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Abstract

In this paper we prove new constructive coercivity estimates and convergence
to equilibrium for a spatially non-homogeneous system of Landau equations
with moderately soft potentials. We show that the nonlinear collision opera-
tor conserves each species’ mass, total momentum, total energy and that the
Boltzmann entropy is nonincreasing along solutions of the system. The entropy
decay vanishes if and only if the Boltzmann distributions of the single species
are Maxwellians with the same momentum and energy. A linearization of the
collision operator is computed, which has the same conservation properties as
its nonlinear counterpart. We show that the linearized system dissipates a
quadratic entropy, and prove existence of spectral gap and exponential decay of
the solution towards the global equilibrium. As a consequence, convergence of
smooth solutions of the nonlinear problem toward the unique global equilibrium
is shown, provided the initial data are sufficiently close to the equilibrium. Our
proof is based on new spectral gap estimates and uses a strategy similar to [12]
based on an hypocoercivity method developed by Mouhot and Neumann in [28].

Keywords:

lgualdani@gwu.edu
2nicola.zamponi@tuwien.ac.at

Preprint submitted to Elsevier Thursday 9" March, 2017



2010 MSC: 35K40, 35K55, 35K65 35B09, 35B35, 35B40

1. Introduction

This manuscript is concerned with the Cauchy problem for a system of
spatially non-homogeneous Landau equations describing collisions in an ideal
plasma mixture. The mixture is constituted by IV > 2 species and each species
i=1,..., N has mass m; and is described by a density function F;(x,p,t) de-
fined in the phase-space of position and momentum. The vector F' := (Fy,..., Fy)

is said to be a solution to the multi-species Landau system if each F; satisfies

OF; + B -V, F; = Zj\; Qij (Fi, Fy),
(1)
F(z,p,0) = Fin(z,p),
with (z,p,t) € T? xR*xR,. The operator Q;; is the quadratic Landau collision
operator defined as

AG) [pp/] (FIVF; — E;VF)dp (2)
N A

m; m;

Qij(FiaFj) = divp/

R3
Here we adopt the shortened notation F' = F(x,p,t), F' = F(z,p’,t). The term
A [2] = {a,(;g )(z)} denotes a positive and symmetric matrix with real-valued
entries defined as:

Al 2] .= ¢(D) (Id - ﬁ) e(l2]), z#0, W >0,

which acts as the projection operator onto the space orthogonal to the vector
z. The function ¢(|z]) is a scalar valued function determined from the original
Boltzmann kernel describing how particles interact. If the interaction strength

between particles at a distance r is proportional to =%, then

"y+2 _ (5 B 5) )

e(|z]) = |z (3)

The constant C'“7) > 0 is positive and symmetric in 4, j, and is proportional

to the reduced mass of the system m;m;/(m; + m;). We refer to [25, Chapter
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4] for a more accurate derivation and discussion of . The original Landau

system with Coulomb interactions correspond to v = —3.

The purpose of this paper is to study the spectral gap properties of the lin-
earized operator and to show exponential convergence towards the equilibrium

as time grows. We assume throughout this manuscript that v € [-2,1].

Let us summarize briefly the state of the art concerning the Cauchy problem
for the mono-species case.

In the homogeneous setting, the cases of Maxwell molecules v = 0 and
hard potentials v € (0, 1] have been well understood: existence and uniqueness
of smooth regular solution and convergence towards the unique equilibrium
state have been analyzed in several papers, see [, [10) [T}, 15 [16] 26} 35] . For
the spatially non-homogeneous case we refer to Alexandre and Villani [2] for
existence of renormalized solutions, to Desvillette-Villani [I7] for conditional
almost exponential convergence towards equilibrium and to a recent work by
Carrapatoso, Tristani and Wu [§] for exponential decay towards equilibrium
when initial data are close enough to equilibrium.

The case of soft potentials has been proven to be harder. For moderately
soft-potentials v € [—2,0) existence and uniqueness of spatially homogeneous
solutions have been proven by Fournier and Guerin [I9] and by Guerin [23]
using a probabilistic approach, as well as by Wu [36] and by Alexandre, Liao
and Lin [I]. Carrapatoso, Tristani and Wu [§] recently showed exponential decay
estimates for the linearized semigroup and constructed solutions in a close-to-
equilibrium regime to the non-linear inhomogeneous equation. The proof in [§]
is based on an abstract method developed by the first author and collaborators
in [20].

Global well-posedness theory is still missing for the Coulomb case v = —3.
For the homogeneous setting, Arsenev-Peskov [3] showed existence of weak solu-
tions, uniqueness was later proved by Fournier [I8]. Villani [33] proved existence

of a new class of solutions, the so called H-solutions, which are defined via the
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L'- bound in time of the entropy production. Recently Alexander, Liao and Lin
[1] gave a proof of existence of weak solutions in weighted L?-space under small-
ness assumption on initial data. Desvillettes [I4] showed that the H-solutions
are indeed weak-solutions since they belong to some weighted L}LP(R3)-space
and Carrapatoso, Desvillettes and He [7] have proved time convergence to the
associate equilibrium at some explicitly computable rate. For the inhomoge-
neous setting, Guo [24] and Strain, Guo [30, BI] developed an existence and
convergence towards equilibrium theory based on energy methods for initial
data close in some Sobolev norm to the equilibrium state. Recently the set of
initial data for which this theory is valid has been improved by Carrapatoso and
Mischler [9] via a linearization method.

Recently the first author and Guillen have shown, for the Coulomb case,
global in time existence of classical solution for a modified isotropic homogeneous
Landau equation

0, F = div(a[F|VF — FVa[F)),

in the case of radially symmetric (but no smallness assumptions!) initial data
[22]. Moreover, using the theory of A, weights, they showed that solutions to
the original Landau equations with general initial data for v > —2 have an
instantaneous regularization which does not deteriorate as time increases, with

bounds that only depend on the physical quantities, mass, momentum and en-

ergy [21].

We believe that this is the first work that concerns system and its lin-
earized version. The aim of this work is to extend the spectral analysis valid for
the mono-species operator to the multi-species operator with different particles’
mass. From a different prospective, the second author and collaborators have
recently studied a system of Boltzmann equations for mixtures of mono-atomic
particles with same mass in the case of hard and Maxwellian potentials [12]:
the authors show an explicit spectral-gap estimate for the linearized collision

operator and prove the exponential decay of the solutions towards the global
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equilibrium by generalizing the hypocoercivity method developed by Mouhot

and Neumann in [28] for the mono-species case to the multi-species case.

1.1. Main results

The main goal of this paper is to give a constructive proof of exponential

decay rate for solutions to the linear system

Oifi+2-Vaofi = Zjvzl Li;(f), it=1,...,N,

f(x7p70> :fin(x7p)7
with
1

Li j(fis f) =i (Qij(\/ﬁifi» M;) + Qi (M;, \/ﬁjfj))

1 . / i | P P’

J

: ( MV f; — \/MVfJ/ - fiV\/Hj’.+ f]’,v\/ﬁodp/’

obtained from (|1} via the perturbative expansion F; = M; + /M, f;, with M;

the Maxwellian equilibrium of the i*" species

Pi
Mi = )
)= Gk )2

where kp denotes the Boltzmann’s constant and 7" the temperature. The explicit
computations of the linearization L; ; are outlined before Theorem

We will show that any solution to converges exponentially fast to the
global equilibrium. The rate of decay is computed explicitly, following an ap-
proach already used by the second author and collaborators in [12], which is
based upon an abstract method by Mouhot and Neumann [28].

The starting point is the existence of spectral gap for the mono-species lin-
earized collision operator. By exploiting the symmetry properties of the operator
we are able to bound the cross terms by relating them with the differences of
momentum and energy. Hence a spectral gap for the multi-species linearized
operator follows. The hypocoercivity method by Mouhot and Neumann [28]

yields convergence to global equilibrium for the solution to the in-homogeneous
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linearized system.

Define with L := (Ly, Lo, ..., Ly) the vector with components L; = Z;\le L

with L; ; as in , and by T := (11,15, ..., T) the transport operator, T;f =

4,
7= -V fi. We also denote by I';(f;, f;) the quadratic nonlinear term

N
Li(f, f) = \/%ZQM(\/EJCM\/EJCJ)' (6)

Let H be the space of all functions f = (fi, fa, ..., fi) such that the following

norm is finite:

N
£, = D" 1) PYFillZ oo ap) + | ()22 (L= PYV fil32 5 apy+
=1

2)/2
+ [ (p+ f’iH%?(R?’,dp)’

where (p) := /1 +[p|? and P := P22, We denote by L?(R? dp) all square

Ip|?

integrable functions in the p-variable and with an abuse of notation we say that

f=(f1, fa, -, fn) € LE(R3,dp) if
N

£ ll2@ea) = D I fillL2@e,ap) < +oo.
=1

Note that H is a Hilbert space which embeds continuously into L?(R3, dp).

Our main results are summarized below.

Theorem 1. There exists an explicitly computable constant X > 0 such that:

~(f. L) r2@s,ap 2 AMf T fIR, f € D(L),
where TIL is the projection operator on the kernel N (L) of L.

The starting point of the proof of Theorem [I] is a coercivity estimate for
the part of the operator L that describes collisions among particles of the same
species. Let us denote with L™ = (L11,..., Lyy) and with II"™ the projection

operator onto the null space of L™, N(L™). Estimates of the form

O’Y”f - Hme?—l Z _(fa me)LQ(R37dp) 2 /\m||f - Hmf”?—h f € D(Lm)a
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have been proven in [4 [13] 24, 27] 29]. Hence the resolvent of L™ is compact
for v +2 > 0 and there exists a spectral gap in L? for v > —2.

The second step in the proof consists in bounding the contribution of f+ =
f —II"f inside the quadratic form —(f, Lbf)LZ(RS7dp), where LV = L — L™

describes collisions between particles of different species:
1L opbpel 12
= ([ L) r2e,ap) < Cullf 5

In the third step, the contribution of f!l = II" f inside the quadratic form
—(f, Lbf)Lz(Ra’dp) is bounded from below by the differences of momentum u; —u;

and differences of energies e; — e;:

N
—(f”,Lbe)LZ(RS,dp) > C Z (|Ui - uj|2 + (e; — ej)z) ) f € D(L).

i,j=1
This result is obtained by exploiting the structure of N(L™).
Finally, for the fourth and last step we recall an estimate from [12], which
relates u; — u; and e; — e; to the H norms of f —IILf and f — II"™f for each
f e D(L):

N

Z (lui —us* + (i — €;)%) = Cs (If =I5 fII5, =21 f =™ f113,) . (7)

ij=1

Estimate was previously obtained in [I2] for f solution to a Boltzmann
system. The proof is based on a careful analysis of the different structures of
N(L™) and N(L) for the Boltzmann equation, which is intimately connected
to its conservation laws. Since the kernel of the Landau operator has the same
structure as its Boltzmann counterpart, we refer to [I2, Lemma 15] for the proof
of .

Finally, the non-positivity of L? allows us to write
—(f, Lf)2es,ap) = —(Fs L™ F) L2 @s,ap) — (Fs L°F) 12 (w5 )
> _(f7 me)LQ(R‘g,dp) - n(fv Lbf)LQ(R3,dp)
for an arbitrary n € (0,1]. Putting together the results obtained in the previous

four steps and choosing 77 small enough yield the desired spectral gap, concluding

the proof of Theorem [I]
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Theorem 2. Let f°° be the global equilibrium of the system , that is, f° =
LT f = OE=T i, where IIX~T s the projection operator on the kernel N(L —
T) of L — T. There exist explicitly computable constants 7 > 0, C' > 0 such
that:

I1f () — f N (r3 xr3) <Cel¥, t>0. (8)

Let M(p) be the equilibrium state to uniquely determined by the mass,
first and second momentum of the initial data. Assume there exists an € > 0
such that

M)H <ke,

1
|7 =)
with k > 4 then the nonlinear problem has an unique solution F(x,p,t)
which decays exponentially fast towards the global equilibrium with a constant
rate that only depends on the linearized part of the operator :

F—M)H <Ciee™4 >0
HFk (T3 xR3)

|7
M
The explicit value of X is computed in Theorem [1]

Remark 1. The global equilibrium states M(p) and f>(p) are defined in The-
orem[]) and Theorem [6 respectively.

In order to prove Theorem [2| we use the method developed in [28] which (i)
relates coercivity estimates on L to the evolution of the corresponding semigroup
in the Sobolev space H*(T? x R3), and (ii) combines spectral gap estimates for
the linearized operator with bounds of the nonlinear terms to obtain asymptotic-
in-time estimates for the non-linear problem when initial data are sufficiently

close to the equilibrium. We summarize the method in the theorem below:
Theorem 3. [28, Thr. 1.1, Thr. 4.1]

e Let L be a linear operator. Assume there exists a suitable decomposition



L =K — A such that

@) nillF 15 < (F, Af) L2wo,apy < vallf 13
(i) (VoA S, Vi f)r2ws,ap) = vslI Vo fll3 — vall FlIZs,
(ii1) (VK f,Vpf) 2@ ap) < CONFIT2@s,ap) + Vo1 72R3 ap)»
(i) [(f, Lg) 2| < C|[fllallgllae,
() = (f, L) r2@s,ap) = Af = TIF f113,
Then L := L—v-V, generates a strongly continuous evolution semi-group

which satisfies
€% (1= T19) || g1 (73 sy < Ce™ /7,
for some explicit constants C and 7 that only depend on the constants
appearing in (i) — (v).
1s
e Consider the nonlinear problem

Fetv- Vo =Q(FF), F(,0)=Fa(), 9)

and denote by F'*° the global equilibrium to (@ uniquely determined by the

mass, first and second momentum of the initial data. Let

D)+ Lf = QU+ 1V P P+ V),

with Lf a linear operator satisfying (v) above, and T'(f, f) such that

(1) (DngAf, Dngf)LQ(TSXRS) 2 V3||D5D5f||%2(1r3,7-1) - V4||f||%2('ﬂ‘3><R3)’
(iii") (DS DK f, DID} f) 2 (rs xws) < COf I3n1(zs xmsy + 51 D5 Dy f 1|72 (15 xgsy»
1/2

(00) IDCf, )l e e xcray < ClFlerexrey | D 10500 fll 2 20 ;

L,i<k
for some k>4 and |a| + |8 <k, |B| > 1.
Then (@ has an unique smooth solution that decays exponentially fast

towards Fu:

F—FOO)H < Cip e e M, t>0,
H¥* (T3 xR3)

=
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provided the initial data Fiy, satisfies

En - FOO)H S €.
H*(T3xR3)

\/ oo
Conditions () — (¢i%) state that A is coercive (in some sense) on the space H,
while K has a regularizing property. Assumption (v) is exactly the spectral gap

proved in Theorem [I} For (vi) will use an estimate proved for the mono-species

case by Guo in [24, Thr. 3].

An alternative (and perhaps easier) way of proving Theorem and Theorem
is to show that K is compact and A is coercive, see [12, Lemma 10]. However
this method is non-constructive, in the sense that the size of both the spectral
gap and rate of convergence will be only given implicitely. For completeness we
add the proof of compactness of K in the Appendix. In the following sections
we will adopt the procedure outlined earlier that will allow for constructive

estimates.

1.2. Outline

The rest of the paper is organized as follows: after brief summary of the
conservation properties for the non-linear system, Section [2| concerns the for-
mulation of the linearized system and its properties. Section [3] contains the
proof to Theorem [I] In Section [4] we present the proof of Theorem [2] Expo-
nential decay is proven with an explicit rate. Finally, in the Appendix we prove
the compactness of the operator K.

We conclude by mentioning that among the several open problems, the one
about estimates in the case of very soft potentials v < —2 is a particularly

interesting question.

1.3. Notation

Vectors in R? will be denoted by v,v’,p,p’ and so on, the inner product
between v and w will be written (v,w). The identity matrix will be noted by

I, the trace of a matrix X will be denoted Tr(X). The initial condition for

10
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the Cauchy problem will always be denoted by fi, and C;, will be any positive
constant that only depends on the initial data. Unless otherwise specified,
[dp = [zsdp, [dx = [}, dx. The space L7 denotes the classical Lebesgue
spaces L%(R®) with respect to the variable p. We denote by Hg’[f,p, k > 1 the

Sobolev space H*(T3 x R?) with respect to the variable z and p and by L2H

the space of all functions with finite norm ||| - ||| z2(7s)-
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2. Conserved quantities and linearization

In this section we first outline the conservation laws and entropy decay prop-
erty which hold for . Then we present a linearization of around an equi-
librium state and show that the new linear system also satisfies conservation of

mass, total momentum and total energy.

Theorem 4. Let F;, i =1,...,N be a solution to -(@). The mass, the total

momentum and energy of the system are conserved over time, i.e.

d d < RSNIE
— F; dpdx = — F; dpdx = — F; dpdx = 0.
dt// b dt;//p e dt;//Qmi pdz =0

In addition the Boltzmann entropy functional H(Fy, Fy, ..., Fx) defined as

N
F;
H(F\,F,,....,Fy) ;:/Zﬂlog Ldp
=1

my;

11



decreases along solutions to , and it is constant (that is, the entropy pro-
duction vanishes) if and only if the distribution functions (Fi,...,Fn) are

Mazwellians (Mg, ..., My) of the form:

; _lpmmiu@)|?
M;(z,p) = pi() 73 e 2mikpT(a)
(27rmikBT(x))

The density p;(x), velocity u(x) and temperature T(x) are uniquely determined

by the comservation properties:

|p — m; u| /
> u(z) = E pF; dp,  pi(x Fydp.
Zl Pi = 1/ 3mikp Zl PiM 1

The only local equilibrium that satisfies —(@) 18 the global equilibrium

T(z)

ﬁi _|p77niuoo‘2

2m kg Too
(2rmikpTs)>? ‘ ’

Mi(p) =

with p;, Too and us constants uniquely determined by the conservation proper-

ties:

Ip mzul / /
Too — ———F, dpdx, us = pF; dpdx, p; = Fidpdzx.
Z/ 21 vy Z

111 i=1

Proof. The mass conservation follows immediately from the divergence struc-
ture of the collision operators. We first show total momentum conservation.

Integration by parts yields:

/ PQii (fir f5)dp = — [ AW { ] (fiVfi = £V f})dpdy’
/
= [[ 5ufy(div 4 [p _ P} — div A {p _ p] Vdpdp'
i mj m; mj
=|—+— fZ fi(div ,A AU ) dpdp’ =: I;;.
() I R J
Applying the transformation p <+ p’ inside I;; and noticing that w € R3? —
div ,, A% [w] is an odd function, we find that I;; is skew-symmetric: I;; = —1I};.
Hence, summing up the above equality w.r.t. 7,5 =1,..., N we get
Z /lej fzaf] dp_ Z IU _O
3,7=1 i,j=1

12
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due to the skew-symmetry of I;;.

Similarly, for the conservation of the total energy, integration by parts yields:

2
[ %-autss pp=— [f - AW)[ }(f Vi~ 19 £)dpdy

= [ s [ = a0 [ = v
0 J % J

7

— jf fifitr(AGD N )dpdp'+

RU mj |

’
+fjfzfp le A” |:p - p:| *din/A(ij) |:p —

m; m;

/
pb@@

m; m;
’

:ﬂfﬁmw)ﬁfﬂﬁ@w+

RUZ mj |

+(1+) {[ fifzp - (ivu AD ]|, e dpdy.

i
We briefly recall here what we mean when we write div,, A% [w]. Let M be a

N x N matrix with elements m; ;: div,M is a vector with components b;

ijl Oz;m; j. Hence
div , AW [z] = =200 |22,

We denote by div M the vector b with components b; := Zf;l &Ejmi,j. It

follows:
|p| _ 7,] pl /
[ Qi ) = L o [ s |2 2y (10)
1,j= 1 i,j= 1
+ Z ( + ) {[ £ty 2= - (@iv o ADL]],_ e dpdy

7,7=1
By applying the transformation (p,i) «> (p’,J) in the terms on the right-hand
side of we deduce:

3 L gL p
- 4 = £ () | £

PO ECAINAUEE DY <mi + mj) JJ sisja [mi j
1,7=1 7,7=1

1L (1,1

- = 4= w0 - di (@5) , ! —
since w - div ,, A [w] = —trA@)[w] for w € R3. The total energy conservation
follows.

13

/
pb@@+
.



Finally, we show that the entropy functional H is decreasing as time in-

creases:
dH 0 )
— g2 fors f) = Z/ 08 fi + Qi (fi £1)dp
= Z jj V fi . A6 { ] (fjlvfz —finJ/-)dpdp'
t,j=1 mj
= " A(m)[ /] Vi Vf; dpdy'.
”z:lj i m; - m; ( fi f

By exchanging i <> j and p <> p’ we obtain:

% Vfl f/ /
ijf’b]f A(J)[ml mj]<fi - f,>dd

. / sz / ’
:—ijfZJf/ (j)[mi mj(fi_f/)dd

'le
_ 1 VLivﬁ %Nﬁ{ppq Vh VY o

since A() is a positive definite matrix.

’

Hence, 4 H = 0 if and only if v{’ — Y4 Jies in the kernel of A() {L — p—}

» dt f; mi o omg |’

that is, if and only if there exists a scalar function \;;[v,v’] : R? x R® — R such

that

VﬁVfM{PP}<pﬁ>, (11)

fi f]/ mg; My

We next show that the matrix {\;;[-2-,

K3

E-]}i,; is constant for all i and j. Ap-

plying the transformation (p,7) < (p' Jj) in we get

r ../
Aij[z9 ya — A\ Pp},

)
mi Mmj | LT My

which implies

v [p,p g p7p],

mg; My | mg; My
We differentiate w.r.t. p and obtain:
/ / 1 /
D?log fi(p) = Vphij [p, p:| ® (p - p) + E)\ij {p, p} L

m; m;j m; m;

14
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Consequently for p’/m; = p/m;,

1 p P
2 _ —
C{)pkps log fz(p) = EA” |:'rnz’ Tm:| 5ks, k7 s = ].7 2, 3. (12)
Differentiation of ([12)) leads to:
1 p P
817@81%1473 logfz(p) = Eape)‘z] {mﬁj 6ksa k;,s,€: 17273'

Since the order of the derivatives on the left hand side is interchangeable (as-
suming enough smoothness for f;), one deduces that

Ope Nij [75 p} Sks = Opy Nij [mp p] Sosy ks, 0=1,2,3,
which is consistent if and only if v € R® — \;;[v,v] is constant.

Moreover, implies that, for ¢ = 1,..., N, A;; does not depend on j.
Summarizing, we have found that A; ;[v,v] is constant, symmetric in 4, j and
does not depend on j. Hence \; j[v,v] = —a®?, a® eR, fori,j=1,...,N,
v € R3. This fact and imply that log f;(p) is a second order polynomial in

p:

2
log fi(p) = az(-o) + az(-l) -p— a(2)7£p| , i1=1,...,N. (13)
m;

From and it follows:

/ /
RO RN O RN C A N O W A p) ,
v J m; mj m; mj

which leads to %(1) = ozg-l), i,j =1,...,N after evaluation for p’'/m; = p/m,.
We conclude that
(0) 1 (2) p? .
log fi(p) = ay” + M . p — @2 i=1,...,N.
2m;

Conservation of mass, momentum and energy uniquely determine the constants

al(-o), a® and a®?.

15



Linearization around the equilibrium.

We now linearize the collision operator ) around the Maxwellians (M1, ..., My)
defined as
Mi(p) = -t e i,
(2mm;kpT)3/?
It holds:

N N
ZQij(Mi + VM fi, Mj + /M; f;) :ZQij(Mi, VM f;) + Qi (V M fi, Mj) +
j=1 j=1
+ Qij(VMifi, /M;f;),
taking into account that Q; ;(M;, M;) = 0. Let us first compute:

Qi (VMif;, M;) = div, / AW V - :;,] (MY (V/Mifi) = /M f; 9 M) dy/
J

m
p

/
— divp/AW) {mi - :LJ] ((M;V\/Mi —VM;VM))f; + M]’-\/Mini) dp'.

Rewriting
1 1 P P’
M!N/M; — \/M;VM, = /M;M} [ —=Vlog M} - —— [ — — —
jv \Y% g ]( QV 0og j 2k'BT (mz m]))
vMiM; (p P
= —/M;M!NV /M — = =), (14
\/7j J QkBT (mi mj) ( )
it follows:

. il p P
Qi (VM. fi, My) = div, / M MjAGD) {—]( MV fi = fiV\[M]) dp,

m; m;

(15)

. ’ /
since A09) {i — p—} (-2 — 2-) = 0. We now consider
m; mj m; m;

Qs /AT 1) = v, [ A0 | 2= 2] (g - 3w (\/351;) ) v

m;

= divp/AW) [75 - ;ﬂ (77 (/M 90; = M9\ [agy) = Mi [V 1)

Using similar calculations as in ([14) one gets

VMM, = MV [ = va+ﬂ (wl:_wij)

16
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which implies
: alp P
Qij(Mi, \/M; fj) = dlv,,/,/MiM;m 7) {mi - mj] (f;-v\/Mi - \/Min]’-) dp'.
(16)

Adding with (and dividing by +/M;) we obtain the linearized collision

operator:
N
f17"'7fn ZLZ] fzafj
Jj=1
with
I g [p P
) 7 7

(MY = MV = FiV M+ [V dy
We briefly recall the conserved quantities for L;:
Theorem 5. Let f;, i =1,..., N be the solution to the linear system:

Ofi + & - Vafi = Y0, Lij(fi 1)),

f(x,pv O) = fin(x’p)a

with L;; defined as in . The mass [ [/M;f; dpdz, total momentum
Zﬁlffp\/Mifi dpdx and total energy Zij\ilff(|p\2/2mi)\/Mifi dpdx are

constant in time.

Proof. The mass of each function v/ M, f; is conserved because of the divergence

form of the operator. Moreover, with an integration by parts we can deduce

N
/pz VM Li(fi,..., fn)dp

= _ ;1 jf MM/A(U) [ m]}
(MY i = VMV ] = fi9\ M)+ 19/ dpdy =0,

17



because the quantity inside the integral is antisymmetric for the transformation
(i,p) < (4,p'). Finally, the same transformation and another integration by

parts allow us to write:

N
/anzmh(fl,...,fmp
:_ZH\/Wi ) [ﬁ‘ﬂ

1,9=1

(MY S = VMY — £V M+ 19 dpdy
= S g (- i) [ ]

1,7=1

since A7) {L - p—/} (-E - %) = 0. The proof is complete. O

m; mj

Structure of the linearized collision operator.

We first show that L;; can be rewritten in the following form:

L / : 7
sttty = g [t [ (e (ar) -7 ag ) )

1 T vl 1 .

J

(18)

To prove we first notice that:

/

L p 1 P
log /M = — P _ P log /3.
Vlog\ M = = s = 2T ( ) + Viog

It follows that the term 1/MJ’»Vfi — iV MJ’ inside can be rewritten as:

MV ;= 19\ /M = \/W(Vfl M;)
MM’(W’ v1og\ﬁ) \/>(p_1?')

v M, \/ QkBT m; m;

) fir /M /
MZ_M]{V< fz) v J<p p).

VM, 2ksT \m; m;

m; m;

18
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The other term M;V f; — fiVy/M; is treated in a similar way. This shows
that and are equivalent formulations.

We will now decompose the operator L = (Ly, Lo, ..., Ly) as L = L™ + L?,
where L™ and L’ respectively describe collisions between particles of the same

species and of different species. More precisely,

L™ (f) := (L (f1, f1)s s LNN(fN5 fN))s
L2(f) = (O Laj(fr fi)s o Y i (s f5)-

J#1 j#N
Theorem 6. Both operators L™ and L are negative semidefinite. Moreover

f € N(L) if and only if

2
fim M2 <ﬁ§0)+ﬁ(1)'p+/8(2)£p>’ i=1,...,N,
m;

for some p-independent real coefficients ﬁi(o), i=1,...,N, 8O and p?, and
f e N(L™) if and only if:

fi= (0 + ol p+aPpP),  i=1...N,

o @ (2

for some p—independent real coefficients o; *, o;”’, o', i =1,...,N.

Proof. A change of variable p ++ p’ allows to write

N

(F, L™ Pz =Y (fir Lis(fir fi)) 22

i=1

£ o [2-2) () < )

<v<¢fﬁ>_v<\/§7>> dpdp’ < 0. |

19



Using the same change of variable, for each 7 # j one can show that

(fis L (fis £3)) L2+ (S35 Lyi(f5, fi)) 2
_ ALAGD) [PP'} ( fi ) Jj
//MMJ v () Y T

v( Ji )—v /] dpdp’ <0, (19)

which yields (f, L*f) 12 == Y0j=1(fi, Lij(fi, ;)12 < 0 for all f € D(L).
J#i
It is clear that (f, me)L% = 0 if and only if

fi fi n(p ¥
\Y -V : = pij[p, — - —.
( T AT i [p, P'] o
By employing the same method that was used to solve we find that f €
N(L™) if and only if:

fi= 1 (0 + 0l p+aPpP), =18 (20)

for some p—independent real coefficients a(o), agl), a§2), i1=1,...,N. Eq.

i
is a complete characterization of N(L™). A similar strategy yields the descrip-

tion of the kernel of L: f € N(L) if and only if

2
ms;

(3

for some p-independent real coefficients Bi(o), i=1,...,N,3M and g®. Eq.
is a complete characterization of N(L).

185 D

3. Proof of Theorem [l

This section is devoted to the proof of Theorem [I] which states that the
multi-species linearized Landau collision operator L = (Lq, Lo, ..., Ly) defined
as in has a spectral gap in the Hilbert space H.

190
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The starting point in the proof is the already known spectral gap for the
mono-species operator proven in several works, including [24], 29] and summa-

rized in the next lemma.

Lemma 1. There exists an explicitly computable constant \,, > 0 such that:
where II™ denotes the projection operator onto the subspace N(L™).

We will now follow an approach similar to the one formulated in [12]. We

first write
f=1+
with
fle=mmyp, fh= (-1 f.
From it follows:

/
s = L S [ MM+ ) A 2= 2wyt )
i,j=1 ’ J
J#i

with

s (sl £ (S
v(\/ﬁi)v\/@, v(m>v\/@

Since A7) is symmetric and positive definite, Young’s inequality yields

1 3 1 » . 1 g ,
SWp AWy, 4 SWo AW, = w, - AWy, > — W Ay, —w, - Ay
and
S 1 = p 7
by 2 / G| P _ P /
~(f L)z 2 §: HM Miw, - A {mi mj} wydpdp
75

_ M Mw, - A6 | £ P o dpdy
m; mi

i,j=1 ’ J

J#i
1 1 D p
—— Z(fl pbrly,, — = MM w, AW | £ 2 dpdv’.
5 (L) 2132_:1[[ Mw, e ™ my | wopdp
JFi

(22)

21



Let us estimate the second term on the right-hand side of . Applying

Young’s inequality one more time we get

- M; Mw, - AU P wodpdp’
Z e

1]751 J
JF
al fi- G5 | P i fi-
< M; M | AW | = - —
_igZ_:1H ' Jv(\/Mz) [mz mJV(\/Mz)dpdp
i

N 1\ ’ 1y
+ 3 [ Midggv ((fJM) ) - Al9) {?—?] \Y ((f ) )d dp’
P ! m; m] /Mj

! 1
j fi
-9 MMV( ) A )[p—p}v( dpdp’ .
;1 jf m;  m, VM;
J#i
Since
fit Vi St
v t L V log v/ M;,
(m VAT
we have
= Z ffMM'w - AU) [ } wodpdp’
mj
1] 1
J#i
/
< 4 M 1, 7]) 1 /
Sy
1751
N .. /
4y ﬂ M(f)?V log /M, - AW) [n‘z - W‘H V log v/ Midpdy’
i,j=1 v J
J#i
N ' N '
<> [V A+ Y [ ap, (23)
i1 i1
with

N /
@ .4 G A ) log /M, - ADV log /I,
A ;/ j [mi m; dp’, B'Y := Vlog - AV log

22
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From [8, Lemma 2.3] we deduce that:
Vi AOVFE<C () PV )P0 - PYVSER) (24

BD < ¢ (p)7+2. (25)

Inequalities (23)), and imply:

N
1 [P P
= MZ-M’-wo~A(”){ —~ }wodd’<0 L3, 26
3 2 I | oot < Ul IR (20)
JFi

for some explicitly computable constant C7 > 0. In summary we have shown

that
1
—(H L g = =5 (L L e = £ 13, (27)
We are now ready to prove the next lemma:

Lemma 2. For each f € D(L) and n € (0,1] we have
n
~(£, L)z = O = nCOI 13— 5 (1 L) s
Proof. Using the decomposition L = L™ + L® we get,

7(f, Lf)L?9 = 7(.}07 me)L% - (f? Lbf)L%

> _(f7 me)Lg - W(f7 Lbf)Lf,

for each n € (0,1], since L’ is a negative semidefinite operator, as shown in

Theorem@ Finally Lemma and imply
1
(21 2 Ml = (HUIE i + G 1),

which finishes the proof.

O
We focus now our attention on (f”,Lbf“)L%. From it follows
=gy = (arupralll) s
i i — 4V i z'p+6742m‘ ) Z_la”'aNa (28)

23
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for a suitable choice of «;, u;, ;. We get:

— (1 L) Z HMM <u uj +

1,j=1
Jj#i

/
Ne) {p _ p] (u T &
j m; m

m; m

We first notice that
/
(u; — u;) IIMM y [ p} <eip _
e -
m;

@z

/

J

Y
4mj

: ) dpdyp’.

J

/

P > dpdyp’
T my;

Y]

oo far (fanan [T )

Since the function (p,p’) € R3 x R? MiMj’_A(ij) [L _

myg

R3 is odd, it follows that:

ij) | P P’ p
(ui —’LLj) j MZMJ/A(J) |: — :| <6im —€j

m; m;

Hence we are left with

it

, /
P . _e. P
lj:| (61 B 6_] mj) c

3‘*@

N
— (L e = 7 (s = wy) - [[ MiMjAGD) [75_ - } dpdyp' (u; — u;)
i,j=1 i J
+Z IMM’ £+p7’ . AG) p_ P ﬂ_i_pi/ dpdp’
my; m; m; m; m; m;

’
after rewriting (ei% —ej 7%) as
7 J

It is easy to see that, for i,7 = 1,..., N, the matrix

/
7 = ([ mpr At | 2 P
JI J m; mj
is positive definite, while

B = = fMM’( + /> AG) [—p/K
m; m; m; m;

We conclude:

24

p

m;

] dpdyp’

/
+ p) dpdp’ > 0.

m;
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Lemma 3. There exists an explicitly computable constant Co > 0 such that:

N

7(.f”aLbe)Lg > CQ Z (|uz - uj|2 + (ei - ej>2) ) f € D(L)a

i,j=1

where the p—independent quantities u;, e; are related to f through .

The last step in the proof of the spectral gap for L is the result shown in

the next lemma.

Lemma 4. There exists an explicitly computable constant Cs > 0 such that

N

> (Jui —u? + (ei —e5)%) = Cs (If =T fI3, = 2 £ 113) . f € D(L),

ij=1
(29)

where the p—independent quantities u;, e; are related to f through .

For the proof of Lemma [4] we refer directly to the one of Lemma 15 in [12].
In such lemma the authors prove for f solution to a multi-species linearized
Boltzmann operator. The proof only relies on the structure of N(L) and N(L™),
which is the same in both multi-species Boltzmann system studied in [12] and

the Landau systems considered in this manuscript.

Summarizing, Lemmas and |4| imply that for every f € D(L)

~(f. L)1z 2 5Ol =T FBiay + (= 0(Co -+ CoCa)) | ey,

Choosing n = min{1, A, /(Cy + C2Cs)} we obtain the desired spectral gap with

A= C2C3 min{l 7/\7” }

2 "C1 + CrC3
This finishes the proof of Theorem

4. Exponential decay to global equilibrium

This section is devoted to Theorem The proof relies on the spectral gap
of Theorem [I] and on the hypocoercivity method by Mouhot and Neumann
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[28]. We have to show that there exists a suitable decomposition of L for which
conditions (7) — (iv) in Theorem [3] hold.

We preliminarily observe that L is bounded w.r.t. the H norm, that is:

((f; Lo 2| < Cllfllallgllse,  fr9 € D(L). (30)

Relation can be showed by arguing as in the proof of .
Using formulation , the operator L can be rewritten as L = K — A with:

N /
1 : ol 7 fj )
Ki(f):=- E dlvp/MiMfA(TJ) = 2|V J dp', (31)
\/Mi X J my; m; M’
j=1 \/ i
A(f) = —— Ede' MA@ | 22 Pl g (L gy
z(f) = \/ﬁ vy ity e m; \/ﬁ D -
k3 j:]- (3 1

For the operator A we will use the following estimates proven by Guo in [24]:

for each f € D(L) we have

allfll3 < (F Az < eall £ (32)
(DD f. DEDYAS) r2rsxisy 2= 3| DDy VI3 — call flZe(paxrsy  (33)
Concerning K, we need the following lemma which proves at the same time (74)
and (i4i") of Theorem
Lemma 5. For every 6 > 0 there exists a constant C(0) > 0 such that for
ol + 18| <k withk >4 and 3 >1 :
(Dfi‘fo, DﬁDgKf)H(Twa) < 5||D$D5f|\%2(1r3xm3) + 0(5)Hf||§—1k*1(’]1‘3><]1§3)'
(34)
Proof. We first observe that

p
M;.
mik’BT !

VM; = —

26



Then K can be rewritten as:

» ¥

1 . 4
Kij(f) = - 7/divp M;A®) P [ L) gy
, \/M m; mJ J \/M
J

Ij

— (i5) . /
/w M]V 7
Vo

:/w(ij) . (Vf]' + fj’p/> dp’, (35)

QmjkBT
(e _ ¥
m; m; '

dp’

with the kernel w(#) defined as:

W) Jarar (aen [ 2P P 2009 | p P
J m; m; mZkBT m; m; m;

It is useful to estimate w(¥) and its Jacobian. Since

AU 2] o] < COD 127 +2 o),

we have

- 20'(id) /
9] < /7MiM]4( L ) ‘p_p
mZkBT m; m; m;

Taking into account that the magnitude of the derivative of every element of
7+1
, and

’

AG) [ L — %} w.r.t. each component of p is bounded by C ‘L iy

VM, = /M2

ZmikBT’

for some suitable polynomial ¢(|p|) we have that the Jacobian of w(¥) with
respect to p can be estimated as

2
.. p pl ’Y+
|V, ® wli?| < \/ MiMiq(|pl) (‘m - ) . (37)
i j

220 Let us now introduce an arbitrary parameter € > 0 and a cutoff function
Y. 1 [0,00) — [0,1] such that . € C*([0,00)), e(xz) = 1 for 0 < z < ¢,
Ye(x) =0 for x > 2, || < Ce_lx(oygg). Moreover let us define \I'gj)(p,p’) =

).

v /
Ll
my m;

P b
mg m

27



We write K = K + KUD  where:

o
(1) z) (i) /
K E 1— J V. +
¢ / < f f m;k T) v,

/
KD Py _ /\I,uj) @) (i 4+ f—L Y ap.
i () ]Z:; e W vf]+fj2mjkBT p

The function w(*) is smooth in the region {|p/m; — p’/m;| > 2¢}, thus
28 ij ij oo
(1+ |p'|)D? ((1 - \pgﬁ) W J>) € L.
From Young’s inequality and the fact that

1Dy DS flI72(rs xcrsy < CUIDS DY flI72(rs xcrsy + N7 (0o xrs))s

12 £l 72 s xmsy < 1 Irn=1(p xmos
we get

(Dg Dy f, D“DﬁK(”f)Lz(Ts <R?) (38)

/

Z fﬂ DeDSf, - (DB ((1 _ \pg‘j)) w(iﬂ)) (vp/Dgf; + Dgf;mf]@T> dpdp’ d

7,7=1

/

1)l8) Z {][ p2si (Dza ((1 - mgm) w(m)) (vp,Df;f; + Dg‘f]mefM> dpdy/ dz

i,j=1
CENDS fllL2crs xrsy (1VpDg fllp2(rs xrsy + |1 Do fll 2 (15 xrs))

< 5||D§D5f||2L2(T3xR3) + 07 CE fIl -1 (s xmsy -

We write 8 = 34 ¢ with |3| = 1, [¢| = k — 1, so that Dg = DgDE. Let us

compute the term
N y
B (II) _ né i n. / / /
DI =05 [0 o (Va st a0
=

with
9” sl )= DS (WD) p, p].

By making the transformation p’/m; +— p/m; —p’/m; inside the integral in

28



we obtain

/

DgKU”Lﬂ==D§§i/kﬁgwinwﬂnﬂp—pﬂ-(Vﬁ[;z—-p} (40)

i m;
p P 1 p 7 /
N = ) ).
+fj |:mi mj:| Qk’BT (mi m3)> P

Let us estimate first the expression

(1ol + DI [p, (my /mo)p — ')l = (o] + /I DE W) p, (i, /i) — o)
< (Ipl + [p'DIDS (W) p, (m; /ma)p — p')l|w D [p, (m; /ma)p — 1)
+ (Il + [P/ DI [p, (m /mi)p = P D (@) [p, (m /mi)p = p']|.
By using , and the properties of the cutoff \Ifgj ) we deduce
(Ipl + p'DIOY 3 [p, (my /mi)p =PI < C (101" + 101+ 10 1F2) X <2em,3
(41)
for some constant C' > 0. Since the local singularities of 6)?6[ , (mj/mg)p — ']
only depend on p’ (after the change of variable p'/m; — p/m; — p’/m;), the
estimate in holds also for the derivatives of @? B[ , (mj/m;)p — p'] with
respect to p, i.e.
(Ipl + P DID O slp, (mj/ma)p — p']| < Cje(p) 0<& <€ (42)
¢5.(0) = (1017 + 1+ P172) Xqipr 1 <2emy - (43)
Furthermore, assumption v > —2 implies
|j.ell L1 msy < C(eVF3 4 74 4 7)) < Ce. (44)
From ({42), it follows (recall that K/) does not depend on x)

IDEDEKID(f) <O S .+ |DEDE [,
0<B'<pB

As a consequence, thanks to ,

IDEDEEID(P)llnacrses) < Cldsellpamny S [|D2DL S|
0<p’<pB

<ce Y HDngf
0<57<p

L2(T3 xR3)

)

L2(T3 xR3)
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from which it follows
(Dg Dy £, DYDIKID ) (1 sy < Cell fIl3pnr s - (45)

Since € > 0 is arbitrary, from , the statement follows. This finishes
the proof.

O

Relations 7 and the spectral gap allow us to apply Theorem which
yields (8).

We now show the second part of Theorem [2| The non-linear terms I';(f, f),
defined as

1

Lilff) = = > Qi (VMifi VMG f3) o= S Oilfis ),

N
J=1 Jj=1

3

with

©i(fi, fj) =divy (/ A9 [p - p’} M fidp" - Vfi)

m; m;

/
—div, ( fi Al | PP MY fidp'
m; m; J J
/ /
_ / AG) {P_ p] P gy v,
m; mj | my

/ /
e [ 2 PP n
+f/ |:'ITLz mj; | m;j J ij p

We now recall an estimate by Guo in [24, Thr. 3] which states that the inner
product (©;(fi, f;), fi) mr , can be bounded by the Hﬂ’j’p and HFH norms of f;

and f;; more precisely

©i(fi, f3), fi)ur, < C (”fi”H’;yprj”H;?H + ”fj”H,’;,priHH!;H) 1 fill e

Therefore

N N
(Talf, 1), ), < Cllfillas M fill e (Z ||fj||H§H>+||f¢||§1;w (Z |fj||H§7p> :

i=1 i=1

30



which implies

N

(T £) D, =Y Calfs ) s, < ClUFllas I g (46)
i=1
Define now the function f := % with M(p) and F respectively the unique

equilibrium state and the unique smooth solution to (1). The function f =
(f1, fa, .-, [n) solves
» N
O fi + o Vafi= g Lij(fi, f3) + il fis f7)-
7 ]:1

Thanks to Theorem [1] and one can deduce

1
5Ol F T, < =AF e+ Ol 1 F s

The above differential inequality can be solved by simple iteration method:
since | finllmrs < €, there exists a positive time Tp such that || f[|gx < 2e for

all t € [0, Tp]. Hence any solution to

1 A
SOy = =S 1hles Ihumllass =<,

20 satisfies ||f||§{ép < ||h\|%{§p < ee M2 for t € [0,Ty], taking into account that
the HY¥H-norm controls the H} -norm. At time Ty we can restart the same

process since || f (-, To)| gry < €. This finishes the proof of Theorem

5. Appendix
Lemma 6. The operator K : Lg — Lg defined in s compact.

Proof. We will show that K is the limit, in the operator norm, of a sequence of
Hilbert-Schmidt operators. From it follows:

/ ..

N
ij ij b ij : i
Ki(f) = Z/k( Do, o) f0)dp', K9 (pp') = kT cw) — div ).
J

j=1
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The following estimate is a consequence of and :

v D p/

m; m;

7+2>

/
@) (p, )| < C (Mi(p)M; () || 2 — -
K, Pl < C (M) ) | = -

W(z) = e 0 (|27 + 2 +2)

for some suitable constant § > 0.
Let &, be the characteristic function of the ball B (0, %), and let us define
the sequence of operators K (") = (K{”), - Kg\?)) (L2 — L2,
N

EM(f) = Z/kﬁfj)(p,p/)fj(p’)dp’,
j=1

@)y oty — 1@ oy (1 e (2 _ P
knj(np)—kj(p,p)(l £n< : mj))

It is clear that kgj) € szp,, so K" is a Hilbert-Schmidt operator for all n € N.

In particular K™ is compact. Let us now estimate:

Ki9) = KOD] < [0 (£ - 2 1501

7 J
N
j=1
It follows:
K(f) — K™ 2 2
[1£1 2 {Iz1<1/n} "

since v + 2 > 0. This means that K(") — K strongly in .,S”(L%), which implies
that K is compact. This finishes the proof. O
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