H0 ≤ 60(1 + C(fin, T, δ))H0.

The estimates from Step 1, the definition of h0(v) and (4.14) yield

tr(A[wk−1]D
2fk) + fkwk−1 ≤ C0‖wk−1(t)〈v〉4‖L∞(R3)h0(v),

with C0 = C0(fin, T, δ). In light of this, for any T0 ∈ (0, T ), we choose A and R as follows

A = 60(1 + C(fin, T, δ)),

R = C0 sup
0≤t≤T0

‖wk−1(t)〈v〉4‖L∞(R3).

In which case, we have for any (v, t) ∈ R3 × [0, T0]

∂tH0 ≥ 60(1 + C(fin, T, δ))H0 + C0

(
‖wk−1(·, t)‖L∞(R3) + ‖wk−1(·, t)‖L1(R3)

)
h0

≥ δ∆H0 + tr(A[fk−2]D
2H0) + fk−2H0 +

(
tr(A[wk−1]D

2fk) + fkwk−1
)
.

This means that H0 is a supersolution of (4.15), the parabolic equation solved by wk. Moreover
H0(·, 0) = wk(·, 0) = 0. Then, thanks to the comparison principle

wk ≤ H0 in R3 × [0, T0].

The same argument applied to −wk yields,

ηk ≤ H0 in R3 × [0, T0].

We have shown there are constants C0(fin, T, δ) and C1(fin, T, δ) such that

|wk(v, t)| ≤ C0‖wk−1(v, t)〈v〉4‖L∞(R3×[0,T0])(e
C1(fin,T,δ)t − 1)〈v〉−4, in R3 × [0, T0].

In particular, there is a T0, depending only on T and C0(fin, T, δ), such that

T0 ∈ (0, T ), and C0(e
C1(fin,T,δ)T0 − 1) ≤ 1

4
.

This results on the estimate,

‖wk(v, t)〈v〉4‖L∞(R3×[0,T0]) ≤
1

4
‖wk−1(v, t)〈v〉4‖L∞(R3×[0,T0]),

and the first part of the lemma is proved.

Step 4. Fix k ≥ 2. Assume for now that 2T0 < T –same T0 as in Step 3– and define the
function H1 : R3 × [T0,∞)→ R by

H1(v, t) := RA−1(eA(t−T0) − 1)h0(v) + ‖wk(T0)〈v〉4‖L∞(R3)h0(v),
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where A and R are to be determined. A straightforward computation yields

∂tH1 = ReA(t−t0)h0(v) = A
(
RA−1(eA(t−T0) − 1)h0(v) + ‖wk(T0)〈v〉4‖L∞(R3)h0(v).

)
+Rh0(v)− ‖wk(T0)〈v〉4‖L∞(R3)h0(v)

= AH1 +Rh0(v)− ‖wk(T0)〈v〉4‖L∞(R3)h0(v).

As in the previous step, we have

δ∆H1 + tr(A[fk−2]D
2H1) + fk−2H1 + tr(A[wk−1]D

2fk) + fkwk−1 + 2−k∆fk

≤ 60(1 + C(fin, T, δ))H1 + h0C0‖wk−1(v, t)〈v〉4‖L∞(R3×[T0,2T0])

= AH1 + h0(R−A‖wk(v, T0)〈v〉4‖L∞(R3)) = ∂tH1,

by choosing

A =60(1 + C(fin, T, δ)),

R =C0‖wk−1(v, t)〈v〉4‖L∞(R3×[T0,2T0]) + 60(1 + C(fin, T, δ))‖wk(v, T0)〈v〉4‖L∞(R3).

Likewise, H1(·, T0) ≥ wk(·, T0). Then, just as before, the comparison principle says that
H1(·, t) ≥ wk(·, t) for t ∈ [T0, 2T0],

|wk(v, t)| ≤ C0(e
C1(fin,T,δ))t − 1)‖wk−1(v, t)〈v〉4‖L∞(R3×[T0,2T0])〈v〉

−4

+ ‖wk(v, T0)〈v〉4‖L∞(R3)(e
C1(fin,T,δ)t − 1)〈v〉−4

+ ‖wk(v, T0)〈v〉4‖L∞(R3)〈v〉−4.

Hence for t ∈ [T0, 2T0] we get

‖wk(v, t)〈v〉4‖L∞(R3×[T0,2T0]) ≤
1

4
‖wk−1(v, t)〈v〉4‖L∞(R3×[T0,2T0])

+ 2‖wk(v, T0)(1 + |v|2)2‖L∞(R3).

This yields the second estimate, in the case l = 2. The above argument can be repeated to
obtain a respective estimate in the interval [2T0, 3T0], and so on. After a finite number of
iterations we will reach some l0 ∈ N such that (l0 − 1)T0 ≤ T and l0T0 > T . In that case we
repeat the above argument on the interval [(l0 − 1)T0, T ], yielding the respective bound and
completing the proof of the second estimate.

�

The next lemma shows that if δ ∈ (0, 1/10) and T is a time for which (4.6) holds, the sequence
f δk will converge uniformly in R3 × [0, T ] to a continuous limit f δ.

Lemma 4.11. Let {f δk}k, δ ∈ (0, 1/10), and T > 0 be such that (4.6) holds. Then there is a

continuous function f δ : R3 × [0, T ]→ R such that

lim
k
‖f δ − f δk‖L∞(R3×[0,T ]) = 0,

lim
k
‖f δ − f δk‖L∞(0,T ;L1(R3)) = 0.

Proof. Let T0 > 0, l0 and tl be as in Lemma 4.10. Define, for l = 0, 1, . . . , l0 and k ∈ N

Ek,l := ‖wk(v, t)〈v〉4‖L∞(R3×[tl−1,tl]).
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Then, Lemma 4.10 says the following recursive relations hold for k ≥ 2 and l = 0, . . . , l0

Ek,1 ≤
1

4
Ek−1,1,

Ek,l ≤ 4Ek,l−1 +
1

2
Ek−1,l.

We claim that these recurrence relations guarantee the summability in k of the sequence {Ek,l}k
for any fixed l = 1, . . . , l0. The first recurrence relation implies that Ek,1 decays geometrically,
thus we immediately have

∞∑
k=3

Ek,1 <∞.

Next, suppose that for some 1 < l < l0 we have

∞∑
k=3

Ek,l <∞.

Taking the sum for k from 3 to N of the second recursive relation we get

N∑
k=3

1

2
Ek,l+1 ≤ 4

N∑
k=3

Ek,l +
1

2
E2,l+1.

We can then pass to the limit N → +∞, and use the summability for Ek,l to obtain

N∑
k=3

1

2
Ek,l+1 < +∞.

Combining the summability of the sequences {Ek,l}k for every l ≤ l0, we conclude that∑
k

‖(fk(v, t)− fk−1(v, t))〈v〉4‖L∞(R3×[0,T ]) <∞.

Since 〈v〉 ≥ 1 for all v, and 〈v〉−4 = (1 + |v|2)−2 ∈ L1(R3), this implies that∑
k

‖fk − fk−1‖L∞(R3×[0,T ])) <∞,∑
k

‖fk − fk−1‖L∞(0,T ;L1(R3)) <∞.

This summability implies {fk} is a Cauchy sequence in each norm, proving the lemma. �

Theorem 4.12. For each δ ∈ (0, 1/10) there is a time T δ∗ = T δ∗ (fin) with 0 < T δ∗ ≤ ∞ and a

function f δ in C2,1
loc

(
R3 × [0, T∗)

)
, such that{

∂tf
δ = δ∆f δ +Q(f δ, f δ) in R3 × [0, T δ∗ ),

f δ(·, 0) = fin.

Moreover, either T δ∗ =∞ or

lim sup
T→T δ∗

−
‖f δ‖L∞(0,T ;L∞(R3)) =∞.
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Proof. Step 1. Let

T δ∗ := sup {T > 0 | M(fin, T, δ) <∞} .

By Lemma 4.3 we have T δ∗ ≥ (2fin(0))−1, thus T δ∗ > 0. It may certainly be that T δ∗ = ∞.
Now, we may apply Lemma 4.11 to f δk and any fixed T < T δ∗ , resulting in a continuous function

f δ : R3 × [0, T δ∗ )→ R such that

f δk → f δ uniformly in R3 × [0, T ), ∀ T < T δ∗ .

On the other hand, we have the estimates from Lemma 4.8 which guarantee, by the Arzela-
Ascoli theorem, that for any subsequence kn → ∞ there is a subsequence k′n such that ∂tf

δ
k′n

and D2f δk′n converge locally uniformly in R3× [0, T∗) as n→∞. Since f δk → f locally uniformly

and {kn} was arbitrary it follows that (i) f δ ∈ C2,1
loc

(
R3 × [0, T∗)

)
, and (ii) the sequences D2f δk

and ∂tf
δ
k converge locally uniformly to D2f δ and ∂tf

δ as k →∞, respectively.

Step 2. Let us show the matrices {A[f δk ]}k converge locally uniformly in R3 × [0, T δ∗ ) to

A[f δ]. Indeed, let t ∈ [0, T δ∗ ) and apply the estimate (3.5) to g = |fk(·, t)− f δk (·, t)| (which is a
non-negative, bounded, spherically symmetric function), which leads to the bound

|A[f δk ](v, t)−A[f δ](v, t)| ≤ 2
(
‖fk(·, t)− f δk (·, t)‖L∞(R3) + ‖fk(·, t)− f δk (·, t)‖L1(R3)

)
for all v and t < T δ∗ . Then Lemma 4.11 shows A[f δk ] converges uniformly to A[f δ] uniformly in

R3 × [0, T ] for every T < T δ∗ .

Step 3. Thanks to the local uniform convergence of f δk , D
2f δk , ∂tf

δ
k and A[f δk ] proved in the

previous two steps, we can pass to the limit in the equation for f δk and conclude that

∂tf
δ = δ∆f δ +Q(f δ, f δ) in R3 × [0, T δ∗ ).

Step 4. We show here that if T δ∗ is finite, then the L∞ norm of f δ(·, t) goes to infinity as t
approaches T δ∗ . Arguing by contradiction, suppose that T δ∗ is finite, and

lim sup
T→T δ∗

f δ(0, t) < +∞.

Since f δ is continuous and bounded for any t < T δ∗ then f δ is bounded for any t ≤ T δ∗ and in
particular

f δ(0, T δ∗ − ε) ≤ C, ε > 0.

The uniform convergence of f δk → f δ for all t < T δ∗ shows that for any small enough ε > 0 there
is some k0 such that

f δk (0, T δ∗ − ε) < 2C, ∀ k > k0. (4.17)

Since supk f
δ
k (0, T δ∗ − ε) < +∞, then (4.17) implies

f δk (0, T δ∗ − ε) < C̃, ∀ k ≥ 1.

Then, the differential inequality argument from Lemma 4.3, applied with starting time shifted
to T δ∗ − ε, proves that

f δk (0, T δ∗ − ε+ t) ≤ C̃

1− C̃t
, ∀ k ≥ 1, 0 < t <

1

C̃
.
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Taking now t = 1
2C̃

and ε = 1
4C̃

yields

f δk (0, T δ∗ + ε) < 2C̃,

which contradicts the maximality of T δ∗ . The theorem is proved.
�

Next, we show that as long as f δ(v, t) is bounded in a time internal [0, T ], the mass of
f δ(v, t) cannot escape to infinity nor concentrate at the origin. The bound is independent of δ.
A consequence of this result is a local lower bound for A[f δ] along radial directions.

Proposition 4.13. Let δ ∈ (0, 1/10), f δ be a function given by Theorem 4.14, T < T δ∗ and let
M > 0 be such that

‖f δ‖L∞×[0,T ] < M.

Then, there are radii r(fin, T,M) and R(fin, T,M) such that 0 < r < R <∞ and∫
BR\Br

f δ(v, t) dv ≥ 1

2
, ∀ t ∈ [0, T ]. (4.18)

As a consequence, there is a positive constant c0 = c0(fin, T,M) such that

A∗[f δ](v, t) ≥ c0
1 + |v|3

, ∀ v ∈ R3, t ∈ [0, T ], k ∈ N, (4.19)

where A∗[·] is as defined in (3.2).

Proof. Given R > 0, the mass of f δ outside BR(0) may be estimated via its second moment∫
BcR

f δ dv ≤
∫
BcR

f δ
|v|2

R2
dv ≤ 1

R2

∫
R3

f δ(v, t)|v|2 dv.

Moreover for any r,R with R > r > 0 there is the obvious lower bound,∫
BR\Br

f δ(v, t) dv = 1−
∫
BcR

f δ(v, t) dv −
∫
Br

f δ(v, t) dv

≥ 1− 1

R2

∫
R3

f δ(v, t)|v|2 dv − 4π

3
r3M. (4.20)

where we made use of the fact that ‖f δ(·, t)‖L1 = 1. Following exactly the same steps as in the
proof of Proposition 4.6 one can show∫

R3

f δ(v, t)|v|2 dv ≤ 3 + 10 (1 +M)T, ∀ t ∈ [0, T ]. (4.21)

Hence (4.18) follows from (4.20) and (4.21) by choosing

R := 2 (3 + 10(1 +M)T )1/2 ,

r := (8πM)−1/3.

Finally (4.19) follows from (4.18), the selection of R and r above, and Lemma 3.3.
�
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Theorem 4.14. Given fin as in (1.8), there is a time T∗ and a function f ∈ C2;1
loc

(
R3 × (0, T∗)

)
with initial data fin, which solves (1.4) or (1.7). Moreover, either T∗ =∞ or

lim sup
t→T−∗

‖f‖L∞(R3×[0,t]) =∞.

The initial data is achieved in the sense that for any φ ∈ C∞c (R3) and any t ∈ (0, T∗) we have∫
R3

f(v, t)φ(v) dv −
∫
R3

fin(v)φ(v) dv = −
∫ t

0

∫
(B[f ]∇f − f∇a[f ],∇φ) dv dt.

Here B[f ] denotes A[f ] or a[f ]I depending on whether we are dealing with (1.4) or (1.7).

Proof. Step 1. Let us assume first that fin satisfies the additional assumptions (4.1), this
assumption will be removed in the final step. For each n ∈ N, let fn := f δn and Tn := T δn∗
correspond to f δ with δ = 10−n, as constructed in Theorem 4.12. Then, each fn is a spherically
symmetric, monotone solution to

∂tfn = 1
10n∆fn +Q(fn, fn) in R3 × [0, Tn), fn(v, 0) = fin(v).

Moreover, for each n, we have that either Tn =∞ or else ‖fn(·, t)‖∞ →∞ as t→ Tn.
We define T∗ by

T∗ := inf{T | lim inf
n

M(fin, T, 10−n) =∞}, (4.22)

with the understanding that T∗ = ∞ if the set above is empty. As before, it is not difficult to
see that T∗ ≥ (2fin(0))−1. See Remark 4.15 for further discussion about the definition of T∗.

Step 2. Let us show then that there exists a solution in R3 × (0, T∗). Let Tj be a strictly
increasing sequence of times, with limTj = T∗. Fix j, then since Tj < T∗ there is a subsequence
{nj,k}, nj,k →∞ as k →∞, and such that

sup
k
M(fin, T, 10−nj,k) <∞.

The above combined with Proposition 4.13 implies there is a constant c = c(fin, Tj) such that
for all k ∈ N we have

A[fnj,k ](v, t) ≥ c(fin, Tj)

1 + |v|3
I, ∀ (v, t) ∈ R3 × (0, Tj).

The interior Hölder estimate (Theorem 2.2), then says that for any cylinder Q ⊂⊂ R3×(0, T )
we have

[fnj,k ]Cα,α/2(Q) ≤ C(Q,Tj), ∀ k.

From here, the same argument as in Lemma 4.7 shows that A[fnj,k ] and ∇a[fnj,k ] are Cα,α/2

uniformly in k in compact subsets of R3 × (0, Tj). Accordingly, the uniform regularity of
these coefficients together with the Schauder estimates (Theorem 2.4) guarantee that for every
cylinder Q ⊂⊂ R3 × (0, Tj) we have a constant C(Q,Tj) independent of k such that

[fnj,k ]C2+α,1+α/2(Q) ≤ C(Q,Tj).

Then, the Arzela-Ascoli theorem and a Cantor diagonalization argument yield local uniform
convergence of fn to a function f in R3× (0, T ) which will be differentiable in time, and second

order differentiable in space. In particular, f̃j is a spherically symmetric, monotone solution to

∂tf̃j = Q(f̃j , f̃j) in R3 × (0, Tj), f̃j(·, 0) = fin,
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with fin as in (1.8). We can take this argument one step further, and apply the Arzela-Ascoli

one more time to the sequence {f̃j}j and conclude that along a subsequence they (along with
their derivatives) converge uniformly in compact subsets of R3 × (0, T∗) to a function

f : R3 × (0, T∗)→ R

which is again a solution. In summary: we have constructed a function f : R3 × (0, T∗) which
is differentiable in time and second order differentiable in space, such that

∂tf = Q(f, f)

and ∫
R3

f(v, t)φ(v) dv −
∫
R3

fin(v)φ(v) dv

= −
∫ t

0

∫
(B[f ]∇f − f∇a[f ],∇φ) dv dt ∀φ ∈ C∞c (R3), t ∈ (0, T∗). (4.23)

Moreover, the function f has the property that for every T < T∗, there is a sequence nk →∞
such that the functions fnk defined in Step 1 converge to f locally uniformly in R3 × [0, T ].

Step 3. It remains to show that if T∗ <∞, then the solution built in Step 2 blows up in L∞

as time approaches T∗. We argue by contradiction, similarly to the proof of Theorem 4.12, but
with a slight modifications accounting for the fact that we do not know whether the functions
fn have a unique limit as n→∞ (see Remark 4.15 for further discussion). Suppose C > 0 is a
constant such that

lim
T→T∗

‖f‖L∞(R3×[0,T ]) < C.

Let ε > 0 be a small number (to be determined), according to Step 2, there is a sequence
nk →∞ such that fnk → f locally uniformly in R3× [0, T∗− ε/2]. In particular, there must be
some k0 > 0 such that

‖fnk‖L∞(B1×[0,T∗−ε]) < 2C, ∀ k > k0.

As in the proof of Theorem 4.14, choosing ε such that 2ε(2C) < 1/2, the differential inequality
argument guarantees that

‖fnk‖L∞(R3×[0,T∗+ε]) ≤ 4C, ∀ k > k0.

This shows there is a positive ε > 0 such that

lim inf
n

M(fin, T, 10−n) <∞ ∀ T < T∗ + ε.

This is impossible, since T∗ is the infimum of {T | lim inf
n

M(fin, T, 10−n) = ∞}. This contra-

diction shows that

lim
T→T∗

‖f‖L∞(R3×[0,T ]) =∞,

and the theorem is proved at least for fin for which (4.1) holds.

Step 5. In order to remove (4.1), given fin for which only (1.8) holds let f
(n)
in be a sequence

of functions such that (4.1) holds for each f
(n)
in (with a constant c that may depend on n) and

such that

lim
n
‖fin − fnin‖L∞ = lim

n
‖fin − fnin‖L1 = 0.
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Let f (n) be a corresponding sequence of solutions as constructed in Steps 1-4 above, then each
f (n) is defined up to some time T∗,n. The times T∗,n are bounded uniformly away from 0

since fin ∈ L∞. The functions f (n) enjoy uniform local a priori estimates, therefore the same
compactness argument from Step 2 allow us to pick a subsequence nk →∞ and a time T∗ such
that the functions f (nk) and their derivatives have a local uniform limit as k →∞ to a function
f : R3 × (0, T∗) → R which is smooth solution to the nonlinear equation and which blows up
in L∞ as time approaches T∗. Finally, fixing a test function φ and t ∈ (0, T∗) we may apply

(4.23) to each f (nk) and conclude that f satisfies the respective relation in the limit, proving
the theorem.

�

Remark 4.15. It is worth comparing the definition of T δ∗ in Theorem 4.12 with that of T∗ in
Theorem 4.14. In the present situation, a priori it is unclear whether the sequence fn has a
unique limit as n→∞. Hence, if we define

T∗ := sup{T | sup
n
M(fin, T, 10−n) <∞},

the existence of a subsequence bounded for times strictly greater then T ∗ does not contradict
the definition of T ∗. The contradiction however holds if T ∗ is defined via the lim inf as in
(4.22). In the proof of the former theorem, matters were simplified by the fact that {f δk}k was
a Cauchy sequence (for δ fixed), meaning in particular that if it is shown that a subsequence
of f δk remains bounded in [0, T ], then the entire sequence remains bounded. This was key in

proving the maximality of the interval of existence (0, T δ∗ ).

5. Pointwise bounds and proof of Theorem 1.1

5.1. Conditional pointwise bound. The first lemma of this section (Lemma 5.2) is the key
argument for the proofs of Theorem 1.1 and Theorem 1.3. It consists of a barrier argument based
on the observation that the function U(v) = |v|−γ is a supersolution for the elliptic operator
Q(f, ·) under certain assumptions on f (this is where the radial symmetry and monotonicity is
needed). It affords control of certain spatial Lp-norms of the solution, and from these higher
regularity will follow by standard elliptic estimates (Lemma 5.5).

First, we prove an elementary proposition that will be of use in proving the key lemma.

Proposition 5.1. If h is a non-negative, radially symmetric and decreasing function,

h(v)

a[h](v)
≤ 8 sup

r≤|v|

{
r2
∫
Br
h(w) dw∫

Br
a[h](w) dw

}
|v|−2, ∀ v ∈ R3.

Proof. First off, since h is radially symmetric and decreasing,

1

|B|v|(0)|

∫
B|v|(0)

h(w) dw ≥ h(v).

On the other hand, since h ≥ 0 and (in particular) a[h] is superharmonic,

a[h](v) ≥ 1

|B2|v|(v)|

∫
B2|v|(v)

a[h](w) dw,

=
2−3

|B|v|(0)|

∫
B|v|

a[h](w) dw, ∀ v ∈ R3.
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Therefore,

h(v)

a[h](v)
≤ 8

∫
B|v|

h(w) dw∫
B|v|(0)

a[h](w) dw
,

which implies that

h(v)

a[h](v)
≤ 8|v|−2 sup

r≤|v|

{
r2
∫
Br
h(w) dw∫

Br
a[h](w) dw

}
.

�

Lemma 5.2. Suppose f : R3 × [0, T ] → R+ is a classical solution of (2.1). Let γ ∈ (0, 1),
suppose there exists some R0 > 0 such that

r2
∫
Br
g(w, t) dw∫

Br
a[g](w, t) dw

≤ 1
24γ(1− γ), ∀ r ≤ R0, t ≤ T. (5.1)

Then,

f(v, t) ≤ max
{

3
4πR

γ−3
0 , ( 3

4π )γ/3‖fin‖L3/γ
weak

}
|v|−γ , in BR0 × [0, T ].

In particular, the conclusion of the lemma holds for some R0 > 0 whenever there is a modulus
of continuity ω(r) and some R1 > 0 such that

sup
r<|v|

sup
t∈[0,T ]

{
r2
∫
Br
g(w, t) dw∫

Br
a[g](w, t) dw

}
≤ ω(|v|), ∀ 0 < |v| ≤ R1. (5.2)

Remark 5.3. It is easy to see that for any radially decreasing function h(v) the condition that

h belongs to Lpweak (R3) implies that h lies below a power function of the form 1/|v|3/p, and
vice versa. More precisely,

‖h(v)‖Lpweak
≤ C ⇔ h(v) ≤ C

(
3
4π

)1/p |v|−3/p. (5.3)

Proof. Let Uγ = |v|−γ , then Proposition 3.4 says that

Q(g, Uγ) ≤ Uγa[g]
(
−1

3γ(1− γ)|v|−2 + g/a[g]
)
.

Applying Proposition 5.1 with h = g(·, t),

g

a[g]
(v, t) ≤ 8|v|−2 sup

r≤|v|

{
r2
∫
Br
g(w, t) dw∫

Br
a[g](w, t) dw

}
≤ 1

3γ(1− γ)|v|−2,

where we used (5.1) to get the last inequality. It follows that

Q(g, Uγ) ≤ 0, in BR0 × [0, T ]. (5.4)

In particular, if there is a modulus of continuity as in (5.2), then Q(g, Uγ) ≤ 0 in BR0 × [0, T ]
provided R0 is chosen so that ω(R0) ≤ 1/24.

On the other hand, given that f(v, t) is radially decreasing and lies in L1 (see Remark 5.3),

f(v, t) ≤ 3
4π|v|3 ‖f‖L1(R3) = 3

4π|v|3 , ∀ v ∈ R3, t ∈ [0, T ]. (5.5)

Where we used that ‖f(·, t)‖L1(R3) = 1 for all t. Finally, the function Ũγ(v) defined by

Ũγ(v) := max
{

3
4πR

γ−3
0 , ( 3

4π )γ/3‖fin‖L3/γ
weak

}
|v|−γ ,
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is a supersolution for the equation solved by f in Br0 × [0, T ]. Moreover, clearly Ũγ lies above

fin in BR0 , while by (5.5) Ũγ lies above f in ∂BR0 × [0, T ]. Then, the comparison principle

implies that f ≤ Ũγ in Br0 × [0, T ], and the lemma is proved. �

The next lemma deals specifically with solutions to the nonlinear equations, (1.4) or (1.7). It
controls from below the integral of a solution in some ball BR. For the case of the Landau equa-
tion (1.4) the constant is independent of time (by conservation of mass and second moment),
while for the Krieger-Strain equation (1.7) the bound decays exponentially in time.

Lemma 5.4. For f solving (1.4), there is a constant R > 0 such that∫
BR

f(v, t) dv ≥ 1/2, t > 0. (5.6)

For f solving (1.7), and any radii R > r > 0 there are β > 0 and C0 > 0 such that∫
BR\Br

f(v, t) dv ≥ C0e
−βt
∫
B4R\Br/4

fin(v) dv t > 0. (5.7)

Proof. If f solves (1.4), then∫
BR(0)c

f(v, t) dv ≤ R−2
∫
BR(0)c

f(v, t)|v|2 dv ≤ 3R−2.

Thus ∫
BR(0)

f(v, t) dv = 1−
∫
BR(0)c

f(v, t) dv ≥ 1− 3R−2.

Estimate (5.6) follows by choosing R large enough. The corresponding estimate (5.7) for f
solving (1.7) follows a similar argument used in [11] and the derivation of the estimate is done
in detail in the Appendix. �

The next lemma says that any solution f to (1.4) or (1.7) is a bounded function for all times
provided f satisfies (5.2).

Lemma 5.5. Let f : R3 × [0, T ] → R be a radially symmetric, radially decreasing solution to
(1.4) (or (1.7)) with initial data as in (1.8) and such that for some R0 > 0 we have

r2
∫
Br
f(w, t) dw∫

Br
a[f ](w, t) dw

≤ 1
24γ(1− γ), ∀ r ≤ R0, t ≤ T.

Or, assume that there is some modulus of continuity ω(r) such that,

sup
r<|v|

sup
t∈[0,T ]

{
r2
∫
Br
f(w, t) dw∫

Br
a[f ](w, t) dw

}
≤ ω(|v|), ∀ 0 < r ≤ R0. (5.8)

Then,

sup
t∈[ 12T,T ]

‖f(·, t)‖L∞(R3) ≤ C0. (5.9)

For some constant C0 depending only on fin, T and R0.
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Proof. The assumptions of the lemma are simply the same as those of Lemma 5.2 with g(v, t) =
f(v, t), from where it follows (using also Remark 5.3) that

sup
t∈[0,T ]

‖f(·, t)‖Lpweak(BR0
) ≤ max

{
3
4πR

−3(1−1/p)
0 , ( 3

4π )1/p‖fin‖Lpweak

}
‖|v|−3/p‖Lpweak

=: C0(fin, R0, p),

for some p > 6. By interpolation and the Sobolev embedding it follows that ‖f(·, t)‖L6(R3)

and ‖∇a[f(·, t)]‖L∞(R3) are bounded by some constant C determined by C0(fin, R0, p). Then,
applying (2.5) from Theorem 2.3 with Q = BR0 × [0, T ] we arrive respectively at

‖f‖L∞(BR0/2
×[T/2,T ]) ≤ C

{
‖f‖L2(Q) +R2

0‖∇a[f ]‖L∞(Q)

}
<∞,

for some C = C(fin, R0, T ), and the lemma is proved. �

Proof of Theorem 1.2. According to Theorem 4.12, for fin ∈ L∞, there exists a time T0 > 0,
and a solution f(v, t) to (1.4) defined in R3 × [0, T0) and with initial values fin.

The time T0 is maximal in the sense that T0 =∞ or else,

lim
t→T−0

‖f(·, t)‖L∞(R3) =∞. (5.10)

Moreover, since f ∈ L∞ for in R3 × [0, t] for every t < T0, interior regularity estimates (see
Theorem 2.2 and Theorem 2.4) show that f must be twice differentiable in v and differentiable
in t as long as t ∈ (0, T ).

Finally, arguing by contradiction let us assume that

lim sup
r→0+

sup
t∈(0,T0)

{
r2
∫
Br
f(v, t) dv∫

Br
a[f ](v, t) dv

}
< 1/96.

In this case, there must be some R0 > 0 such that

sup
t∈(0,T0)

{
r2
∫
Br
f(v, t) dv∫

Br
a[f ](v, t) dv

}
≤ 1/96 ∀ r ≤ R0.

This means Lemma 5.5 can be applied with T = T0, and it follows that

sup
t∈[ 12T0,T0]

‖f(·, t)‖L∞(R3) <∞,

which is in contradiction with (5.10), and the theorem is proved. �

Proof of Theorem 1.1. As in the proof of Theorem 1.2 we have a solution f(v, t) defined up to
some maximal time T0. In case T0 < ∞, we know that ‖f(·, t)‖L∞ goes to infinity as t → T−0 .
As before, this f(v, t) is twice differentiable in v and differentiable in t for t ∈ (0, T ).

Now, assume the L3/2 norm of f(·, t) does not concentrate at 0 as t→ T−. That is, suppose
there is a modulus of continuity ω(·) such that

sup
t∈(0,T0)

‖f(·, t)‖L3/2(Br)
≤ ω(r).
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Then, there is some C > 0 such that

r2
∫
Br
f(v, t) dv∫

Br
a[f ](v, t) dv

=
4π
3r

∫
Br
f(v, t) dv

1
|Br|

∫
Br
a[f ](v, t) dv

,

≤ C 1

r

∫
Br

f(v, t) dv, ∀ r > 0, t ∈ (0, T0).

Then, Hölder’s inequality says that

r2
∫
Br
f(v, t) dv∫

Br
a[f ](v, t) dv

≤ C ′‖f(·, t)‖L3/2(Br)
,

≤ C ′ω(r).

It follows, that if R0 > 0 is chosen so that C ′ω(R0) < 1/96, that Lemma 5.5 can be applied to
conclude again that

sup
t∈[ 12T0,T0]

‖f(·, t)‖L∞(R3) <∞,

which as before directly contradicts lim
t→T−0

‖f(·, t)‖L∞ =∞, and the theorem is proved. �

To end this section, we present a computation indicating that for an arbitrary function f the
quotient appearing in the assumption of Theorem 1.2 is always smaller than or equal to 3.

Proposition 5.6. Let h ∈ L1(R3) be a nonnegative function. Then,

r2
∫
Br
h(v) dv∫

Br
a[h](v) dv

≤ 3, ∀ r > 0.

Remark 5.7. It could be of use in understanding the blow up or (no blow up) of (1.4) to
characterize those h for which the above quotient goes to zero as r approaches 0. In particular,
it would be useful to understand this when h is not necessarily in a regular enough Lp space or
Morrey space, namely when h is such that

h 6∈ L3/2
loc or sup

r>0

1

r

∫
Br

h dv =∞.

Proof. Let us write a(v) = a[h](v) for the sake of brevity. Note that∫
Br

a(v) dx =

∫
R3

a(v)χB(v) dv =
1

4π

∫
R3

∫
R3

h(w)|v − w|−1χBr(v) dwdv.

The goal is to compare the two integrals,

1

4π

∫
R3

∫
R3

h(w)|v − w|−1χBr(v) dwdv, r2
∫
R3

h(v)χBr(v) dv.

Note that∫
R3

∫
R3

h(w)|v − w|−1χBr(v) dwdv =

∫
R3

h(v)(χBr ∗ Φ)(v) dv, Φ(v) = (4π|v|)−1.

It is not hard to compute ΦB := χBr ∗ Φ directly. Indeed, it is the unique C1,1 solution of

∆ΦBr = −χBr , ΦBr → 0 at ∞,
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which has the simple expression,

ΦBr(x) =

{
−1

6 |v|
2 + 1

2r
2 in Br,

1
3r

3|v|−1 in Bc
r.

It follows that, ∫
Br

a(v) dv =

∫
Br

(
1

2
r2 − 1

6
|v|2
)
h(v) dv +

r3

3

∫
Bcr

h(v)|v|−1 dv,

≥
∫
Br

(
1

2
r2 − 1

6
|v|2
)
h(v) dv.

This proves the stated bound since the last inequality guarantees that∫
Br

a(v) dv ≥ r2

3

∫
Br

h(v) dv.

�

6. Mass comparison and proof of Theorem 1.3

In this section we apply the ideas from previous sections to construct global solutions (in the
radial, monotone case) for equation (1.7), namely

∂tf = a[f ]∆f + f2.

In view of Lemma 5.5, the fact that T0 = ∞ in Theorem 1.1 results from a bound of any
Lp(R3)-norm of f , with p > 3/2. For (1.7) the bound of any Lp(R3)-norm of f , with p > 3/2
will be proven by a barrier argument done at the level of the mass function of f(v, t), which is
defined by

Mf (r, t) =

∫
Br

f(v, t) dv, (r, t) ∈ R+ × (0, T0).

Depending on which problem f solves, the associated function Mf (r, t) solves a one-dimensional
parabolic equation with diffusivity given by A∗[f ] or a[f ].

Proposition 6.1. Let f be a solution of (1.4) (resp. (1.7)) in R3 × [0, T0], then M(r, t) solves

∂tMf = A∗∂rrMf +
2

r

(
Mf

8πr
−A∗

)
∂rMf in R+ × (0, T0) (6.1)(

resp. ∂tMf = a∂rrMf +
2

r

(
Mf

8πr
− a
)
∂rMf in R+ × (0, T0)

)
. (6.2)

Proof. We briefly show how to obtain (6.2); for (6.1) calculations are identical. Using the
divergence theorem and the divergence expression in (1.7) we get

∂tMf =

∫
∂Br

(a[f ]∇f − f∇a[f ], n) dσ = 4πr2 (a[f ]∂rf − f∂ra[f ]) .

Furthermore, straightforward differentiation yields the formulas

4πr2∂rf = r2∂r
(
r−2∂rMf

)
, ∂ra[f ] = −(4πr2)−1Mf .

Substituting these in the expression for ∂tMf above we get

∂tMf = a[f ]r2∂r

(
1

r2
∂rMf

)
+

1

4πr2
Mf∂rMf .
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Expansion and rearrangement of the terms result in:

∂tMf = a

(
−2

r
∂rMf + ∂rrMf

)
+

Mf

4πr2
∂rMf

= a∂rrMf +
2

r

(
Mf

8πr
− a
)
∂rMf ,

and the thesis follows. �

Define the linear parabolic operator L in R+ × (0, T ) as

Lh := ∂th− a∂rrh−
2

r

(
Mf

8πr
− a[f ]

)
∂rh.

The above proposition simply says that LMf = 0 in R+×(0, T ). The next proposition identifies
suitable supersolutions for L.

Proposition 6.2. If m ∈ [0, 2] and h(r, t) = rm then Lh ≥ 0 in R+ × (0, T ).

Proof. By direct computation we see that

Lh = −mrm−2
[
(m− 1)a+ 2

(
Mf

8πr
− a[f ]

)]
.

On the other hand,

a[f ](r) =
1

4πr

∫
Br

f dv +

∫
Bcr

f

4π|v|
dv ≥

Mf

4πr
,

which guarantees that 1
2a[f ](r) ≥ Mf

8πr . Thus,

Lh = mrm−2
[
(1−m)a[f ] + 2

(
a[f ]−

Mf

8πr

)]
≥ mrm−2((2−m)a[f ] ≥ 0.

The last inequality being true for m ≤ 2. �

Proof of Theorem 1.3. Assume fin ∈ L∞, in which case Theorem 4.12 yields a solution f(v, t)
that exists for some time T0 > 0 (possibly infinite). As the bound for f(v, t) will not rely on
the L∞ norm of fin but a Lpweak norm of fin the existence of a solution for unbounded initial
data in Lp (p > 6) will follow by a standard density argument.

Since p > 6, there is some α > 0 and some C0 > 0 (depending only on ‖f‖Lpweak
) such that

Mfin(r, 0) =

∫
Br

fin dv ≤ C0r
1+α.

Moreover, since f(·, t) has total mass 1 for every t > 0, we also have

Mf (r, t) ≤ 1, ∀ r > 0, t ∈ (0, T ).

Proposition 6.2 says that h = Cr1+α is a supersolution of the parabolic equation solved by
Mf in R+ × (0, T ). Then, choosing C := max{C0, 1} the comparison principle yields

Mf (r, t) ≤ h(r) = Cr1+α for r ∈ (0, 1), t ∈ (0, T ). (6.3)

Since f(v, t) is radially symmetric and decreasing, bound (6.3) implies that f(|v|, t) ≤
3C
4π

1
|v|2−α for v ∈ B1 and t ∈ (0, T ); hence there is some p′ > 3/2 and some Cp′ > 0 such

that
‖f(·, t)‖Lp′ (B1)

≤ Cp′ , ∀ t ∈ (0, T ).
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Then Lemma 5.2 says that f(v, t) is bounded in R3 × (0, T0). By Lemma 5.5 and the charac-
terization of T0 in Theorem 4.12, it follows that T0 = +∞ so the solution is global in time. �

The method of the proof for Theorem 1.3 fails short in preventing finite time blow up for
(1.4). In any case, it at least gives another criterium for blow-up, the proof of which is essentially
the same as that of Theorem 1.3.

Corollary 6.3. Suppose that for all t ∈ [0, T0] there is some r0 > 0 and 0 < λ < 8π such that

Mf (r, t) ≤ λrA∗(r, t) ∀ r < r0.

Then any solution to (1.4) is bounded for any t > 0.

7. Appendix

Proof of Proposition 3.1. The radial symmetry of any solution f to (2.1) follows by the unique-
ness property of (2.1) and by the fact that Q(g, f) commutes with rotations, as shown below.
We first rewrite the collision operator as

Q(g, f) = div(A[g]∇f − f∇a[g]) = a[g]∆f − div(Ã[g]∇f) + fg,

with Ã[g]∇f :=
∫ g(|v−y|)

|y|3 〈∇f(v), y〉y dy.

Let T be a rotation operator. Since g is radially symmetric, so is a[g]. Hence

a[g]∆(f ◦ T) = a[g ◦ T]∆(f ◦ T) = (a[g] ◦ T)(∆f ◦ T) = (a[g]∆f) ◦ T,

taking into account that the Laplacian operator commutes with rotations. Moreover

div(Ã[g]∇f(Tv)) = div

(∫
g(|v − y|)
|y|3

〈∇f(Tv), y〉y dy
)

= div

(∫
g(|v − y|)
|y|3

〈T∗∇zf(z)|z=Tv , y〉y dy
)

= div

(∫
g(|T(v − y)|)

|y|3
〈∇zf(z)|z=Tv ,Ty〉T

∗Ty dy
)

= div

T∗
∫
g(|Tv − y)|)
|y|3

〈∇zf(z)|z=Tv , y〉y dy︸ ︷︷ ︸
=:V (Tv)


= Tr(T∗Jac(V )|z=TvT) +∇(Tr(T∗))︸ ︷︷ ︸

=0

·V (Tv)

= Tr(TT∗Jac(V )|z=Tv)

= Tr(Id Jac(V )|z=Tv)

= div

(∫
g(|z − y|)
|y|3

〈∇zf(z), y〉y dy
)
◦ T.

Hence Q(g, f(Tv)) = Q(g, f) ◦ T.
Now we rewrite the linear equation (2.1) in spherical coordinates:

∂tf = A∗∂rrf + a−A∗
r ∂rf + fg, (7.1)
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with A∗[g](v) := (A[g](v)v̂, v̂), v̂ := v
|v| and differentiate (7.1) with respect to r. The function

w := ∂rf satisfies the following inequality:

∂tw ≤ A∗∂rrw + a−A∗
r ∂rw + wg + ∂rA

∗∂rw + ∂r
(
a−A∗
r

)
w.

If w(·, 0) ≤ 0 it follows from maximum principle that w(·, t) ≤ 0 for all t ≥ 0. In other words,
the (negative) sign of ∂rf is preserved in time.

�

Proof of Proposition 3.2. The identity (3.3) is a classical and a proof can be found in [13][Section
9.7]. To prove (3.2), let v ∈ R3 non-zero, r := |v|, then

(A[g](v)v̂, v̂) =
1

8π

∫
R3

1

|v − w|
g(w)

(
(I− v−w

|v−w| ⊗
v−w
|v−w|)v̂, v̂

)
dw.

Note that (
(I− v−w

|v−w| ⊗
v−w
|v−w|)v̂, v̂

)
= 1− cos(θ̂(w))2,

where θ̂ denotes the angle between w − v and v. Consider, for 0 ≤ t, r, the function

I(r, t) :=

∫
∂Bt

1− cos(θ̂)2

|v − w|
dw.

The function I(r, t) encodes all the information about A∗. In particular, integration in spherical
coordinates yields the expression

A∗[h](v) =
1

8π

∫ ∞
0

f(t)I(|v|, t) dt.

As it turns out, I(r, t) has rather different behavior according to whether r < t or not. By
averaging in the v variable, it is not hard to see that

I(r, t) =
t2

r4
I(t, r), ∀ r < t.

Accordingly, we focus on I(r, t) when r > t. To do so, denote by θ the angle between w and v
and observe that

1− cos(θ̂)2 = sin(θ̂)2 =
t2 − t2 cos(θ)2

|v − w|2
=

t2 − w2
1

|v − w|2
,

where w1 = (w, v̂). Thus,

I(r, t) =

∫
∂Bt

t2 − w2
1

|v − w|3
dw

=

∫
∂Bt

t2 − w2
1

(t2 − w2
1 + (r − w1)2)3/2

dw

=

∫
∂Bt

t2 − w2
1

(t2 − 2rw1 + r2)3/2
dw

=

∫
∂B1

t2(1− z21)

t3(1− 2( rt )z1 + ( rt )
2)3/2

t2dz

=

∫
∂B1

1− z21
(1− 2( rt )z1 + ( rt )

2)3/2
tdz.
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This surface integral can be written entirely as an integral in terms of the variable z1 ∈ (−1, 1),

I(r, t) = 2πt

∫ 1

−1

1− z21
(1− 2( rt )z1 + ( rt )

2)3/2
dz1.

For brevity, set for now s = r/t, then∫ 1

−1

1− z21
(1− 2sz1 + s2)3/2

dz1 =
−2s4 + 2s3 + 2s− 2

3s3
√
s2 − 2s+ 1

− −2s4 − 2s3 − 2s− 2

3s3
√
s2 + 2s+ 1

=
−2s4 + 2s3 + 2s− 2

3s3(s− 1)
− −2s4 − 2s3 − 2s− 2

3s3(s+ 1)

=
−2s4 + 2s3 + 2s− 2

3s3(s− 1)
+

2s4 + 2s3 + 2s+ 2

3s3(s+ 1)
.

Furthermore,

−2s4 + 2s3 + 2s− 2

3s3(s− 1)
+

2s4 + 2s3 + 2s+ 2

3s3(s+ 1)
=

2

3s3

(
−s4 + s3 + s− 1

s− 1
+
s4 + s3 + s+ 1

s+ 1

)
=

2

3s3
(−s4 + s3 + s− 1)(s+ 1) + (s4 + s3 + s+ 1)(s− 1)

s2 − 1

=
2

3s3
2s2 − 2

s2 − 1
=

4

3s3
.

Then, since s = r/t, we conclude that

I(r, t) = 8π
t4

3r3
, for t < r,

I(r, t) = 8π
1

3t
, for t > r.

Going back to A∗[h], the above leads to

A∗[h](v) =

∫ r

0
h(t)I(r, t) dt+

∫ ∞
r

h(t)I(r, t) dt

=
1

3r3

∫ r

0
h(t)t4 dt+

1

3

∫ ∞
r

h(t)t dt.

�

Proof of Lemma 5.4. This argument is inspired by the one in Section 2.6 in [11]. For β,R, r
(with 0 < r < R, 0 < β) consider the function

Φ(v, t) := e−βt(|v| −R)2(|v| − r)2.

Since Φ is a C1,1 function with compact support, it holds

d

dt

∫
R3

f(v, t)Φ(v) dv = −
∫
R3

(a∇f − f∇a,∇Φ) dv

=

∫
R3

fdiv(a∇Φ) dv +

∫
R3

f(∇a,∇Φ) dv.
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Hence

div(a∇Φ) + (∇a,∇Φ) = a∆Φ + 2(∇a,∇Φ)

= aΦ′′ +
2

|v|
(
a+ |v|a′

)
Φ′

= aΦ′′ +
2

|v|
Φ′
∫ +∞

|v|
sf(s, t) ds.

It holds:

Φ′(s) = 2(R− s)(s− r)(−(s− r) +R− s) = 2(R− s)(s− r)(R+ r − 2s),

Φ′′(s) = 2(R− s)(r +R− 2s)− 2(s− r)(r +R− 2s)− 4(R− s)(s− r),
Φ′(r) = Φ′(R) = 0, Φ′′(r) = Φ′′(R) = 2(R− r)2,
|Φ′′|, |Φ′| ≤ Cδ,r,RΦ, |v| ∈ ((1 + δ)r, (1− δ)R).

Hence in a small neighborhood of |v| = R and |v| = r one can show that d
dt

∫
R3 f(v, t)Φ(v) dv ≥

0; more precisely it holds

div(a∇Φ) + (∇a,∇Φ) ≥ 0 in BR \B(1−δ)R ∪B(1+δ)r \Br.

Since a[g](v) ≤
‖g‖L1(R3)
|v| , it follows

d

dt

∫
R3

f(v, t)Φ(v) dv ≥ −Cδ,r,R
‖g‖L1(R3

r

∫
B(1−δ)R\B(1+δ)r

f(v, t)Φ(v) dv

≥ −
‖g‖L1(R3)

r
Cδ,r,R

∫
R3

f(v, t)Φ(v) dv.

This above differential inequality implies∫
R3

f(v, t)Φ(v) dv ≥ e−βT
∫
R3

finΦ(v) dv, ∀ t < T,

where β = Cr,R,α‖g‖L1 . Finally, since

Φ(v) ≤ 1

4
(R− r)2 in BR \Br , Φ(v) ≥ R2r2

4
,

we conclude that∫
BR\Br

f(v, t) dv ≥ R2r2

(R− r)4
e−βT

∫
BR/2\B2r

fin(v)Φ(v) dv, ∀ t < T.

�
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