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Abstract

In this paper we prove new constructive coercivity estimates and convergence

to equilibrium for a spatially non-homogeneous system of Landau equations

with moderately soft potentials. We show that the nonlinear collision opera-

tor conserves each species’ mass, total momentum, total energy and that the

Boltzmann entropy is nonincreasing along solutions of the system. The entropy

decay vanishes if and only if the Boltzmann distributions of the single species

are Maxwellians with the same momentum and energy. A linearization of the

collision operator is computed, which has the same conservation properties as

its nonlinear counterpart. We show that the linearized system dissipates a

quadratic entropy, and prove existence of spectral gap and exponential decay of

the solution towards the global equilibrium. As a consequence, convergence of

smooth solutions of the nonlinear problem toward the unique global equilibrium

is shown, provided the initial data are sufficiently close to the equilibrium. Our

proof is based on new spectral gap estimates and uses a strategy similar to [12]

based on an hypocoercivity method developed by Mouhot and Neumann in [28].
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1. Introduction

This manuscript is concerned with the Cauchy problem for a system of

spatially non-homogeneous Landau equations describing collisions in an ideal

plasma mixture. The mixture is constituted by N ≥ 2 species and each species

i = 1, . . . , N has mass mi and is described by a density function Fi(x, p, t) de-5

fined in the phase-space of position and momentum. The vector F := (F1, . . . , FN )

is said to be a solution to the multi-species Landau system if each Fi satisfies


∂tFi + p

mi
· ∇xFi =

∑N
j=1Qij(Fi, Fj),

F (x, p, 0) = Fin(x, p),

(1)

with (x, p, t) ∈ T3×R3×R+. The operator Qij is the quadratic Landau collision

operator defined as

Qij(Fi, Fj) := div p

∫
R3

A(ij)

[
p

mi
− p′

mj

]
(F ′j∇Fi − Fi∇F ′j)dp′. (2)

Here we adopt the shortened notation F ≡ F (x, p, t), F ′ ≡ F (x, p′, t). The term

A(ij) [z] = {a(ij)ks (z)} denotes a positive and symmetric matrix with real-valued

entries defined as:10

A(ij) [z] := C(i,j)

(
Id− z ⊗ z

|z|2

)
ϕ(|z|), z 6= 0, C(i,j) > 0,

which acts as the projection operator onto the space orthogonal to the vector

z. The function ϕ(|z|) is a scalar valued function determined from the original

Boltzmann kernel describing how particles interact. If the interaction strength

between particles at a distance r is proportional to r1−s, then

ϕ(|z|) := |z|γ+2, γ =
(s− 5)

(s− 1)
. (3)

The constant C(i,j) > 0 is positive and symmetric in i, j, and is proportional

to the reduced mass of the system mimj/(mi + mj). We refer to [25, Chapter
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4] for a more accurate derivation and discussion of (1). The original Landau

system with Coulomb interactions correspond to γ = −3.

15

The purpose of this paper is to study the spectral gap properties of the lin-

earized operator and to show exponential convergence towards the equilibrium

as time grows. We assume throughout this manuscript that γ ∈ [−2, 1].

Let us summarize briefly the state of the art concerning the Cauchy problem20

(1) for the mono-species case.

In the homogeneous setting, the cases of Maxwell molecules γ = 0 and

hard potentials γ ∈ (0, 1] have been well understood: existence and uniqueness

of smooth regular solution and convergence towards the unique equilibrium

state have been analyzed in several papers, see [5, 10, 11, 15, 16, 26, 35] . For25

the spatially non-homogeneous case we refer to Alexandre and Villani [2] for

existence of renormalized solutions, to Desvillette-Villani [17] for conditional

almost exponential convergence towards equilibrium and to a recent work by

Carrapatoso, Tristani and Wu [8] for exponential decay towards equilibrium

when initial data are close enough to equilibrium.30

The case of soft potentials has been proven to be harder. For moderately

soft-potentials γ ∈ [−2, 0) existence and uniqueness of spatially homogeneous

solutions have been proven by Fournier and Guerin [19] and by Guerin [23]

using a probabilistic approach, as well as by Wu [36] and by Alexandre, Liao

and Lin [1]. Carrapatoso, Tristani and Wu [8] recently showed exponential decay35

estimates for the linearized semigroup and constructed solutions in a close-to-

equilibrium regime to the non-linear inhomogeneous equation. The proof in [8]

is based on an abstract method developed by the first author and collaborators

in [20].

Global well-posedness theory is still missing for the Coulomb case γ = −3.40

For the homogeneous setting, Arsenev-Peskov [3] showed existence of weak solu-

tions, uniqueness was later proved by Fournier [18]. Villani [33] proved existence

of a new class of solutions, the so called H-solutions, which are defined via the
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L1- bound in time of the entropy production. Recently Alexander, Liao and Lin

[1] gave a proof of existence of weak solutions in weighted L2-space under small-45

ness assumption on initial data. Desvillettes [14] showed that the H-solutions

are indeed weak-solutions since they belong to some weighted L1
tL

p(R3)-space

and Carrapatoso, Desvillettes and He [7] have proved time convergence to the

associate equilibrium at some explicitly computable rate. For the inhomoge-

neous setting, Guo [24] and Strain, Guo [30, 31] developed an existence and50

convergence towards equilibrium theory based on energy methods for initial

data close in some Sobolev norm to the equilibrium state. Recently the set of

initial data for which this theory is valid has been improved by Carrapatoso and

Mischler [9] via a linearization method.

Recently the first author and Guillen have shown, for the Coulomb case,

global in time existence of classical solution for a modified isotropic homogeneous

Landau equation

∂tF = div(a[F ]∇F − F∇a[F ]),

in the case of radially symmetric (but no smallness assumptions!) initial data55

[22]. Moreover, using the theory of Ap weights, they showed that solutions to

the original Landau equations with general initial data for γ > −2 have an

instantaneous regularization which does not deteriorate as time increases, with

bounds that only depend on the physical quantities, mass, momentum and en-

ergy [21].60

We believe that this is the first work that concerns system (1) and its lin-

earized version. The aim of this work is to extend the spectral analysis valid for

the mono-species operator to the multi-species operator with different particles’

mass. From a different prospective, the second author and collaborators have65

recently studied a system of Boltzmann equations for mixtures of mono-atomic

particles with same mass in the case of hard and Maxwellian potentials [12]:

the authors show an explicit spectral-gap estimate for the linearized collision

operator and prove the exponential decay of the solutions towards the global
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equilibrium by generalizing the hypocoercivity method developed by Mouhot70

and Neumann in [28] for the mono-species case to the multi-species case.

1.1. Main results

The main goal of this paper is to give a constructive proof of exponential

decay rate for solutions to the linear system ∂tfi + p
mi
· ∇xfi =

∑N
j=1 Li,j(f), i = 1, . . . , N,

f(x, p, 0) = fin(x, p),
(4)

with

Li,j(fi, fj) :=
1√
Mi

(
Qij(

√
Mifi,Mj) +Qij(Mi,

√
Mjfj)

)
=

1√
Mi

div p

∫ √
MiM ′jA

(ij)

[
p

mi
− p′

mj

]
· (5)

·
(√

M ′j∇fi −
√
Mi∇f ′j − fi∇

√
M ′j + f ′j∇

√
Mi

)
dp′,

obtained from (1) via the perturbative expansion Fi = Mi +
√
Mifi, with Mi

the Maxwellian equilibrium of the ith species

Mi(p) :=
ρi

(2πmikBT )3/2
e
− 1

2
|p|2

mikBT ,

where kB denotes the Boltzmann’s constant and T the temperature. The explicit

computations of the linearization Li,j are outlined before Theorem 5.

We will show that any solution to (5) converges exponentially fast to the75

global equilibrium. The rate of decay is computed explicitly, following an ap-

proach already used by the second author and collaborators in [12], which is

based upon an abstract method by Mouhot and Neumann [28].

The starting point is the existence of spectral gap for the mono-species lin-

earized collision operator. By exploiting the symmetry properties of the operator80

we are able to bound the cross terms by relating them with the differences of

momentum and energy. Hence a spectral gap for the multi-species linearized

operator follows. The hypocoercivity method by Mouhot and Neumann [28]

yields convergence to global equilibrium for the solution to the in-homogeneous
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linearized system.85

Define with L := (L1, L2, ..., LN ) the vector with components Li =
∑N
j=1 Li,j

with Li,j as in (5), and by T := (T1, T2, ..., TN ) the transport operator, Tif =

p
mi
· ∇xfi. We also denote by Γi(fi, fj) the quadratic nonlinear term

Γi(f, f) =
1√
Mi

N∑
j=1

Qij(
√
Mifi,

√
Mjfj). (6)

Let H be the space of all functions f = (f1, f2, ..., fN ) such that the following

norm is finite:

‖f‖2H :=

N∑
i=1

‖ 〈p〉γ/2 P∇fi‖2L2(R3,dp) + ‖ 〈p〉(γ+2)/2
(I− P )∇fi‖2L2(R3,dp)+

+ ‖ 〈p〉(γ+2)/2
fi‖2L2(R3,dp),

where 〈p〉 :=
√

1 + |p|2 and P := p⊗p
|p|2 . We denote by L2(R3, dp) all square

integrable functions in the p-variable and with an abuse of notation we say that

f = (f1, f2, ..., fN ) ∈ L2(R3, dp) if

‖f‖L2(R3,dp) =

N∑
i=1

‖fi‖L2(R3,dp) < +∞.

Note that H is a Hilbert space which embeds continuously into L2(R3, dp).

Our main results are summarized below.

Theorem 1. There exists an explicitly computable constant λ > 0 such that:

−(f, Lf)L2(R3,dp) ≥ λ‖f −ΠLf‖2H, f ∈ D(L),

where ΠL is the projection operator on the kernel N(L) of L.90

The starting point of the proof of Theorem 1 is a coercivity estimate for

the part of the operator L that describes collisions among particles of the same

species. Let us denote with Lm ≡ (L11, . . . , LNN ) and with Πm the projection

operator onto the null space of Lm, N(Lm). Estimates of the form

Cγ‖f −Πmf‖2H ≥ −(f, Lmf)L2(R3,dp) ≥ λm‖f −Πmf‖2H, f ∈ D(Lm),
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have been proven in [4, 13, 24, 27, 29]. Hence the resolvent of Lm is compact

for γ + 2 ≥ 0 and there exists a spectral gap in L2 for γ ≥ −2.

The second step in the proof consists in bounding the contribution of f⊥ ≡

f − Πmf inside the quadratic form −(f, Lbf)L2(R3,dp), where Lb ≡ L − Lm

describes collisions between particles of different species:

− (f⊥, Lbf⊥)L2(R3,dp) ≤ C1‖f⊥‖2H.

In the third step, the contribution of f‖ ≡ Πmf inside the quadratic form

−(f, Lbf)L2(R3,dp) is bounded from below by the differences of momentum ui−uj
and differences of energies ei − ej :

−(f‖, Lbf‖)L2(R3,dp) ≥ C2

N∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
, f ∈ D(L).

This result is obtained by exploiting the structure of N(Lm).

Finally, for the fourth and last step we recall an estimate from [12], which

relates ui − uj and ei − ej to the H norms of f − ΠLf and f − Πmf for each

f ∈ D(L):

N∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
≥ C3

(
‖f −ΠLf‖2H − 2‖f −Πmf‖2H

)
. (7)

Estimate (7) was previously obtained in [12] for f solution to a Boltzmann

system. The proof is based on a careful analysis of the different structures of95

N(Lm) and N(L) for the Boltzmann equation, which is intimately connected

to its conservation laws. Since the kernel of the Landau operator has the same

structure as its Boltzmann counterpart, we refer to [12, Lemma 15] for the proof

of (7).

Finally, the non-positivity of Lb allows us to write

−(f, Lf)L2(R3,dp) = −(f, Lmf)L2(R3,dp) − (f, Lbf)L2(R3,dp)

≥ −(f, Lmf)L2(R3,dp) − η(f, Lbf)L2(R3,dp)

for an arbitrary η ∈ (0, 1]. Putting together the results obtained in the previous100

four steps and choosing η small enough yield the desired spectral gap, concluding

the proof of Theorem 1.
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Theorem 2. Let f∞ be the global equilibrium of the system (4), that is, f∞ =

ΠL−T f = ΠL−T fin where ΠL−T is the projection operator on the kernel N(L−

T ) of L − T . There exist explicitly computable constants τ > 0, C > 0 such

that:

‖f(t)− f∞‖H1(T3×R3) ≤ C e−t/τ , t > 0. (8)

Let M(p) be the equilibrium state to (1) uniquely determined by the mass,

first and second momentum of the initial data. Assume there exists an ε > 0

such that ∥∥∥∥ 1√
M

(Fin −M)

∥∥∥∥
Hk(T3×R3)

≤ ε,

with k ≥ 4 then the nonlinear problem (1) has an unique solution F (x, p, t)

which decays exponentially fast towards the global equilibrium with a constant

rate that only depends on the linearized part of the operator :∥∥∥∥ 1√
M

(F −M)

∥∥∥∥
Hk(T3×R3)

≤ Cin ε e
−λt/4, t > 0.

The explicit value of λ is computed in Theorem 1.

Remark 1. The global equilibrium states M(p) and f∞(p) are defined in The-

orem 4 and Theorem 6 respectively.105

In order to prove Theorem 2 we use the method developed in [28] which (i)

relates coercivity estimates on L to the evolution of the corresponding semigroup

in the Sobolev space Hk(T3 ×R3), and (ii) combines spectral gap estimates for

the linearized operator with bounds of the nonlinear terms to obtain asymptotic-

in-time estimates for the non-linear problem when initial data are sufficiently110

close to the equilibrium. We summarize the method in the theorem below:

Theorem 3. [28, Thr. 1.1, Thr. 4.1]

• Let L be a linear operator. Assume there exists a suitable decomposition
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L = K − Λ such that

(i) ν1‖f‖2H ≤ (f,Λf)L2(R3,dp) ≤ ν2‖f‖2H,

(ii) (∇pΛf,∇pf)L2(R3,dp) ≥ ν3‖∇pf‖2H − ν4‖f‖2L2
p
,

(iii) (∇pKf,∇pf)L2(R3,dp) ≤ C(δ)‖f‖2L2(R3,dp) + δ‖∇pf‖2L2(R3,dp),

(iv) |(f, Lg)L2
p
| ≤ C‖f‖H‖g‖H,

(v) − (f, Lf)L2(R3,dp) ≥ λ‖f −ΠLf‖2H.

Then L := L−v ·∇x generates a strongly continuous evolution semi-group

which satisfies

‖eLt(I−ΠL)‖H1(T3×R3) ≤ Ce−t/τ ,

for some explicit constants C and τ that only depend on the constants

appearing in (i)− (v).

115

• Consider the nonlinear problem

Ft + v · ∇xF = Q(F, F ), F (·, 0) = Fin(·), (9)

and denote by F∞ the global equilibrium to (9) uniquely determined by the

mass, first and second momentum of the initial data. Let

Γ(f, f) + Lf :=
1√
F∞

Q(F∞ + f
√
F∞, F∞ + f

√
F∞),

with Lf a linear operator satisfying (v) above, and Γ(f, f) such that

(ii′) (Dα
xD

β
pΛf,Dα

xD
β
p f)L2(T3×R3) ≥ ν3‖Dα

xD
β
p f‖2L2(T3,H) − ν4‖f‖

2
L2(T3×R3),

(iii′) (Dα
xD

β
pKf,D

α
xD

β
p f)L2(T3×R3) ≤ C(δ)‖f‖2Hk−1(T3×R3) + δ‖Dα

xD
β
p f‖2L2(T3×R3),

(vi) ‖Γ(f, f)‖Hk(T3×R3) ≤ C‖f‖Hk(T3×R3)

∑
l,j≤k

‖∂lx∂jvf‖L2(T3,H)

1/2

,

for some k ≥ 4 and |α|+ |β| ≤ k, |β| ≥ 1.

Then (9) has an unique smooth solution that decays exponentially fast

towards F∞:∥∥∥∥ 1√
F∞

(F − F∞)

∥∥∥∥
Hk(T3×R3)

≤ Cin ε e
−λt/4, t > 0,
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provided the initial data Fin satisfies∥∥∥∥ 1√
F∞

(Fin − F∞)

∥∥∥∥
Hk(T3×R3)

≤ ε.

Conditions (i)−(iii) state that Λ is coercive (in some sense) on the space H,

while K has a regularizing property. Assumption (v) is exactly the spectral gap

proved in Theorem 1. For (vi) will use an estimate proved for the mono-species

case by Guo in [24, Thr. 3].120

An alternative (and perhaps easier) way of proving Theorem 1 and Theorem

2 is to show that K is compact and Λ is coercive, see [12, Lemma 10]. However

this method is non-constructive, in the sense that the size of both the spectral

gap and rate of convergence will be only given implicitely. For completeness we125

add the proof of compactness of K in the Appendix. In the following sections

we will adopt the procedure outlined earlier that will allow for constructive

estimates.

1.2. Outline

The rest of the paper is organized as follows: after brief summary of the130

conservation properties for the non-linear system, Section 2 concerns the for-

mulation of the linearized system and its properties. Section 3 contains the

proof to Theorem 1. In Section 4 we present the proof of Theorem 2. Expo-

nential decay is proven with an explicit rate. Finally, in the Appendix we prove

the compactness of the operator K.135

We conclude by mentioning that among the several open problems, the one

about estimates in the case of very soft potentials γ < −2 is a particularly

interesting question.

1.3. Notation

Vectors in R3 will be denoted by v, v′, p, p′ and so on, the inner product140

between v and w will be written (v, w). The identity matrix will be noted by

I, the trace of a matrix X will be denoted Tr(X). The initial condition for
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the Cauchy problem will always be denoted by fin and Cin will be any positive

constant that only depends on the initial data. Unless otherwise specified,∫
dp ≡

∫
R3 dp,

∫
dx ≡

∫
T3 dx. The space L2

p denotes the classical Lebesgue145

spaces L2(R3) with respect to the variable p. We denote by Hk
x,p, k ≥ 1 the

Sobolev space Hk(T3 × R3) with respect to the variable x and p and by L2
xH

the space of all functions with finite norm ‖‖ · ‖H‖L2(T3).
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2. Conserved quantities and linearization

In this section we first outline the conservation laws and entropy decay prop-

erty which hold for (1). Then we present a linearization of (1) around an equi-160

librium state and show that the new linear system also satisfies conservation of

mass, total momentum and total energy.

Theorem 4. Let Fi, i = 1, ..., N be a solution to (1)-(2). The mass, the total

momentum and energy of the system are conserved over time, i.e.

d

dt

∫ ∫
Fi dpdx =

d

dt

N∑
i=1

∫ ∫
pFi dpdx =

d

dt

N∑
i=1

∫ ∫
|p|2

2mi
Fi dpdx = 0.

In addition the Boltzmann entropy functional H(F1, F2, ..., FN ) defined as

H(F1, F2, ..., FN ) :=

∫ N∑
i=1

Fi log
Fi
m3
i

dp

11



decreases along solutions to (1), and it is constant (that is, the entropy pro-

duction vanishes) if and only if the distribution functions (F1, . . . , FN ) are

Maxwellians (M1, . . . ,MN ) of the form:

Mi(x, p) =
ρi(x)

(2πmikBT (x))
3/2

e
−|p−miu(x)|2

2mikBT (x) .

The density ρi(x), velocity u(x) and temperature T (x) are uniquely determined

by the conservation properties:

T (x) =
1∑N
1 ρi

N∑
i=1

∫
|p−miu|2

3mikB
Fi dp, u(x) =

1∑N
1 ρimi

N∑
i=1

∫
pFi dp, ρi(x) =

∫
Fidp.

The only local equilibrium that satisfies (1)-(2) is the global equilibrium

Mi(p) =
ρ̄i

(2πmikBT∞)
3/2

e
−|p−miu∞|2

2mikBT∞ ,

with ρ̄i, T∞ and u∞ constants uniquely determined by the conservation proper-

ties:

T∞ =
1∑N
1 ρ̄i

N∑
i=1

∫ ∫
|p−miu|2

3mikB
Fi dpdx, u∞ =

1∑N
1 ρ̄imi

N∑
i=1

∫ ∫
pFi dpdx, ρ̄i =

∫ ∫
Fidpdx.

Proof. The mass conservation follows immediately from the divergence struc-

ture of the collision operators. We first show total momentum conservation.

Integration by parts yields:∫
pQij(fi, fj)dp = −

x
A(ij)

[
p

mi
− p′

mj

]
(f ′j∇fi − fi∇f ′j)dpdp′

=
x

fif
′
j(div pA

(ij)

[
p

mi
− p′

mj

]
− div p′A

(ij)

[
p

mi
− p′

mj

]
)dpdp′

=

(
1

mi
+

1

mj

)x
fif
′
j(divwA

(ij)[w])|
w= p

mi
− p′

mj

dpdp′ =: Iij .

Applying the transformation p ↔ p′ inside Iij and noticing that w ∈ R3 7→

divwA
(ij)[w] is an odd function, we find that Iij is skew-symmetric: Iij = −Iji.

Hence, summing up the above equality w.r.t. i, j = 1, . . . , N we get

N∑
i,j=1

∫
pQij(fi, fj)dp =

N∑
i,j=1

Iij = 0,

12



due to the skew-symmetry of Iij .

Similarly, for the conservation of the total energy, integration by parts yields:∫
|p|2

2
Qij(fi, fj)dp = −

x
p ·A(ij)

[
p

mi
− p′

mj

]
(f ′j∇fi − fi∇f ′j)dpdp′

=
x

fif
′
j(div p(A

(ij)

[
p

mi
− p′

mj

]
p)− div p′(A

(ij)

[
p

mi
− p′

mj

]
p))dpdp′

=
x

fif
′
jtr(A

(ij)

[
p

mi
− p′

mj

]
)dpdp′+

+
x

fif
′
jp · (div pA

(ij)

[
p

mi
− p′

mj

]
− div p′A

(ij)

[
p

mi
− p′

mj

]
)dpdp′

=
x

fif
′
jtr(A

(ij)

[
p

mi
− p′

mj

]
)dpdp′+

+

(
1

mi
+

1

mj

)x
fif
′
jp · (divwA

(ij)[w])|
w= p

mi
− p′

mj

dpdp′.

We briefly recall here what we mean when we write divwA
(ij)[w]. Let M be a

N × N matrix with elements mi,j : div xM is a vector with components bi :=∑N
j=1 ∂xj

mi,j . Hence

div zA
(ij)[z] = −2C(i,j)|z|γz.

We denote by div xM the vector b with components bi :=
∑N
j=1 ∂xj

mi,j . It

follows:

N∑
i,j=1

1

mi

∫
|p|2

2
Qij(fi, fj)dp =

N∑
i,j=1

1

mi

x
fif
′
jtr(A

(ij)

[
p

mi
− p′

mj

]
)dpdp′ (10)

+

N∑
i,j=1

(
1

mi
+

1

mj

)x
fif
′
j

p

mi
· (divwA

(ij)[w])|
w= p

mi
− p′

mj

dpdp′.

By applying the transformation (p, i) ↔ (p′, j) in the terms on the right-hand

side of (10) we deduce:

N∑
i,j=1

1

mi

∫
|p|2

2
Qij(fi, fj)dp =

1

2

N∑
i,j=1

(
1

mi
+

1

mj

)x
fif
′
jtr(A

(ij)

[
p

mi
− p′

mj

]
)dpdp′+

+
1

2

N∑
i,j=1

(
1

mi
+

1

mj

)x
fif
′
j(w · divwA

(ij)[w])|
w= p

mi
− p′

mj

dpdp′ = 0,

since w · divwA
(ij)[w] = −trA(ij)[w] for w ∈ R3. The total energy conservation

follows.165
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Finally, we show that the entropy functional H is decreasing as time in-

creases:

− d

dt
H(f1, f2, ..., fN ) = −

N∑
i,j=1

∫
(log fi + 1)Qij(fi, fj)dp

=

N∑
i,j=1

x ∇fi
fi
·A(ij)

[
p

mi
− p′

mj

]
(f ′j∇fi − fi∇f ′j)dpdp′

=

N∑
i,j=1

x
fif
′
j

∇fi
fi
·A(ij)

[
p

mi
− p′

mj

](
∇fi
fi
−
∇f ′j
f ′j

)
dpdp′.

By exchanging i↔ j and p↔ p′ we obtain:

− d

dt
H =

N∑
i,j=1

x
fif
′
j

∇fi
fi
·A(ij)

[
p

mi
− p′

mj

](
∇fi
fi
−
∇f ′j
f ′j

)
dpdp′

= −
N∑

i,j=1

x
fif
′
j

∇f ′j
f ′j
·A(ij)

[
p

mi
− p′

mj

](
∇fi
fi
−
∇f ′j
f ′j

)
dpdp′

=
1

2

N∑
i,j=1

x
fif
′
j

(
∇fi
fi
−
∇f ′j
f ′j

)
·A(ij)

[
p

mi
− p′

mj

](
∇fi
fi
−
∇f ′j
f ′j

)
dpdp′ ≥ 0,

since A(ij) is a positive definite matrix.

Hence, d
dtH = 0 if and only if ∇fifi −

∇f ′j
f ′j

lies in the kernel of A(ij)
[
p
mi
− p′

mj

]
,

that is, if and only if there exists a scalar function λij [v, v
′] : R3×R3 → R such

that

∇fi
fi
−
∇f ′j
f ′j

= λij

[
p

mi
,
p′

mj

](
p

mi
− p′

mj

)
. (11)

We next show that the matrix {λij [ pmi
, p
mi

]}i,j is constant for all i and j. Ap-

plying the transformation (p, i)↔ (p′, j) in (11) we get

λij

[
p

mi
,
p′

mj

]
= λji

[
p′

mj
,
p

mi

]
,

which implies

λij

[
p

mi
,
p

mi

]
= λji

[
p

mi
,
p

mi

]
.

We differentiate (11) w.r.t. p and obtain:

D2 log fi(p) = ∇pλij
[
p

mi
,
p′

mj

]
⊗
(
p

mi
− p′

mj

)
+

1

mi
λij

[
p

mi
,
p′

mj

]
I.
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Consequently for p′/mj = p/mi,

∂2pkps log fi(p) =
1

mi
λij

[
p

mi
,
p

mi

]
δks, k, s = 1, 2, 3. (12)

Differentiation of (12) leads to:

∂p`∂
2
pkps

log fi(p) =
1

mi
∂p`λij

[
p

mi
,
p

mi

]
δks, k, s, ` = 1, 2, 3.

Since the order of the derivatives on the left hand side is interchangeable (as-

suming enough smoothness for fi), one deduces that

∂p`λij

[
p

mi
,
p

mi

]
δks = ∂pkλij

[
p

mi
,
p

mi

]
δ`s, k, s, ` = 1, 2, 3,

which is consistent if and only if v ∈ R3 7→ λij [v, v] is constant.

Moreover, (12) implies that, for i = 1, . . . , N , λij does not depend on j.

Summarizing, we have found that λi,j [v, v] is constant, symmetric in i, j and

does not depend on j. Hence λi,j [v, v] ≡ −α(2), α(2) ∈ R, for i, j = 1, . . . , N ,

v ∈ R3. This fact and (12) imply that log fi(p) is a second order polynomial in

p:

log fi(p) = α
(0)
i + α

(1)
i · p− α

(2) |p|2

2mi
, i = 1, . . . , N. (13)

From (11) and (13) it follows:

α
(1)
i − α

(1)
j − α

(2)

(
p

mi
− p′

mj

)
= −α(2)

(
p

mi
− p′

mj

)
,

which leads to α
(1)
i = α

(1)
j , i, j = 1, . . . , N after evaluation for p′/mj = p/mi.

We conclude that

log fi(p) = α
(0)
i + α(1) · p− α(2) |p|2

2mi
, i = 1, . . . , N.

Conservation of mass, momentum and energy uniquely determine the constants

α
(0)
i , α(1) and α(2).
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Linearization around the equilibrium.

We now linearize the collision operatorQ around the Maxwellians (M1, . . . ,MN )

defined as

Mi(p) =
ρi

(2πmikBT )3/2
e
− 1

2
|p|2

mikBT .

It holds:

N∑
j=1

Qij(Mi +
√
Mifi,Mj +

√
Mjfj) =

N∑
j=1

Qij(Mi,
√
Mjfj) +Qij(

√
Mifi,Mj) +

+ Qij(
√
Mifi,

√
Mjfj),

taking into account that Qi,j(Mi,Mj) = 0. Let us first compute:

Qij(
√
Mifi,Mj) = div p

∫
A(ij)

[
p

mi
− p′

mj

]
(M ′j∇(

√
Mifi)−

√
Mifi∇M ′j)dp′

= div p

∫
A(ij)

[
p

mi
− p′

mj

](
(M ′j∇

√
Mi −

√
Mi∇M ′j)fi +M ′j

√
Mi∇fi

)
dp′.

Rewriting

M ′j∇
√
Mi −

√
Mi∇M ′j =

√
MiM

′
j

(
−1

2
∇ logM ′j −

1

2kBT

(
p

mi
− p′

mj

))
= −

√
MiM ′j∇

√
M ′j −

√
MiM

′
j

2kBT

(
p

mi
− p′

mj

)
, (14)

it follows:

Qij(
√
Mifi,Mj) = div p

∫ √
MiM ′jA

(ij)

[
p

mi
− p′

mj

](√
M ′j∇fi − fi∇

√
M ′j

)
dp′,

(15)

since A(ij)
[
p
mi
− p′

mj

]
( p
mi
− p′

mj
) ≡ 0. We now consider

Qij(Mi,
√
Mjfj) = div p

∫
A(ij)

[
p

mi
− p′

mj

](√
M ′jf

′
j∇Mi −Mi∇

(√
M ′jf

′
j

))
dp′

= div p

∫
A(ij)

[
p

mi
− p′

mj

](
f ′j

(√
M ′j∇Mi −Mi∇

√
M ′j

)
−Mi

√
M ′j∇f

′
j

)
dp′.

Using similar calculations as in (14) one gets

√
M ′j∇Mi −Mi∇

√
M ′j =

√
MiM ′j∇

√
Mi +

Mi

√
M ′j

2kBT

(
p

mi
− p′

mj

)
,
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which implies

Qij(Mi,
√
Mjfj) = div p

∫ √
MiM ′jA

(ij)

[
p

mi
− p′

mj

](
f ′j∇

√
Mi −

√
Mi∇f ′j

)
dp′.

(16)

Adding (15) with (16) (and dividing by
√
Mi) we obtain the linearized collision

operator:

Li(f1, . . . , fn) =

N∑
j=1

Lij(fi, fj),

with

Lij(fi, fj) :=
1√
Mi

div p

∫ √
MiM ′jA

(ij)

[
p

mi
− p′

mj

]
· (17)

·
(√

M ′j∇fi −
√
Mi∇f ′j − fi∇

√
M ′j + f ′j∇

√
Mi

)
dp′.

We briefly recall the conserved quantities for Li:

Theorem 5. Let fi, i = 1, ..., N be the solution to the linear system:
∂tfi + p

mi
· ∇xfi =

∑N
j=1 Lij(fi, fj),

f(x, p, 0) = fin(x, p),

with Lij defined as in (17). The mass
∫ ∫ √

Mifi dpdx, total momentum∑N
i=1

∫ ∫
p
√
Mifi dpdx and total energy

∑N
i=1

∫ ∫
(|p|2/2mi)

√
Mifi dpdx are

constant in time.175

Proof. The mass of each function
√
Mifi is conserved because of the divergence

form of the operator. Moreover, with an integration by parts we can deduce∫
p

N∑
i=1

√
MiLi(f1, . . . , fN )dp

= −
N∑

i,j=1

x√
MiM ′jA

(ij)

[
p

mi
− p′

mj

]
·

·
(√

M ′j∇fi −
√
Mi∇f ′j − fi∇

√
M ′j + f ′j∇

√
Mi

)
dpdp′ = 0,
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because the quantity inside the integral is antisymmetric for the transformation

(i, p) ↔ (j, p′). Finally, the same transformation and another integration by

parts allow us to write:∫ N∑
i=1

|p|2

2mi

√
MiLi(f1, . . . , fN )dp

= −
N∑

i,j=1

x √
MiM ′j

p

mi
·A(ij)

[
p

mi
− p′

mj

]
·

·
(√

M ′j∇fi −
√
Mi∇f ′j − fi∇

√
M ′j + f ′j∇

√
Mi

)
dpdp′

= −
N∑

i,j=1

x 1

2

√
MiM ′j

(
p

mi
− p′

mj

)
·A(ij)

[
p

mi
− p′

mj

]
·

·
(√

M ′j∇fi −
√
Mi∇f ′j − fi∇

√
M ′j + f ′j∇

√
Mi

)
dpdp′ = 0,

since A(ij)
[
p
mi
− p′

mj

]
( p
mi
− p′

mj
) = 0. The proof is complete.

Structure of the linearized collision operator.

We first show that Lij can be rewritten in the following form:

Lij(fi, fj) =
1√
Mi

div p

∫
MiM

′
jA

(ij)

[
p

mi
− p′

mj

]∇( fi√
Mi

)
−∇

 f ′j√
M ′j

 dp′.

(18)

To prove (18) we first notice that:

∇ log
√
M ′j = − 1

2kBT

p′

mj
=

1

2kBT

(
p

mi
− p′

mj

)
+∇ log

√
Mi.

It follows that the term
√
M ′j∇fi − fi∇

√
M ′j inside (17) can be rewritten as:

√
M ′j∇fi − fi∇

√
M ′j =

√
MiM ′j

(
∇fi√
Mi

− fi√
Mi

∇ log
√
M ′j

)

=
√
MiM ′j

(
∇fi√
Mi

− fi√
Mi

∇ log
√
Mi

)
−
fi
√
M ′j

2kBT

(
p

mi
− p′

mj

)

=
√
MiM ′j∇

(
fi√
Mi

)
−
fi
√
M ′j

2kBT

(
p

mi
− p′

mj

)
.

18



The other term
√
Mi∇f ′j − f ′j∇

√
Mi is treated in a similar way. This shows

that (18) and (17) are equivalent formulations.

180

We will now decompose the operator L = (L1, L2, ..., LN ) as L = Lm + Lb,

where Lm and Lb respectively describe collisions between particles of the same

species and of different species. More precisely,

Lm(f) := (L11(f1, f1), ..., LNN (fN , fN )),

Lb(f) := (
∑
j 6=1

L1j(f1, fj), ...,
∑
j 6=N

LNj(fN , fj).

Theorem 6. Both operators Lm and Lb are negative semidefinite. Moreover

f ∈ N(L) if and only if

fi = M
1/2
i

(
β
(0)
i + β(1) · p+ β(2) |p|2

2mi

)
, i = 1, . . . , N,

for some p-independent real coefficients β
(0)
i , i = 1, . . . , N , β(1) and β(2), and

f ∈ N(Lm) if and only if:

fi = M
1/2
i

(
α
(0)
i + α

(1)
i · p+ α

(2)
i |p|

2
)
, i = 1, . . . , N,

for some p−independent real coefficients α
(0)
i , α

(1)
i , α

(2)
i , i = 1, . . . , N .

Proof. A change of variable p↔ p′ allows to write

(f, Lmf)L2
p

:=

N∑
i=1

(fi, Lii(fi, fi))L2
p

=− 1

2

N∑
i=1

∫ ∫
MiM

′
iA

(ii)

[
p

mi
− p′

mi

](
∇
(

fi√
Mi

)
−∇

(
f ′i√
M ′i

))
·

·

(
∇
(

fi√
Mi

)
−∇

(
f ′i√
M ′i

))
dpdp′ ≤ 0.
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Using the same change of variable, for each i 6= j one can show that

(fi, Lij(fi, fj))L2
p
+(fj , Lji(fj , fi))L2

p

= −
∫ ∫

MiM
′
jA

(ii)

[
p

mi
− p′

mj

]∇( fi√
Mi

)
−∇

 f ′j√
M ′j

 ·
·

∇( fi√
Mi

)
−∇

 f ′j√
M ′j

 dpdp′ ≤ 0, (19)

which yields (f, Lbf)L2
p

:=
∑N
i,j=1
j 6=i

(fi, Lij(fi, fj))L2
p
≤ 0 for all f ∈ D(L).

It is clear that (f, Lmf)L2
p

= 0 if and only if

∇
(

fi√
Mi

)
−∇

(
f ′i√
M ′i

)
= µij [p, p

′]

(
p

mi
− p′

mi

)
.

By employing the same method that was used to solve (11) we find that f ∈

N(Lm) if and only if:

fi = M
1/2
i

(
α
(0)
i + α

(1)
i · p+ α

(2)
i |p|

2
)
, i = 1, . . . , N, (20)

for some p−independent real coefficients α
(0)
i , α

(1)
i , α

(2)
i , i = 1, . . . , N . Eq. (20)

is a complete characterization of N(Lm). A similar strategy yields the descrip-

tion of the kernel of L: f ∈ N(L) if and only if

fi = M
1/2
i

(
β
(0)
i + β(1) · p+ β(2) |p|2

2mi

)
, i = 1, . . . , N, (21)

for some p-independent real coefficients β
(0)
i , i = 1, . . . , N , β(1) and β(2). Eq. (21)

is a complete characterization of N(L).
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3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1 which states that the

multi-species linearized Landau collision operator L = (L1, L2, ..., LN ) defined

as in (17) has a spectral gap in the Hilbert space H.

190
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The starting point in the proof is the already known spectral gap for the

mono-species operator proven in several works, including [24, 29] and summa-

rized in the next lemma.

Lemma 1. There exists an explicitly computable constant λm > 0 such that:

−(f, Lmf) ≥ λm‖f −Πmf‖2H f ∈ D(Lm),

where Πm denotes the projection operator onto the subspace N(Lm).

We will now follow an approach similar to the one formulated in [12]. We

first write

f = f‖ + f⊥,

with

f‖ := Πmf, f⊥ := (I−Πm)f.

From (19) it follows:

−(f, Lbf)L2
p

=
1

2

N∑
i,j=1
j 6=i

x
MiM

′
j(wp + wo) ·A(ij)

[
p

mi
− p′

mj

]
(wp + wo)dpdp

′,

with

wp := ∇

(
f
‖
i√
Mi

)
−∇

 (f
‖
j )′√
M ′j

 , wo := ∇
(
f⊥i√
Mi

)
−∇

 (f⊥j )′√
M ′j

 .

Since A(ij) is symmetric and positive definite, Young’s inequality yields

1

2
wp ·A(ij)wo +

1

2
wo ·A(ij)wp = wp ·A(ij)wo ≥ −

1

4
wp ·A(ij)wp − wo ·A(ij)wo,

and

−(f, Lbf)L2
p
≥ 1

4

N∑
i,j=1
j 6=i

x
MiM

′
jwp ·A(ij)

[
p

mi
− p′

mj

]
wpdpdp

′

− 1

2

N∑
i,j=1
j 6=i

x
MiM

′
jwo ·A(ij)

[
p

mi
− p′

mj

]
wodpdp

′

=− 1

2
(f‖, Lbf‖)L2

p
− 1

2

N∑
i,j=1
j 6=i

x
MiM

′
jwo ·A(ij)

[
p

mi
− p′

mj

]
wodpdp

′.

(22)
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Let us estimate the second term on the right-hand side of (22). Applying

Young’s inequality one more time we get

1

2

N∑
i,j=1
j 6=i

x
MiM

′
jwo ·A(ij)

[
p

mi
− p′

mj

]
wodpdp

′

≤
N∑

i,j=1
j 6=i

x
MiM

′
j∇
(
f⊥i√
Mi

)
·A(ij)

[
p

mi
− p′

mj

]
∇
(
f⊥i√
Mi

)
dpdp′

+

N∑
i,j=1
j 6=i

x
MiM

′
j∇

 (f⊥j )′√
M ′j

 ·A(ij)

[
p

mi
− p′

mj

]
∇

 (f⊥j )′√
M ′j

 dpdp′

= 2

N∑
i,j=1
j 6=i

x
MiM

′
j∇
(
f⊥i√
Mi

)
·A(ij)

[
p

mi
− p′

mj

]
∇
(
f⊥i√
Mi

)
dpdp′.

Since

∇
(
f⊥i√
Mi

)
=
∇f⊥i√
Mi

− f⊥i√
Mi

∇ log
√
Mi,

we have

1

2

N∑
i,j=1
j 6=i

x
MiM

′
jwo ·A(ij)

[
p

mi
− p′

mj

]
wodpdp

′

≤ 4

N∑
i,j=1
j 6=i

x
M ′j∇f⊥i ·A(ij)

[
p

mi
− p′

mj

]
∇f⊥i dpdp′

+ 4

N∑
i,j=1
j 6=i

x
M ′j(f

⊥
i )2∇ log

√
Mi ·A(ij)

[
p

mi
− p′

mj

]
∇ log

√
Midpdp

′

≤
N∑
i=1

∫
∇f⊥i · A(i)∇f⊥i dp+

N∑
i=1

∫
(f⊥i )2B(i)dp, (23)

with

A(i) := 4

N∑
j=1

∫
M ′jA

(ij)

[
p

mi
− p′

mj

]
dp′, B(i) := ∇ log

√
Mi · A(i)∇ log

√
Mi.
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From [8, Lemma 2.3] we deduce that:

∇f⊥i · A(i)∇f⊥i ≤ C
(
〈p〉γ |P∇f⊥i |2 + 〈p〉γ+2 |(I − P )∇f⊥i |2

)
, (24)

B(i) ≤ C 〈p〉γ+2
. (25)

Inequalities (23), (24) and (25) imply:

1

2

N∑
i,j=1
j 6=i

x
MiM

′
jwo ·A(ij)

[
p

mi
− p′

mj

]
wodpdp

′ ≤ C1‖f⊥‖2H, (26)

for some explicitly computable constant C1 > 0. In summary we have shown

that

−(f, Lbf)L2
p
≥ −1

2
(f‖, Lbf‖)L2

p
− C1‖f⊥‖2H. (27)

We are now ready to prove the next lemma:195

Lemma 2. For each f ∈ D(L) and η ∈ (0, 1] we have

−(f, Lf)L2
p
≥ (λm − ηC1)‖f⊥‖2H −

η

2
(f‖, Lbf‖)L2

p
.

Proof. Using the decomposition L = Lm + Lb we get,

−(f, Lf)L2
p

= −(f, Lmf)L2
p
− (f, Lbf)L2

p

≥ −(f, Lmf)L2
p
− η(f, Lbf)L2

p

for each η ∈ (0, 1], since Lb is a negative semidefinite operator, as shown in

Theorem 6. Finally Lemma 1 and (27) imply

−(f, Lf)L2
p
≥ λm‖f⊥‖2H − η

(
1

2
(f‖, Lbf‖)L2

p
+ C1‖f⊥‖2H

)
,

which finishes the proof.

We focus now our attention on (f‖, Lbf‖)L2
p
. From (20) it follows

f
‖
i = (Πmf)i = M

1/2
i

(
αi + ui · p+ ei

|p|2

2mi

)
, i = 1, . . . , N, (28)
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for a suitable choice of αi, ui, ei. We get:

− (f‖, Lbf‖)L2
p

=
1

2

N∑
i,j=1
j 6=i

x
MiM

′
j

(
ui − uj + ei

p

mi
− ej

p′

mj

)
·

·A(ij)

[
p

mi
− p′

mj

](
ui − uj + ei

p

mi
− ej

p′

mj

)
dpdp′.

We first notice that

(ui − uj) ·
x

MiM
′
jA

(ij)

[
p

mi
− p′

mj

](
ei
p

mi
− ej

p′

mj

)
dpdp′

= (ui − uj) ·
ei
mi

∫
Mip

(∫
M ′jA

(ij)

[
p

mi
− p′

mj

]
dp′
)
dp

− (ui − uj) ·
ej
mj

∫
M ′jp

′
(∫

MiA
(ij)

[
p

mi
− p′

mj

]
dp

)
dp′.

Since the function (p, p′) ∈ R3 ×R3 7→MiM
′
jA

(ij)
[
p
mi
− p′

mj

] (
ei

p
mi
− ej p

′

mj

)
∈

R3 is odd, it follows that:

(ui − uj) ·
x

MiM
′
jA

(ij)

[
p

mi
− p′

mj

](
ei
p

mi
− ej

p′

mj

)
dpdp′ = 0.

Hence we are left with

− (f‖, Lbf‖)L2
p

=

N∑
i,j=1

(ui − uj) ·
x

MiM
′
jA

(ij)

[
p

mi
− p′

mj

]
dpdp′ (ui − uj)

+

N∑
i,j=1

(ei − ej)2

4

x
MiM

′
j

(
p

mi
+

p′

mj

)
·A(ij)

[
p

mi
− p′

mj

](
p

mi
+

p′

mj

)
dpdp′,

after rewriting
(
ei

p
mi
− ej p

′

mj

)
as(

ei
p

mi
− ej

p′

mj

)
=

(
p

mi
+

p′

mj

)
(ei − ej)

2
+

(
p

mi
− p′

mj

)
(ei + ej)

2
.

It is easy to see that, for i, j = 1, . . . , N , the matrix

A (ij) ≡
x

MiM
′
jA

(ij)

[
p

mi
− p′

mj

]
dpdp′

is positive definite, while

B(ij) ≡ 1

4

x
MiM

′
j

(
p

mi
+

p′

mj

)
·A(ij)

[
p

mi
− p′

mj

](
p

mi
+

p′

mj

)
dpdp′ > 0.

We conclude:200
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Lemma 3. There exists an explicitly computable constant C2 > 0 such that:

−(f‖, Lbf‖)L2
p
≥ C2

N∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
, f ∈ D(L),

where the p−independent quantities ui, ei are related to f through (28).

The last step in the proof of the spectral gap for L is the result shown in

the next lemma.

Lemma 4. There exists an explicitly computable constant C3 > 0 such that

N∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
≥ C3

(
‖f −ΠLf‖2H − 2‖f⊥‖2H

)
, f ∈ D(L),

(29)

where the p−independent quantities ui, ei are related to f through (28).

For the proof of Lemma 4 we refer directly to the one of Lemma 15 in [12].205

In such lemma the authors prove (29) for f solution to a multi-species linearized

Boltzmann operator. The proof only relies on the structure of N(L) and N(Lm),

which is the same in both multi-species Boltzmann system studied in [12] and

the Landau systems considered in this manuscript.

210

Summarizing, Lemmas 2, 3 and 4 imply that for every f ∈ D(L)

−(f, Lf)L2
p
≥ η

2
C2C3‖f −ΠLf‖2D(L) + (λm − η(C1 + C2C3))‖f⊥‖2D(L).

Choosing η = min{1, λm/(C1 +C2C3)} we obtain the desired spectral gap with

λ =
C2C3

2
min

{
1,

λm
C1 + C2C3

}
.

This finishes the proof of Theorem 1.

4. Exponential decay to global equilibrium

This section is devoted to Theorem 2. The proof relies on the spectral gap

of Theorem 1 and on the hypocoercivity method by Mouhot and Neumann
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[28]. We have to show that there exists a suitable decomposition of L for which215

conditions (i)− (iv) in Theorem 3 hold.

We preliminarily observe that L is bounded w.r.t. the H norm, that is:

|(f, Lg)L2
p
| ≤ C‖f‖H‖g‖H, f, g ∈ D(L). (30)

Relation (30) can be showed by arguing as in the proof of (26).

Using formulation (18), the operator L can be rewritten as L = K−Λ with:

Ki(f) := − 1√
Mi

N∑
j=1

div p

∫
MiM

′
jA

(ij)

[
p

mi
− p′

mj

]
∇

 f ′j√
M ′j

 dp′, (31)

Λi(f) := − 1√
Mi

N∑
j=1

div p

∫
MiM

′
jA

(ij)

[
p

mi
− p′

mj

]
∇
(

fi√
Mi

)
dp′.

For the operator Λ we will use the following estimates proven by Guo in [24]:

for each f ∈ D(L) we have

c1‖f‖2H ≤ (f,Λf)L2
p
≤ c2‖f‖2H, (32)

(Dα
xD

β
p f,D

α
xD

β
pΛf)L2(T3×R3) ≥ c3‖Dα

xD
β
p∇f‖2H − c4‖f‖2L2(T3×R3). (33)

Concerning K, we need the following lemma which proves at the same time (iii)

and (iii′) of Theorem 3:

Lemma 5. For every δ > 0 there exists a constant C(δ) > 0 such that for

|α|+ |β| ≤ k with k ≥ 4 and β ≥ 1 :

(Dα
xD

β
p f,D

α
xD

β
pKf)L2(T3×R3) ≤ δ‖Dα

xD
β
p f‖2L2(T3×R3) + C(δ)‖f‖2Hk−1(T3×R3).

(34)

Proof. We first observe that

∇Mi = − p

mikBT
Mi.

26



Then K can be rewritten as:

Ki,j(f) =− 1√
Mi

∫
div p

(
MiA

(ij)

[
p

mi
− p′

mj

])
M ′j∇

 f ′j√
M ′j

 dp′

=

∫
ω(ij) ·

√
M ′j∇

 f ′j√
M ′j

 dp′

=

∫
ω(ij) ·

(
∇f ′j + f ′j

p′

2mjkBT

)
dp′, (35)

with the kernel ω(ij) defined as:

ω(ij) :=
√
MiM ′j

(
A(ij)

[
p

mi
− p′

mj

]
p

mikBT
+

2C(ij)

mi

∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ ( p

mi
− p′

mj

))
.

It is useful to estimate ω(ij) and its Jacobian. Since

|A(ij) [z] v| ≤ C(ij)|z|γ+2|v|,

we have

|ω(ij)| ≤
√
MiM ′j

(
|p|

mikBT
+

2C(ij)

mi

)(∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ+2

+

∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ+1
)
.

(36)

Taking into account that the magnitude of the derivative of every element of

A(ij)
[
p
mi
− p′

mj

]
w.r.t. each component of p is bounded by C

∣∣∣ pmi
− p′

mj

∣∣∣γ+1

, and

∇
√
Mi = −

√
Mi

p

2mikBT
,

for some suitable polynomial q(|p|) we have that the Jacobian of ω(ij) with

respect to p can be estimated as

|∇p ⊗ ω(ij)| ≤
√
MiM ′jq(|p|)

(∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ +

∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ+2
)
. (37)

Let us now introduce an arbitrary parameter ε > 0 and a cutoff function220

ψε : [0,∞) → [0, 1] such that ψε ∈ C1([0,∞)), ψε(x) = 1 for 0 ≤ x ≤ ε,

ψε(x) = 0 for x ≥ 2ε, |ψ′ε| ≤ Cε−1χ(0,2ε). Moreover let us define Ψ
(ij)
ε (p, p′) =

ψε

(∣∣∣ pmi
− p′

mj

∣∣∣).

27



We write K = K(I) +K(II), where:

K
(I)
i (f) =

N∑
j=1

∫ (
1−Ψ(ij)

ε

)
ω(ij) ·

(
∇f ′j + f ′j

p′

2mjkBT

)
dp′,

K
(II)
i (f) =

N∑
j=1

∫
Ψ(ij)
ε ω(ij) ·

(
∇f ′j + f ′j

p′

2mjkBT

)
dp′.

The function ω(ij) is smooth in the region {|p/mi − p′/mj | > 2ε}, thus

(1 + |p′|)D2β
p

((
1−Ψ(ij)

ε

)
ω(ij)

)
∈ L∞p,p′ .

From Young’s inequality and the fact that

‖D1
vD

α
xf‖2L2(T3×R3) ≤ C(‖Dα

xD
β
p f‖2L2(T3×R3) + ‖f‖2L2(T3×R3)),

‖Dα
xf‖2L2(T3×R3) ≤ ‖f‖

2
Hk−1(T3×R3),

we get

(Dα
xD

β
p f,D

α
xD

β
pK

(I)f)L2(T3×R3) (38)

=

N∑
i,j=1

y
Dα
xD

β
p fi ·

(
Dβ
p

((
1−Ψ(ij)

ε

)
ω(ij)

))(
∇p′Dα

xf
′
j +Dα

xf
′
j

p′

2mjkBT

)
dpdp′dx

= (−1)|β|
N∑

i,j=1

y
Dα
xfi

(
D2β
p

((
1−Ψ(ij)

ε

)
ω(ij)

))(
∇p′Dα

xf
′
j +Dα

xf
′
j

p′

2mjkBT

)
dpdp′dx

≤ C(ε)‖Dα
xf‖L2(T3×R3)

(
‖∇pDα

xf‖L2(T3×R3) + ‖Dα
xf‖L2(T3×R3)

)
≤ δ‖Dα

xD
β
p f‖2L2(T3×R3) + δ−1C(ε)‖f‖2Hk−1(T3×R3).

We write β = β̂ + ξ with |β̂| = 1, |ξ| = k − 1, so that Dβ
p = Dξ

pD
β̂
p . Let us

compute the term

Dβ
pK

(II)(f) = Dξ
p

N∑
j=1

∫
Θij

ε,β̂
[p, p′] ·

(
∇f ′j + f ′j

p′

2mjkBT

)
dp′, (39)

with

Θij

ε,β̂
[p, p′] := Dβ̂

p (Ψ(ij)
ε ω(ij))[p, p′].

By making the transformation p′/mj 7→ p/mi−p′/mj inside the integral in (39)
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we obtain

Dβ
pK

(II)(f) = Dξ
p

N∑
j=1

∫
Θij

ε,β̂
[p, (mj/mi)p− p′] ·

(
∇fj

[
p

mi
− p′

mj

]
(40)

+fj

[
p

mi
− p′

mj

]
1

2kBT

(
p

mi
− p′

mj

))
dp′.

Let us estimate first the expression

(|p|+ |p′|)|Θij

ε,β̂
[p, (mj/mi)p− p′]| = (|p|+ |p′|)|Dβ̂

p (Ψ(ij)
ε ω(ij))[p, (mj/mi)p− p′]|

≤ (|p|+ |p′|)|Dβ̂
p (Ψ(ij)

ε )[p, (mj/mi)p− p′]||ω(ij)[p, (mj/mi)p− p′]|

+ (|p|+ |p′|)|Ψ(ij)
ε [p, (mj/mi)p− p′]||Dβ̂

p (ω(ij))[p, (mj/mi)p− p′]|.

By using (36), (37) and the properties of the cutoff Ψ
(ij)
ε we deduce

(|p|+ |p′|)|Θij

ε,β̂
[p, (mj/mi)p− p′]| ≤ C

(
|p′|γ + |p′|γ+1 + |p′|γ+2

)
χ{|p′|≤2εmj}

(41)

for some constant C > 0. Since the local singularities of Θij

ε,β̂
[p, (mj/mi)p− p′]

only depend on p′ (after the change of variable p′/mj 7→ p/mi − p′/mj), the

estimate in (41) holds also for the derivatives of Θij

ε,β̂
[p, (mj/mi)p − p′] with

respect to p, i.e.

(|p|+ |p′|)|Dξ0
p Θij

ε,β̂
[p, (mj/mi)p− p′]| ≤ Cφj,ε(p′) 0 ≤ ξ0 ≤ ξ, (42)

φj,ε(p
′) ≡

(
|p′|γ + |p′|γ+1 + |p′|γ+2

)
χ{|p′|≤2εmj}. (43)

Furthermore, assumption γ ≥ −2 implies

‖φj,ε‖L1(R3) ≤ C(εγ+3 + εγ+4 + εγ+5) ≤ Cε. (44)

From (42), (43) it follows (recall that K(II) does not depend on x)

|Dα
xD

β
pK

(II)(f)| ≤ C
∑

0≤β′≤β

φj,ε ∗ |Dα
xD

β′

p f |.

As a consequence, thanks to (44),

‖Dα
xD

β
pK

(II)(f)‖L2(T3×R3) ≤ C ‖φj,ε‖L1(R3)

∑
0≤β′≤β

∥∥∥Dα
xD

β′

p f
∥∥∥
L2(T3×R3)

≤ Cε
∑

0≤β′≤β

∥∥∥Dα
xD

β′

p f
∥∥∥
L2(T3×R3)

,
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from which it follows

(Dα
xD

β
p f,D

α
xD

β
pK

(II)f)L2(T3×R3) ≤ Cε‖f‖2Hk(T3×R3). (45)

Since ε > 0 is arbitrary, from (38), (45) the statement (34) follows. This finishes

the proof.225

Relations (30)–(34) and the spectral gap allow us to apply Theorem 3, which

yields (8).

We now show the second part of Theorem 2. The non-linear terms Γi(f, f),

defined as

Γi(f, f) =
1√
Mi

N∑
j=1

Qij

(√
Mifi,

√
Mjfj

)
:=

N∑
j=1

Θi(fi, fj),

with

Θi(fi, fj) =div p

(∫
A(ij)

[
p

mi
− p′

mj

]√
M ′jf

′
jdp
′ · ∇fi

)
− div p

(
fi

∫
A(ij)

[
p

mi
− p′

mj

]√
M ′j∇f

′
jdp
′
)

−
∫
A(ij)

[
p

mi
− p′

mj

]
p′

mj

√
M ′jf

′
jdp
′ · ∇fi

+ fi

∫
A(ij)

[
p

mi
− p′

mj

]
p′

mj

√
M ′j · ∇f

′
jdp
′.

We now recall an estimate by Guo in [24, Thr. 3] which states that the inner

product (Θi(fi, fj), fi)Hk
x,p

can be bounded by the Hk
x,p and Hk

xH norms of fi

and fj ; more precisely

(Θi(fi, fj), fi)Hk
x,p
≤ C

(
‖fi‖Hk

x,p
‖fj‖Hk

xH + ‖fj‖Hk
x,p
‖fi‖Hk

xH

)
‖fi‖Hk

xH.

Therefore

(Γi(f, f), fi)Hk
x,p
≤ C‖fi‖Hk

x,p
‖fi‖Hk

xH

(
N∑
i=1

‖fj‖Hk
xH

)
+‖fi‖2Hk

xH

(
N∑
i=1

‖fj‖Hk
x,p

)
,
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which implies

(Γ(f, f), f)Hk
x,p

:=

N∑
i=1

(Γi(f, f), fi)Hk
x,p
≤ C‖f‖Hk

x,p
‖f‖2Hk

xH
. (46)

Define now the function f := F−M√
M with M(p) and F respectively the unique

equilibrium state and the unique smooth solution to (1). The function f =

(f1, f2, ..., fN ) solves

∂tfi +
p

mi
· ∇xfi =

N∑
j=1

Lij(fi, fj) + Γi(fi, fj).

Thanks to Theorem 1 and (46) one can deduce

1

2
∂t‖f‖2Hk

x,p
≤ −λ‖f‖2Hk

xH
+ C‖f‖Hk

x,p
‖f‖2Hk

xH
.

The above differential inequality can be solved by simple iteration method:

since ‖fin‖Hk
xH ≤ ε, there exists a positive time T0 such that ‖f‖Hk

x,p
≤ 2ε for

all t ∈ [0, T0]. Hence any solution to

1

2
∂t‖h‖2Hk

x,p
= −λ

2
‖h‖2Hk

xH
, ‖hin‖Hk

xH = ε,

satisfies ‖f‖2Hk
x,p
≤ ‖h‖2Hk

x,p
≤ εe−λ/2t for t ∈ [0, T0], taking into account that230

the Hk
xH-norm controls the Hk

x,p-norm. At time T0 we can restart the same

process since ‖f(·, T0)‖Hk
xH ≤ ε. This finishes the proof of Theorem 2.

5. Appendix

Lemma 6. The operator K : L2
p → L2

p defined in (31) is compact.

Proof. We will show that K is the limit, in the operator norm, of a sequence of

Hilbert-Schmidt operators. From (35) it follows:

Ki(f) =

N∑
j=1

∫
k(ij)(p, p′)fj(p

′)dp′, k(ij)(p, p′) =
p′

mjkBT
· ω(ij) − div p′ω

(ij).
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The following estimate is a consequence of (36) and (37):

|k(ij)(p, p′)| ≤ C (Mi(p)Mj(p
′))

1/4

(∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ +

∣∣∣∣ pmi
− p′

mj

∣∣∣∣γ+2
)

≤ CW
(
p

mi
− p′

mj

)
,

W (z) ≡ e−δ|z|
2 (
|z|γ + |z|γ+2

)
,

for some suitable constant δ > 0.235

Let ξn be the characteristic function of the ball B
(
0, 1

n

)
, and let us define

the sequence of operators K(n) = (K
(n)
1 , . . . ,K

(n)
N ) : L2

p → L2
p,

K
(n)
i (f) =

N∑
j=1

∫
k(ij)n (p, p′)fj(p

′)dp′,

k(ij)n (p, p′) = k(ij)(p, p′)

(
1− ξn

(
p

mi
− p′

mj

))
.

It is clear that k
(ij)
n ∈ L2

p,p′ , so K(n) is a Hilbert-Schmidt operator for all n ∈ N.

In particular K(n) is compact. Let us now estimate:∣∣∣Ki(f)−K(n)
i (f)

∣∣∣ ≤ ∫ |k(ij)(p, p′)|ξn( p

mi
− p′

mj

)
|fj(p′)|dp′

≤
N∑
j=1

(Wξn) ∗ fj .

It follows:

‖K(f)−K(n)(f)‖L2

‖f‖L2

≤ C‖Wξn‖L1 = C

∫
{|z|<1/n}

e−δ|z|
2 (
|z|γ + |z|γ+2

)
dz ≤ C

n
,

since γ + 2 ≥ 0. This means that K(n) → K strongly in L (L2
p), which implies

that K is compact. This finishes the proof.
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