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The energy–speed–accuracy trade-off in
sensory adaptation
Ganhui Lan1†‡, Pablo Sartori2‡, Silke Neumann3, Victor Sourjik3 and Yuhai Tu1*

Adaptation is the essential process by which an organism becomes better suited to its environment. The benefits of adaptation
are well documented, but the cost it incurs remains poorly understood. Here, by analysing a stochastic model of a minimum
feedback network underlying many sensory adaptation systems, we show that adaptive processes are necessarily dissipative,
and continuous energy consumption is required to stabilize the adapted state. Our study reveals a general relation among
energy dissipation rate, adaptation speed and the maximum adaptation accuracy. This energy–speed–accuracy relation is
tested in the Escherichia coli chemosensory system, which exhibits near-perfect chemoreceptor adaptation. We identify key
requirements for the underlying biochemical network to achieve accurate adaptation with a given energy budget. Moreover,
direct measurements confirm the prediction that adaptation slows down as cells gradually de-energize in a nutrient-poor
medium without compromising adaptation accuracy. Our work provides a general framework to study cost-performance
trade-offs for cellular regulatory functions and information processing.

Living systems are highly dissipative, consuming energy to carry
out different vital functions. Although it is natural to relate
energy consumption to physical functions in a cell, such as

biomolecule synthesis and cell motility, the costs of regulatory
functions, from maintaining homeostasis to timing of the cell
cycle to computing in the brain1, remain poorly understood.
Sensory adaptation is an important regulatory function possessed
by many living systems. It allows organisms to adjust themselves
to maintain their sensitivity and fitness in varying environments.
Most sensory adaptations are facilitated by biochemical feedback
networks, examples of which, in systems ranging from bacterial
chemotaxis2 and osmotic sensing in yeast3 to olfactory4 and light
sensing5 in mammalian sensory neurons, are shown in Fig. 1. Given
the small number ofmolecules in the underlying chemical reactions
and thermal fluctuations, the dynamics of biological networks are
inherently noisy. This then raises the questions of what drives
accurate adaptation in noisy biological systems and what is the
energy cost of the biochemical feedback controlmechanisms.

We address these questions by first studying the stochastic
dynamics of the core negative feedback control loop (Fig. 1a)
shared by various adaptation systems (Fig. 1b–e). We show that
despite their varying complexities, negative feedback control
mechanisms break detailed balance, and therefore always operate
out of equilibrium with energy dissipation. We find that energy
dissipation is needed to stabilize the adapted state against noise.
A relation between adaptation performance, characterized by its
speed and accuracy, and the minimum energy cost is discovered.
This energy–speed–accuracy (ESA) relationship is verified in a
detailed microscopic model of the E. coli chemosensory system.
Direct measurements of the adaptation dynamics of starving E.
coli cells show that adaptation slows down but maintains its
accuracy, confirming our predictions. Finally, we discuss the general
implications of our study and its comparison with other biological
information processingmechanisms (such as kinetic proofreading).
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Breakdown of detailed balance in negative feedback loop
The three-node negative feedback network shown in Fig. 1a
represents a minimum network to achieve accurate adaptation6. A
stimulus signal (s) causes a fast response in the output activity (a).
The change in a triggers a slower change in the negative control
element (m), which eventually cancels the effect of s and brings a
back to a stimulus-independent level a0. Owing to the small size of
a cell, in vivo biochemical reactions are highly noisy. The stochastic
dynamics of this feedback network can be described by two coupled
Langevin equations7:

ȧ= Fa(a,m,s)+ηa(t ); ṁ= Fm(a,m)+ηm(t ) (1)

The functions Fa and Fm characterize the coarse-grained biochemi-
cal interactions, ηa and ηm are the noises, assumed to be white with
strengths 21a and 21m respectively. The detailed balance condition
1m∂mFa=1a∂aFm is satisfied in all equilibrium systems8. However,
the negative feedback mechanism for adaptation requires the two
cross derivatives of the interaction functions, ∂Fa/∂m and ∂Fm/∂a,
to have opposite signs. This requirement directly indicates the
breakdown of detailed balance in all negative feedback control sys-
tems. This means that adaptation is necessarily a non-equilibrium
process and it always costs (dissipates) energy.

To understand why energy dissipation is necessary for adapta-
tion, we consider the following forms of Fa and Fm:

Fa(a,m,s)=−ωa[a−G(s,m)] (2)

Fm(a,m)=−ωm(a−a0)[β− (1−β)C∂G(s,m)/∂m] (3)

Here, Fa describes the fast response dynamics of a, with a fast
rate ωa; G(s,m) is the mean activity with opposite dependence
on s and m (∂mG> 0, ∂sG< 0). Fm describes the slow adaptation
dynamics, with the adaptation speed controlled by ωm(�ωa). The
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Figure 1 | Schematic model of adaptive feedback systems. a, The three-node feedback topology and its general adaptive behaviour. The inhibitory effect of
the input is chosen arbitrarily and does not affect any of the conclusions in this paper. b–e, Examples of sensory adaptive networks with highlighted key
negative feedback loops. b, E. coli chemotaxis: association of ligand to methyl-accepting chemotaxis protein (MCP) induces the methyltransferase
(CheR)/methylesterase (CheB) to add/remove methyl-groups to/from MCP respectively to counteract the influence of ligand binding. c, Osmotic sensing
in yeast: hyperosmotic shock deactivates the osmosensor Sln1p to Sln1, which stops the multi-step phospho-relay and activates the high osmolarity
glycerol (HOG1) pathway to restore cell turgidity and eventually enhance the phosphorylation of Sln1 back to active Sln1p. d, Olfactory sensing in
mammalian neurons: odorant binding induces activation of adenylyl cyclase (AC) causing the inbound calcium (Ca2+) flux, and calmodulin (CaM)
interacts with enriched calcium to form Ca-CaM and activate AC phosphorylase calmodulin kinase II (CAMKII) that eventually phosphorylates and
deactivates AC. e, Light sensing in mammalian neurons: light activates the G-protein coupled receptor (photon-sensor) that decreases the cellular level of
cyclic guanosine monophosphate (cGMP) and inhibits the inbound calcium (Ca2+) flux, which eventually turns on the octopus rhodopsin kinase (ORK) to
phosphorylate and deactivate the photon-sensor. The key high-energy biomolecules are labelled in red.

factor (a− a0) in Fm is introduced to make accurate adaptation
at a = a0 (independent of s) possible. A β-dependent term (in
brackets) is introduced in Fm to study both the equilibrium
(β = 0) and the non-equilibrium (β 6= 0) cases within the same
model. For β = 0, equations (2) and (3) represent an equilibrium
model, as the detailed balance condition is satisfied with the
constant C = 1mωa/(1aωm). For β 6= 0, the model becomes
non-equilibrium. For β = 1, we have Fm = −ωm(a− a0), which
corresponds to a linearized coarse-grained model for studying
adaptation in E. coli chemotaxis9.

From equations (2) and (3), there exists a steady state with a
constant activity a = a0 and an m-value given by G(s,m∗) = a0

for all values of β. With a stimulus-independent activity a0, this
steady state has the desired characteristic of an accurately adapted
state. However, linear stability analysis shows that this steady state
is only stable when

β >βc≡C∂mG(s,m∗)/(C∂mG(s,m∗)+1)> 0

which clearly shows that stable adaptation can only be achieved in
a non-equilibrium system. To further demonstrate this point, an
effective potential H (m) in m-space can be obtained by averaging
over the fast-variable a (see Supplementary Information for details).
As shown in Fig. 2a, for the equilibrium case β = 0, the desired
adaptation state (m = m∗) is at the maximum of H (m) and
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Figure 2 | Energetics and kinetics of adaptation. a, An effective potential, obtained by averaging over the fast activity variation, is shown for the
equilibrium model (β =0) and the non-equilibrium models (β >0). For β >βc, the state at m=m∗ changes from being unstable to stable. b, The
steady-state probability density P(a,m) (colour plot) and the phase-space fluxes (Ja,Jm) (vector field) are shown for the equilibrium model (β =0). The
fluxes vanish Ja= Jm=0 everywhere and P(a,m) is centred at the corners of the phase space. c, In the non-equilibrium fully adaptive model (β = 1), the
non-zero fluxes form a vortex (cycle) around the peak of P(a,m). The peak of P(a,m) has a fixed value of activity and a value of m that is small for low
background signal (left panel) and high for high background signal (right panel). d, In the equilibrium model (left panel), the system always moves downhill
(green arrows) to its lowest energy state; in the non-equilibrium adaptive model (right panel), external energy (W) is consumed to push the system uphill
(red arrows) to maintain it near the cross-over point of the active and inactive states.

therefore unstable. As β increases, H (m) is deformed, essentially
by the increasing amount of energy dissipation. When β > βc,
m = m∗ becomes a minimum of H (m) and stable adaptation
becomes possible.

The energy cost of adaptation
To calculate the energy cost of adaptation, we first determine
the phase-space probability density P(a,m, t ) for the stochastic
system described by equations (1)–(3). The dynamics of P(a,m,t )
is governed by the Fokker–Planck (FP) equation:

∂P
∂t
= −

∂

∂m

(
FmP−

∂

∂m
1mP

)
−
∂

∂a

(
FaP−

∂

∂a
1aP

)
≡ −

∂Jm
∂m
−
∂Ja
∂a

(4)

where Ja ≡ FaP −1a(∂P/∂a) and Jm ≡ FmP −1m(∂P/∂m) are
the two components of the probability density flux (current) in
the (a,m) phase-space. Following previous works10–14, the non-
equilibrium system can be characterized by its entropy production
rate Ṡ, which can be computed from Ja, Jm andP (see Supplementary

Information for derivation). From Ṡ, we obtain the rate at which the
system dissipates energy by heating its environment, characterized
by an effective temperature Teff:

Ẇ =
∫ ∫ [

J 2a
1aP
+

J 2m
1mP

]
dadm

in units of kTeff, where k is the Boltzmann constant. Note that the
energy unit kTeff for the coarse-grainedmodel can be different from
the thermal energy unit kT , even though it ultimately originates
from thermal fluctuations in the underlying chemical reactions. The
average activity 〈a〉 and the relative adaptation error ε can also be
determined by P(a,m,t ):

〈a〉=
∫ ∫

aPdadm; ε≡ |1−〈a〉/a0|

As ωa�ωm, the steady state solution P (s)(a,m) of the Fokker–
Planck equation can be obtained approximately by separation of
the fast variable (a) from the slow one (m). From P (s)(a,m), ε and
Ẇ in the adapted state can be determined. For the biologically
relevant case with β = 1 (ref. 9), we find ε ≈ ε0 exp(−c0ωm/1m),
and Ẇ ≈ σ 2

aω
2
m/1m, with σ 2

a ≡1a/ωa the variance of the activity
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Figure 3 | The E. coli chemotaxis adaptation. a, The schematics of the E. coli chemoreceptor adaptation process. The red and blue cycles represent the
receptor methylation–demethylation cycles for low and high attractant concentrations respectively, analogous to the flux cycles shown in Fig. 2d. b, The
energy dissipation1W≡ Ẇk−1

R per unit of time (k−1
R ) (solid lines) and the normalized adaptation error ε/ε0 (dotted lines) versus the parameter γ

for different values of ligand concentration s. ε0≡ ε(γ = 1). c, The adaptation error versus energy dissipation for different values of background
ligand concentration s. Solid lines from bottom to top represent log10(s/KI)= 1.2,1.0,0.5,−3.0; dashed lines from bottom to top represent
log10(s/KI)= 3,3.5,4,6. KI is the dissociation constant for the inactive receptor. εc is the saturation error at1W→∞,1Wc is defined as the1W
value when ε=0.99εc. d, The prefactor α in the error–energy relationship and its dependence on the methyl modification rates kR and kB.

(a) fluctuation. From these results, a simple relation between the
rate of energy dissipation Ẇ , the adaptation speed ωm and the
adaptation error ε emerges:

Ẇ ≈ (c0σ 2
a )×ωm× ln(ε0/ε) (5)

where c0 and ε0 are constants depending on the system parameters
and details of G. This general ESA relation holds true for other
cases (βc < β < 1), with only different expressions for c0 and ε0.
Equation (5) clearly shows that higher energy dissipation is needed
for more accurate and/or faster adaptation. See Supplementary
Information for a detailed derivation of the ESA relation.

For a specific choice of G(s,m) and other parameters, the phase
space dynamics can be determined quantitatively by solving the
FP equation (4) (see Methods). For the equilibrium model (β = 0)
(Fig. 2b), the system always localizes at one of the corners of the
phase space, flux vanishes everywhere (Ja = Jm = 0), and there is
no adaptation. For the fully adaptive model (β= 1; Fig. 2c), phase-
space fluxes, a trademark of non-equilibrium systems, appear. The
flux vectors form a vortex (cycle) that effectively traps the system
in the adapted state, which has a constant average activity (a0) and
an averagem-value (m∗) that increases with the signal s (Fig. 2c and
Supplementary Movie).

The energy cost of the negative feedback control can also
be understood intuitively from a two-state system that switches
between its active (a = 1) and inactive (a = 0) states with
free energies E1(m) and E0(m). As illustrated in Fig. 2d, E0(m)
and E1(m) have different dependences on m and cross at an
intermediate point m∗ (a specific form of E0,1(m) is given in
Methods). If the system operates at equilibrium, it always goes
to its lowest energy state (Fig. 2d, left panel) and thus does not
adapt. The strategy for adaptation is to trap the system near
m∗. As the cross-point m∗ is not a minimum on either energy
line, external free energy is consumed to push the system up the

energy ‘hills’ along the m-coordinate to stabilize this adapted state
(Fig. 2d, right panel).

The energy–speed–accuracy tradeoff in E. coli chemotaxis
To test the general ESA relation established by the coarse-grained
model of adaptation, we turn to E. coli chemotaxis, where
detailed microscopic models are available15–19. Here, we use such
a microscopic model to study the energy cost of adaptation and
compare the results with the general ESA relation as well as with
direct experimental observations.

As shown in Fig. 3a, the state of a chemoreceptor dimer is
characterized by two discrete variables: a = 0,1 for activity; and
m = 0,1, ... ,m0 for methylation level (m0 = 4 in this paper).
For a given m, the transitions between the active (a = 1) and
inactive (a= 0) states are fast, with a characteristic timescale τa;
the mean activity is determined by the free energy difference
1E(s,m) between active and inactive states. On a change in external
signal s, the mean activity changes quickly. The receptors adapt by
changing their methylation levels (m values) to balance the effect
of s in 1E(s,m). The methylation and demethylation reactions are
catalyzed by the methyltransferase CheR and the methylesterase
CheB respectively. Here, we approximate the methylation and
demethylation processes as one-step reactions, without explicitly
modelling the intermediate enzyme–substrate binding/unbinding
steps. The one-step reaction rates, kR and kB, depend on the
enzyme and substrate concentrations. This approximation does
not affect the energy dissipation rate calculation significantly for
Michaelis–Menten type reactions, where the substrate reaches
fast chemical equilibrium with the enzyme–substrate complex
(see Supplementary Information for details). To achieve accurate
adaptation, CheR should preferentially enhance the methylation
of the inactive receptors and CheB should preferentially enhance
the demethylation of the active receptors15–18. These irreversible
effects are described by two parameters γ1 (≤ 1) and γ2 (≤ 1)
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that suppress the demethylation rate for the inactive receptors
and the methylation rate for the active receptors respectively from
their equilibrium values.

We study the stochastic dynamics of the chemoreceptors for
different values of γ ≤ 1 (γ1 = γ2 = γ for simplicity), where γ = 1
corresponds to the equilibrium case. The probability of a receptor in
a given state (a,m), Pa(m), can be determined by solving the master
equation. From Pa(m) and the transition rates between different
states, we can compute the adaptation error ε and the energy
dissipation rate Ẇ (seeMethods for details). In Fig. 3b, we show the
dependence of ε and1W ≡ Ẇ k−1R , which is the energy dissipation
by a receptor to its environment in the form of heat during the
methylation time τR ≡ k−1R , on γ for different background signals.
Smaller γ leads to smaller error, but costs more energy. By plotting
ε versus1W in Fig. 3c, we find that ε decreases exponentially with
1W when1W is less than a critical value1Wc:

ε≈ ε0e−α1W (6)

For1W >1Wc, ε saturates to εc, which depends on key parameters
of the system. The exponential error–energy relationship holds
true for different choices of the kinetic rates kR and kB, and
the prefactor α is found to be: α = (kR + kB)/2kB (Fig. 3d and
Supplementary Fig. S1). With the parameter correspondence ωm=

kR+ kB, a0 = kR/(kR+ kB), σ 2
a = a0(1− a0)= kRkB/(kR+ kB)2 and

c0=2, equation (6) found in E. coli chemotaxis confirms the general
ESA relationship (equation (5)).

Network requirements for accurate adaptation
The error–energy relation (equation (6)) sets the minimum
adaptation error for a given energy dissipation. To approach this
optimum performance, proper conditions on the key components
and parameters of the network are required. In particular,
adaptation accuracy depends on the energetics and kinetics of the
receptor activity, parameterized by1E(s,m) and activation time τa
in our model. To evaluate these dependencies, we have computed
adaptation error and energy dissipation for a large number of
models, each with a random parameter set (1E(m),τa,γ ,s), where
1E(m) ≡ 1E(0,m) is the m-dependent part of 1E(s,m). The
results of ε versus1W for all these models are shown in Fig. 4a. All
the error–energy points are bounded by a ‘best performance’ (BP)
line, which agrees exactly with (equation (6)).

The deviation from this BP line is caused by the finite saturation
error εc, evident from Fig. 3c. Taking the limit of γ = 0, we can
derive the expression for εc:

εc= |(1/a0−1)P1(0)−P0(m0)|

which shows that the saturation error results mainly from the
receptor population at the methylation boundaries (m= 0 or m0)
where the enzyme (CheB or CheR) fails to decrease or increase
the receptor methylation level any further (see Supplementary
Information for details). Therefore, having large boundary energy
differences (|1E(0)|, |1E(m0)|) and fast activation time (τa �
k−1R ) can reduce εc by decreasing the receptor populations at
the methylation boundaries (see Supplementary Figs S2,S3 for
details). These requirements for accurate adaptation are met for the
aspartate receptor Tar, which has 1E(0) ≥ 2kT , 1E(4) ≤ −6kT
(ref. 20), and τakR < 10−3 (ref. 2). Our analysis also provides
a plausible explanation (smaller |1E(m0)|) for the less accurate
adaptation for the serine receptor Tsr (ref. 21).

The energy sources for adaptation
An examination of different adaptation networks (Fig. 1) shows
that the energy sources are energy-bearing biomolecules such as
ATP, GTP and SAM. For example, both the HOG1 feedback
loop3,22,23 in yeast osmotic shock adaptation (Fig. 1c) and the

0 5 10 15 20 25 30
10¬9

10¬8

10¬7

10¬6

10¬5

10¬4

10¬3

10¬2

10¬1

100a

ΔW (kT)

Best performance curve
Performance curve of Tar

SAM
× 20%

ATP
× 20%

b

0.2
0 2 4 6

Time (kR
¬1)

8 10 12

0.4

0.6

0.8

1.0

ΔW = 2.5kT (= ATP × 20%)
ΔW = 0 (equilibrium)

A
da

pt
at

io
n 

er
ro

r, 
N

or
m

al
iz

ed
 a

ct
iv

ity

ΔW = 5.8kT (= SAM × 20%)

/ 0
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s= 10KI) at t= 1 for the equilibrium model (black), and non-equilibrium
models driven by ATP (red line) and SAM (blue line) at 20% efficiency.

Calmodulin kinase II-dependent feedback control4,24,25 for olfactory
adaptation (Fig. 1d) are fueled by ATP hydrolysis accompanying
various phosphorylation–dephosphorylation cycles.

For E. coli chemotaxis, adaptation is driven by hydrolysis
of SAM, the methyl group donor for chemoreceptors. Because
one fuel molecule (SAM) is hydrolyzed during each methylation–
demethylation cycle, the adaptation accuracy is controlled by the
free energy release in the hydrolysis of one fuel molecule. As
shown in Fig. 4b, given the high energy release (1G0

∼29kT ) from
methylation by SAM (ref. 26), a modest 20% efficiency (1W /1G0)
leads to a maximum adaptation accuracy of∼99%, consistent with
the high adaptation accuracy observed in E. coli chemotaxis27. At
the same efficiency, if adaptation is driven by phosphorylation from
ATP (1G0

∼ 12kT ), the accuracy would be∼ 80%, consistent with
the less accurate (but adequate) adaptation in the rod cell5,28.

Adaptation dynamics of starving cells
According to the ESA relation, the adaptation accuracy is controlled
by the dissipated free energy, which comprises two parts: the
internal energy of the fuel molecule and an entropic contribution.
As the entropic energy depends only on the logarithm of the
fuel molecule concentration, the adaptation accuracy is not very
sensitive to the change in abundance of the fuel molecule. However,
the kinetic rates, for example the methylation rate kR, depend
strongly on the concentration of the fuel molecule. Therefore, if
a cell’s fuel molecule pool becomes smaller owing to deficient
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MeAsp) over a 7 h period in a medium without nutrition (stimulus time series shown at top). Changes in kinase activity were measured using a FRET
reporter based on a YFP fusion to the chemotaxis response regulator CheY and a CFP fusion to its phosphatase CheZ. The grey line is the monitored ratio
of YFP to CFP fluorescence. The baseline YFP/CFP ratio at zero FRET is shown by the black dashed line. The black solid line indicates the adapted activity
without any stimuli. The drift in the zero-FRET baseline is primarily due to the differences in the photobleaching kinetics of YFP and CFP. The inset plot
shows the normalized FRET signal in response to 50 µM MeAsp addition at 1,442 s (blue), 10,761 s (red) and 23,468 s (black), as indicated by arrows of the
same colours in the main plot. The response amplitude weakens as cells de-energize. Adaptation takes longer, but activity always returns to its
pre-stimulus level with high accuracy. b, The adaptation half-time, defined as the time needed to recover half of the maximum response on MeAsp
addition, increases by a factor of about three (from∼130 s to∼410 s). c, The relative adaptation accuracy remains unchanged (∼95%). The symbols in
b and c are from measurements and the red lines are a guide for the eye.

metabolismor starvation, the adaptation should slowdownwhereas
its accuracy should stay relatively unaffected.

We have tested this prediction by directmeasurements of E. coli’s
adaptation dynamics using fluorescent resonance energy transfer
(FRET; ref. 29). As shown in Fig. 5a–c, adaptation to a given stimu-
lus becomes progressively slower (Fig. 5b) for cells that are kept in a
medium without an energy source. The background kinase activity
(in buffer) decreases with time (Fig. 5a), indicative of the decreasing
energy level of the starving cells. Remarkably, the adaptation ac-
curacy remains almost unchanged with time (within experimental
resolution), as shown in Fig. 5c, consistent with our prediction.

For an E. coli cell, the methylation levels of its chemoreceptors
serve as the memory of the external signals it received30. After
a change in the signal, the adaptation process ‘rewrites’ this
memory accordingly. As pointed out by Landauer31, only erasure
of information (for example, memory) is dissipative owing to
phase space contraction and the resulting entropy reduction. As
changing themethylation level does not necessarily shrink the phase
space, the adaptation response to a signal change does not have
to cost extra energy. Instead, energy is consumed continuously
to maintain the stability of the adapted state or, equivalently, the
integrity of the memory against noise. For an E. coli cell with
∼104 chemoreceptors32 and a (linear) adaptation time of ∼10 s,
the energy consumption rate is ∼ 3×104kT/s (equivalent to ∼103
ATP/s), which is 5–10% of the energy needed to drive a flagellar
motor rotating at 100Hz (ref. 33), even when the cell is not actively
sensing or adapting. The total energy budget for regulations in an
E. coli cell is higher, given the many regulatory functions needed
for its survival. During starvation, E. coli cells are likely to have
different priorities for different energy consuming functions. Thus,
the slowing down of adaptation in starved cells seen in Fig. 5a may
be seen as a way for the cells to conserve energy for other regulatory
functions with higher priorities.

Discussion
In biochemical networks, there are many ‘futile cycles’, in which
two pathways run simultaneously in opposite directions dissipating

chemical energy with no apparent function34. Here, we show that
these cycles, shown in Figs 3a and 2d, are crucial in powering
accurate adaptation. In general, cells need to process information
accurately under noisy conditions. A well-known example is the
kinetic proofreading (KP) scheme for error-correction proposed
by Hopfield35. Similar to the sensory adaptation system studied
here, energy is also consumed to increase accuracy in the KP
scheme36–38. However, subtle differences exist between adaptation
and KP. Whereas energy is consumed in KP to effectively lower the
free energy of the already stable ‘correct’ state to reduce error, it
is used in the adaptation system to stabilize an originally unstable
state (Fig. 2a). It remains an open question whether there are
general thermodynamic principles governing cellular information
processing, such as proofreading and sensory adaptation. It will
also be interesting to establish the ESA relationship in other more
complex adaptation systems, such as those mentioned in Fig. 1c–e,
and to relate the ESA relationship to the efficiency at maximum
power studied inmolecular motor systems11,39.

Biological systems consume energy to carry out various vital
functions,many ofwhich are related to regulation40, where accuracy
and speed are of primary importance. Despite the complexity of
biochemical networks responsible for various regulatory functions,
it has been suggested that a small set of network motifs are
used repeatedly41. The cost–performance tradeoff studied in
this paper provides a new perspective, in addition to other
general considerations such as robustness15 and evolvability42, to
understand the design principles and evolutionary origins of these
regulatory circuits and their building blocks.

Methods
A specific case ofG(s,m). A simple sigmoidal form G(s,m)= 1/[1+ (s/Kd (m))H ]
has been studied in the continuum adaptation model, equations (1)–(3),
with Kd (m)= K0e2m and K0 = 1 setting the scale for s. For the results
shown in Fig. 2c–d, the Fokker Planck equation (equation (4)) is solved in
the region 0≤ a≤ 1, 0≤m≤ 4 with the grid size da= 0.02, dm= 0.025
and time step dt = 5× 10−4. No flux boundary conditions are used:
Jm(a,m=0)= Jm(a,m=4)= Ja(a=0,m)= Ja(a=1,m)=0. Other parameters used
areωm=5,ωa=50(�ωm), σ 2

a =σ
2
m=10−2, a0=0.5, andH =1.
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Details of the E. coli chemoreceptor adaptationmodel. The free energy difference
1E(s,m)= E1(m)−E0(m)=Nem(m1−m)+N (ln[[1+ s/KI]/[1+ s/KA]])
is taken from the Monod–Chandeux–Wyman (MWC) model of E. coli
chemoreceptor complexes9, with s the ligand concentration. We choose
Ea(s,m)= (a−1/2)1E(s,m) for simplicity. The parameters in 1E(s,m) are from
ref. 9 for E. coli chemoreceptor Tar : KI = 18.2 µM, KA = 3,000 µM, em = 2,m1 = 1.
N is the number of strongly coupled receptor dimers. From the linear dependence
of1E on N , it can be shown that the energy dissipation rate Ẇ scales linearly with
N . So only N = 1 is studied here and the resulting energy cost is for each receptor
dimer. Note that according to ref. 20, the adaptation speed also scales linearly with
N . Therefore, the ESA relation holds independent ofN .

The dynamics of Pa(m) is governed by the master equation:
dPa(m)/dt = k−,a(m+1)Pa(m+1)+k+,a(m−1)Pa(m−1)+ω1−a(m)P1−a(m)−
(k−,a(m)+k+,a(m)+ωa(m))Pa(m), for a= 0,1 andm= 0,1,2,3,4. No (transition)
flux boundary conditions are used at m= 0 and m= 4. The methylation
(demethylation) rate for inactive (active) receptor is set to be kR and kB:
k+,0(m)= kR, k−,1(m)= kB. Their counter rates are suppressed from their
equilibrium values by γ1 and γ2: k−,0(m)= keq

−,0(m)×γ1 = kR exp[−Nem/2]γ1,
k+,1(m)= keq

+,1(m)×γ2 = kB exp[−Nem/2]γ2. The activation rate ω0(m) and
deactivation rate ω1(m) satisfy ω1(m)=ω0(m)exp[1E(s,m)]. The activation time
τa ≡ [min(ω1(m),ω0(m))]−1 is set to be 10−3, much faster than the methylation
time τR≡ 1/kR set by kR= 1.

The steady-state distribution P (s)
a (m) is solved by dP (s)

a (m)/dt = 0. The energy
dissipation depends on the fluxes between two states A and B. For example,
for A= (a,m), B= (a,m+1), the two counter fluxes are JAB = k+,a(m)P (s)

a (m)
and JBA = k−,a(m+1)P (s)

a (m+1). The entropy production rate at link AB is
ṠAB = (JAB− JBA)ln[JAB/JBA], and the total entropy production rate Ṡ of the system
is the sum of ṠAB over all the links (see Supplementary Information for details).
The energy dissipation rate Ẇ = kT Ṡ, where kT is the thermal energy unit. The
adaptation error can be obtained from the average activity 〈a〉=

∑
mP

(s)
1 (m).

Experiments. The adaptation measurement was performed with tryptone
broth-grown E. coli K-12 strain LJ110 1 (cheY cheZ ) expressing the CheY-YFP
(yellow fluorescent protein)/CheZ-CFP (cyan flourescent protein) FRET pair,
a reporter for kinase activity, as described in a previous article43. During the
measurement, cells were kept under a constant flow of nutrient-free tethering
buffer (10mM KPO4, 0.1mM EDTA, 1 µM methionine, 67mM NaCl, pH7)
at a rate of 300 µl min−1 and were stimulated at regular intervals with 50 µM
α-methyl-dl-aspartate (MeAsp), a non-metabolizable aspartate analogue, until
adaptation was completed. Data were acquired as in ref. 43.
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1 The effective potential H(m)

In the main text, we introduced a set of Fa and Fm functions to study the role of energy
dissipation in adaptation.

Fa(a,m, s) = −ωa[a−G(s,m)], (S1)

Fm(a,m) = −ωm(a− a0)[β − (1− β)
∆m/ωm

∆a/ωa

∂mG(s,m)], (S2)

with 0 ≤ a ≤ 1 and 0 ≤ m ≤ m0. Fa describes the fast (ωa ≫ ωm) relaxation dynamics
of the activity a to its steady state value G(s,m). G has opposite dependence on s and
m, e.g., ∂sG < 0 and ∂mG > 0 used in this study.

Before deriving the effective potential H(m), we briefly explain the form of Fm used
here. β is a continuous parameter ranging from 0 to 1 which changes the form of Fm

in order to study both equilibrium and nonequilibrium cases within the same model. To
find an equilibrium interaction F eq

m that allows adaptation to a0 we integrate the detailed
balance condition (∆−1

a ∂mFa = ∆−1
m ∂aFm) and use the linear form to impose a0 to be a

steady state (F eq
m (a0) = 0). This gives F eq

m = ωa
∆m

∆a
(a − a0)∂mG. For non-equilibrium

reactions, which break detailed balance but still keep a0 as a steady state, we use the
simple linear form F neq

m = −ωm(a − a0). Combining the equilibrium and nonequilibrium
terms linearly, we have Fm = βF eq

m + (1 − β)F neq
m , which is what we have used in this

study.
Now we derive H(m). First, we can obtain a set of approximate analytical solutions

of the probability distribution P (a,m) in the limit where adaptation is much slower than
response ωa ≫ ωm, where we can separate the probability distribution as P (a,m) =
Pa(a/m)Pm(m). By using this adiabatic approximation, we obtain

Pa(a/m) = exp

(
− ωa

2∆a

[a−G(s,m)]2
)
, (S3)

where the normalization constant has been absorbed in Pm. The distribution Pm can also
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be calculated in this limit by using the flux conservation in the m direction:
∫ 1

0

Jmda =

∫ 1

0

(
− ωm[a− a0][β − (1− β)

∆m/ωm

∆a/ωa

G′]PaPm −∆mPa∂mPm

−∆mPaPm∂m log(Pa)
)
da =

∫ 1

0

e−F
(
− ωm[a− a0][β − (1− β)

∆m/ωm

∆a/ωa

G′]Pm

−∆m∂mPm +∆mPm
ωa

∆a

[a−G]G′
)
da

≈
√

2π∆a

ωa

(
− ωm[G− a0][β − (1− β)

∆m/ωm

∆a/ωa

G′]Pm −∆m∂mPm + 0
)
≈ 0,

(S4)

from which we have

Pm(m) =
1

Z
exp (−H(s,m)) , (S5)

where

H(s,m) =
ωm

∆m

∫
(G(s,m)− a0)[β − (1− β)

∆m/ωm

∆a/ωa

G′]dm (S6)

is the effective potential illustrated in Fig. 2a in the main text, where it is abbreviated as
H(m) . Z is the normalization constant to be determined by

∫ 1

0

∫ m0

0
Pa(a/m)Pm(m)dadm =

1, which gives Z =
√

2π∆a/ωa

∫ m0

0
e−H(s,m)dm.

As shown in the main text, the effective potential H(m) can have different minima
depending on the value of β. There is always a fixed point at m∗ with fixed activity
G(s,m∗) = a0. However, it is unstable for small β, e.g., for β = 0. It only becomes
stable when ∂2H/∂m2|m∗ > 0, i.e., when β > βc. The critical value βc is given by
∂2H/∂m2|m∗ = 0, which leads to

βc =
∆m∂mG(s,m∗)/ωm

∆m∂mG(s,m∗)/ωm +∆a/ωa

,

as shown in the main text. It is easy to see βc is between 0 and 1.

2 The energy dissipation rate Ẇ

For a microscopic system with discrete chemical states, the free energy dissipation rate
Ẇ (with thermal energy unit kT = 1) can be written as:

Ẇ =
∑
AB

(JAB − JBA) ln[JAB/JBA], (S7)

where A, B represent the discrete states and JAB, JBA are the transitional rates from A →
B and B → A respectively, see [1] for a recent review and derivations. The interpretation
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of the above equation is clear: JAB − JBA is the net current from state A to state B;
and ln[JAB/JBA] is the net energy dissipation for a transition from state A to state B.
In equilibrium systems, detailed balance leads to JAB = JBA and therefore Ẇ = 0. For
nonequilibrium systems, detailed balance is broken JAB ̸= JBA, and it is easy to show
that the energy dissipation rate is positive definite Ẇ > 0.

For the (coarse-grained) continuum model, A and B represent infinitesimal states,
each of size da× dm, in the phase space. For example, along the a-direction in the phase
space, A and B represent two infinitesimal states that are centered at A = (a,m), B =
(a + da,m). By discretizing the Fokker-Planck equation, we can obtain the infinitesimal
fluxes between them:

JAB = [FaP (a,m)/da+∆aP (a,m)/da2]dadm

,
JBA = [∆aP (a+ da,m)/da2]dadm.

By plugging the two expressions above in Eq. (S7) and taking the continuum limit da → 0
and dm → 0, we obtain the energy dissipation rate for the continuum model used in the
main text:

Ẇ =

∫ 1

0

da

∫ m0

0

dm[
J2
a

∆aP
+

J2
m

∆mP
]. (S8)

This expression of energy dissipation rate (Eq. (S8)) can be derived more rigorously
from phase space entropy production rate, as done in [2, 3]. The procedure is to start
with the entropy S = k

∫
P log(P ) with k the Boltzmann constant, calculate its time

derivative Ṡ, identify the positive term which represents the entropy production rate
Ṡprod = k

∫
J2
i /(P∆i), and finally realize that on a steady state this entropy is dissipated

to the environment as heat or dissipated energy Ẇ = Teff Ṡprod = kTeff

∫
J2
i /(P∆i) where

Teff is the effective temperature of the environment. From Eq. (S8), it is clear that the
Ẇ is positive definite and vanishes only in equilibrium system where Ja = Jm = 0, i.e.,
the detailed balance condition, is satisfied.

3 The ESA relation

To calculate the adaptation error, we can integrate the steady state FP equation in a
and m and use the resulting equation

∫ 1

0
da

∫ m0

0
dm Jm = 0. By using the definition of

Jm = FmP −∆m∂mP and Eq. (S2) for Fm, the relative adaptive error ϵ = |⟨a⟩ − a0|/a0
can be obtained:

ϵ = | 1

a0βωm

∫ 1

0

∆mP (a, 0)da− 1

a0βωm

∫ 1

0

∆mP (a, 4)da,

+
1− β

a0β

∫ 1

0

da

∫ m0

0

dm
∆m/ωm

∆a/ωa

(a− a0)G
′(s,m)P (a,m)| ≡ |ϵ1 − ϵ2 + ϵ3|, (S9)
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where compact derivative notation G′(s,m) = ∂mG(s,m) will be used from now on. In
the above expression for ϵ, the first two integrals (defined as ϵ1 and ϵ2) constitute the
boundary induced errors, and the third one (defined as ϵ3) is the bulk error. We see that
the bulk error ϵ3 vanishes in the fully adaptive model where β = 1. In the following two
subsections, we consider the two cases, β = 1 and 1 > β > βc, to derive the Energy-
Speed-Accuracy (ESA) relation presented in the main text.

3.1 The ESA relation for β = 1

In this subsection, we study the ESA relation for the biologically relevant case of β = 1,
where the “bulk” error term vanishes (ϵ3 = 0) in Eq. (S9) and we have:

ϵ = |ϵ1 − ϵ2| =
∆m

ωma0
|
∫ 1

0

[Pm(m0)− Pm(0)]e
−Fda| ≈

∆m

√
2π∆a/ωa

ωma0
|Pm(m0)− Pm(0)|.

By using the solution from the previous section for the case β = 1, we have:

ϵ1 =
∆m

ωma0

(∫ m0

0

exp[H(s,m0)−H(s,m)]dm

)−1

, (S10)

ϵ2 =
∆m

ωma0

(∫ m0

0

exp[H(s, 0)−H(s,m)]dm

)−1

. (S11)

We now apply the steepest descend method around the adaptive minimum at m = m∗:
∫ m0

0

e−H(s,m)dm ≈ e−H(s,m∗) ×
√

2π∆m

ωmG′ ,

which leads to:

ϵ1 =
1

a0

√
∆mG′

2πωm

exp[H(s,m∗)−H(s,m0)], (S12)

ϵ2 =
1

a0

√
∆mG′

2πωm

exp[H(s,m∗)−H(s, 0)]. (S13)

So we have

ϵ = |ϵ1 − ϵ2| ≈
1

a0

√
∆mG′

2πωm

eH(s,m∗)| exp[−H(s,m0)]− exp[−H(s, 0)]|. (S14)

For a generic value of s, m∗ is closer to one of the two boundary values m = 0 or m = m0.
Without loss of generality, we assume m∗ is closer to m0, which means that ϵ1 ≫ ϵ2,
though both ϵ1 and ϵ2 have the same form (see later). Therefore, we have

ϵ ≈ 1

a0

√
∆mG′

2πωm

exp[H(s,m∗)−H(s,m0)] =
1

a0

√
∆mG′

2πωm

exp[− ωm

∆m

∫ m0

m∗
G(s,m)dm].

(S15)
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Defining ϵ0 ≡
√
∆mG′/2πωma20 and a decay constant d ≡

∫ m0

m∗ G(s,m)dm, the final form
of the error is

ϵ ≈ ϵ0 exp−
[

d

∆m/ωm

]
. (S16)

For m∗ closer to m = 0, ϵ2 dominates and the only change for ϵ is that d would be
d =

∫ m∗

0
G(s,m)dm.

For the fully adaptive model the energy dissipation takes the form

Ẇ ≈ ωm
∆a/ωa

∆m/ωm

(1 +
∆m/ωm

∆a/ωa

G′)2.

We see from this expression that reducing ∆m/ωm, which reduces ϵ, will at the same time
increase the energy dissipation rate. For small adaptation error, the leading order in Ẇ
can be approximated as

Ẇ ≈ ωm
∆a/ωa

∆m/ωm

(S17)

By using Eq. S16, we can relate this to the adaptation error, thus arriving at the energy-
speed-accuracy (ESA) relation shown in the main text (Eq. 8):

Ẇ ≈ (c0σ
2
a)× ωm × ln(

ϵ0
ϵ
), (S18)

with the explicit expressions for the constants: c0 = d−1 = (
∫ m∗

0
G(s,m)dm)−1, σ2

a =

∆a/ωa, and ϵ0 =
√
∆mG′/2πωma20.

3.2 The ESA relation for βc < β < 1

We now study the bulk error ϵ3 in the adaptive regime 1 > β > βc by expanding the
kernel of the integral for ϵ3 in Eq. (S9) to the second order before applying the steepest
descend method:

ϵ3 ≈ 1− β

a0β

∆m/ωm

∆a/ωa

√
2π∆a

ωa

∫ m0

0

dm
(
[(G(s,m)− a0)G

′(s,m)]m=m∗Pm(m)

+ [(G(s,m)− a0)G
′(s,m)]′m=m∗(m−m∗)Pm(m)

+
1

2
[(G(s,m)− a0)G

′(s,m)]′′m=m∗(m−m∗)2Pm(m)
)

≈ 1− β

β

(∆m/ωm)
2

∆a/ωa

3G′′

2a0
(β − (1− β)

∆m/ωm

∆a/ωa

G′)−1, (S19)

Where the derivatives G′ and G′′ are evaluated at the (adaptive) minima m∗. It is easy to
see from above that the bulk error ϵ3 becomes smaller as β → 1, i.e, as the system becomes
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fully adaptive. By defining a constant e0 = 3 (∆m/ωm)2

∆a/ωa
G′′/2a0, we have β ≈ 1/(1 + ϵ3/e0)

when β is close to 1.
To calculate the energy dissipation we first compute the probability currents, which

can be obtained using the probability density function P (a,m) obtained above. As the
energy dissipation is much smaller in the a−direction, we only calculate the current in
the m direction:

Jm(a,m) ≈ −ωm[a− a0][β − (1− β)
∆m/ωm

∆a/ωa

G′]P −∆mP∂m log(P )

= P (−ωm[a− a0][β − (1− β)
∆m/ωm

∆a/ωa

G′] + ∆m∂m[F +H])

= −Pωm[a− a0][β − (1− β)
∆m/ωm

∆a/ωa

G′]

+ P∆m(G
′(G− a)

ωa

∆a

+ (G− a0)[β − (1− β)
∆m/ωm

∆a/ωa

G′]
ωm

∆m

).

Note that for the equilibrium case β = 0, the current flow is zero, in agreement with the
plots of the simulation results (Fig. 2c). By using the adiabatic approximation and the
steepest descend method, we have

Ẇ ≈
∫ m0

0

dm

∫ 1

0

da
J2
m

∆mP
≈ β2ωm

∆a/ωa

∆m/ωm

(1 +
∆m/ωm

∆a/ωa

G′)2 (S20)

By defining C0 =
∆a/ωa

∆m/ωm
(1 + ∆m/ωm

∆a/ωa
G′)2, we have the following error energy relation

Ẇ

C0ωm

≈ 1

(1 + ϵ3/e0)2
. (S21)

By writing ϵ3 = ex and e0 = ex0 , and noting that ∂2Ẇ/∂x2 = 0 at x = x0 − log(2), we
find that around ϵ3 = e0/2 the relation above is logarithmic to second order:

Ẇ

C0ωm

≈ 1

(1 + ex−x0)2
≈ 4

9
− 8

27
(x− x0 + log(2)) +O(x− x0)

3 (S22)

Finally, by defining ϵ0,b = e3/2e0/2, c0,b = 8C0ωa/27∆a, and σ2
a = ∆a/ωa the variance of

the variable a, we have

Ẇ ≈ (c0,bσ
2
a)× ωm × ln(

ϵ0,b
ϵ3

), (S23)

which has the same form as the ESA relation for the β = 1 case but with different
constants c0,b and ϵ0,b.
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4 The effect of one-step reaction approximation on

the energy dissipation rate

Consider the full Michaelis-Menten reaction E + S � ES → E + P with forward rate
kf , backward rate kb, production rate kp. For the convenience of computing the energy
dissipation rate, we also introduce a counter-production rate kcp from E+P back to ES.
The four fluxes can be expressed as:

Jf = kf [E][S], Jb = kb[ES], Jp = kp[ES], Jcp = kcp[E][P ],

where [E], [S], [P ], [ES] are concentrations for enzyme, substrate, product, and enzyme-
substrate complex respectively. The net flux J is J = Jf − Jb = Jp − Jcp. The energy
dissipation rate Ẇb over the substrate-enzyme binding/unbinding reactions is: Ẇb = (Jf−
Jb) ln(Jf/Jb) = J ln(1 + J/Jb). The energy dissipation rate over the production/counter-
production reactions is: Ẇp = (Jp − Jcp) ln(Jp/Jcp) = J ln(1 + J/Jcp). Here, the thermal
energy unit kT = 1.

The production step is highly irreversible, so Jcp ≪ J , and J ≈ Jp = kp[ES]. For
Michaelis-Menten reactions, the substrate is in fast chemical equilibrium with the complex,
i.e., kb ≫ kp, so J/Jb ≈ Jp/Jb = kp/kb ≪ 1. Finally, the ratio between the two energy
dissipation rates is obtained:

Ẇb

Ẇp

=
ln(1 + J/Jb)

ln(1 + J/Jcp)
≈ J

Jb ln(J/Jcp)
≪ J

Jb
≈ kp/kb ≪ 1.

This shows that the energy dissipation rate over the substrate-enzyme binding-unbinding
process is negligible in comparison with the energy dissipation rate over the production
process in any Michaelis-Menten reactions. Therefore, the one-step reaction approxima-
tion used in the paper is valid in determining the energy dissipation rates of the methy-
lation/demethylation processes, which are known to be Michaelis-Menten reactions.

5 The error-energy dissipation relationship in E. coli

chemotaxis and its dependence on key system pa-

rameters

The relationship between the adaptation error (ϵ) and the energy dissipation (∆W ≡
Ẇk−1

R ) is shown in Figure 3c in the main text.

ϵ = ϵ0 × e−α∆W , ∆W ≪ ∆Wc, (S24)

= ϵc, ∆W ≫ ∆Wc. (S25)
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The system operates along the optimum ϵ−∆W line as more energy dissipation reduces
adaptation error. The prefactor α in the exponential ϵ−∆W relation (Eq. S24) depends
on the ratio of the two kinetic enzymatic rates kR and kB as shown in Fig. S1. In fact,
α can be expressed as: α = (1 + kR/kB)/2, as presented in the main text (Fig. 3d) and
proven explicitly in the simple case of a 4-state model in this SI.

Other than α, the overall ϵ−∆W relationship is characterized by ∆Wc and ϵc. When
energy dissipation ∆W is bigger than a critical value ∆Wc, the ϵ − ∆W curve becomes
flat and the adaptation error saturates at a minimum error ϵc. We define the critical ∆Wc

to be the energy dissipative rate to achieve an adaptive error within 1% of its saturation
value |1− ϵ/ϵc| = 1%.

The saturation error ϵc is caused by the adaptation failure at the methylation bound-
aries (m = 0,m = m0). Specifically, For a receptor with m = 0, CheB-P can not
demethylate it any further, and so is the case for CheR with receptors with m = m0 = 4.
Quantitatively, when γ = 0, i.e., ∆W → ∞, the total methylation and demethylation
fluxes can be expressed as:

J+ = kR

m0−1∑
m=0

P0(m) = kR[(1− ⟨a⟩)− P0(m0)], (S26)

J− = KB

m0∑
m=1

P1(m) = kB[⟨a⟩ − P1(0)], (S27)

where Pa(m) is the probability of the receptor in state (a,m), and we have used the
fact the average activity can be expressed as ⟨a⟩ =

∑m0

m=0 P1(m) and correspondingly
1− ⟨a⟩ =

∑m0

m=0 P0(m). In steady state, these two fluxes are equal J+ = J−, which leads
to:

⟨a⟩ = a0 + (1− a0)P1(0)− a0P0(m0), (S28)

from which we obtain the saturation error, i.e., the error at γ = 0:

ϵc = |(1/a0 − 1)P1(0)− P0(m0)|. (S29)

Here in this section, we describe in detail how ∆Wc and ϵc depends on the key system
parameters such as the relative reaction time scales in the activity switching direction
(τa) comparing to the methylation direction (k−1

R ), and energy gaps at the methylation
boundaries (∆E(0) and ∆E(m0)).

5.1 The dependence on the activity switching time τa

Here, we study how the speed of activity switching (measured by τa) affects adaptation by
determining the adaptive error as a function of dissipated energy at τa = 100, 10, 1, 0.1,
0.01k−1

R for ligand concentrations s = 10−2, 101 and 104KI (FIG S2a). For each given s,
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the ϵ−∆W performance curves at different τa values are overlapping until the individual
critical saturation point (ϵc,∆Wc) is reached.

We then varies τa over a broader range from 10−3 × k−1
R to 106 × k−1

R . Result clearly
shows that slower activity switching speed (larger τa) lowers adaptive accuracy (larger
ϵc) and decreases the critical dissipative energy (smaller ∆Wc). This suggests that slower
activity switching limit the ability of the chemotaxis system to use energy for adaptation
that makes the ϵ − ∆W scaling reaches its saturation faster. When activity switching
happens too slow (τa > 103k−1

R ), the system completely loses its ability to adapt (FIG
S2b&c). In addition, slower activity switching increases the percentage of amount of
energy dissipated in the activity direction. Under certain condition, this percentage can
be more than 50% (as shown in FIG S2d). These results implies that activity switching
acts as a “valve” in the adaptation circuit: when the “valve” is open (fast switching),
two enzymes CheR and CheB can use SAM energy to generate net probability flux to
maintain adaptation; however, for large τa, the system is jammed as the net transitional
flux is limited by the slow activity switching. This jamming effect at large τa increases
P0(m0) and P1(0), which compromises the feedback control mechanism and therefore
lowers the adaptation accuracy.

5.2 The dependence on the boundary energy differences ∆E(0)
and ∆E(m0)

As shown in the main text, the saturation error ϵc can come from the receptor populations
at the two methylation boundary states: (a = 1,m = 0) and (a = 0,m0), where CheB
and CheR can not perform their normal “feedback” actions. Approximately, we have
ϵc = |(a−1

0 − 1)P1(0) − P0(m0)|. Due to fast equilibration in the a− direction, we have
P0(m0) ≈ P (m0)(1 + exp(−∆E(s,m0))

−1, P1(0) ≈ P (0)(1 + exp(∆E(s, 0))−1. Therefore
increasing the energy difference (gap) at the two boundaries (m = 0 and m = m0) can
reduce P1(0) and P0(m0), and consequently ϵc. Here, we verify this result by direct
simulation of our discrete model.

To study the dependence of ϵc on the intrinsic energy difference of the active and
inactive receptor with s = 0, we denote ∆E(m) as the part of ∆E(s,m) that only depends
on m, ∆E(m) is also called the methylation energy. We study the depdence of adaptation
accuracy on the boundary methylation energies ∆E(0) and ∆E(m0).

Since the adaptation errors from the two boundaries have opposite signs, for interme-
diate ligand concentrations, populations at the two boundaries can be comparable, and
these two errors could spuriously cancel each other. To get the “uncontaminated” depen-
dence on an individual boundary energy gap, e.g., m = 0, we set the other energy gap
∆E(m0) to be essentially infinity to have P0(m0) = 0, and the ligand concentration (s)
is chosen so that P (0) is finite: for the m = 0 boundary, we choose low ligand concen-
trations (s < KI), and for the m = m0 boundary, we choose high ligand concentrations
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(s > KA). We determine the (ϵc,∆Wc) values for each choice of the energy gap. The
results are shown in Fig. S3, which shows clearly that increasing |∆E(0)| and |∆E(m0)|
decreases the saturation error ϵc exponentially (Fig. S3a&c), and the saturation energy
∆Wc increases linearly |∆E(0)| and |∆E(m0)| (Fig. S3a&c).
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Movie Legend

Movie S1: Adaptation kinetics in phase space. An animation of the state distribution
P (a,m, t) and the corresponding flux field in response to a step increase of s (from s = 10
to s = 103 at time=1(a.u.)) is produced with 36 frames in the animated gif format.
G = [1+(s/Kd(m))]−1 with Kd = K0e

2m and K0 = 1, see Methods in main text for other
parameters.
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Figure S1: The dependence of α on the kB/kR ratio. kR = 1 is set to be unit to set
the time scale. The ϵ − ∆W curves are computed for three different choices of kB: a.
kB = 2.0; b. kB = 1.0; c. kB = 0.5. α can be determined by the slope of the semi-log
plot, its values are 0.75, 1.0, 1.5 for the three cases shown here, and they agree with the
expression α = (1 + kR/kB)/2.
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Figure S2: The effects of receptor activation time τa. a. ϵ − ∆W curves at different
signal strength (ligand concentration) s = 0.01KI , 10KI and 10000KI when the receptor
activation time varies from τa = 0.01K−1

R to τa = 100K−1
R . At different s, a smaller τa

improves adaptation accuracy as the ϵ − ∆W curve saturates at a lower critical error
ϵc along the same performance line. The dependence of the saturation error ϵc and its
corresponding energy dissipation ∆Wc on τa are shown in b&c. ϵc increases with τa while
∆Wc decreases with τa. When τa goes below 0.01k−1

R , the error does not improve as the
system is already in the fast equilibration regime in the a−direction. When τa > 1000k−1

R ,
the system totally loses its ability to adapt due to the slow activation process. d. The
percentage of energy dissipated in a−direction (∆Wa) over the total amount of dissipated
energy. This percentage increases when τa increases.
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Figure S3: Energy gaps ∆E(0) and −∆E(4) controls the saturation (minimum) adapta-
tion error ϵc and the critical dissipative energy ∆Wc. a. ϵc and b. ∆Wc versus ∆E(0)
(keeping ∆E(4) = −∞). c. ϵc and d. ∆Wc versus ∆E(4) (keeping ∆E(0) = ∞). In-
creasing energy gaps |∆E(0)| and |∆E(4)| reduces ϵc exponentially. The system needs to
dissipate more energy ∆Wc, linearly proportional to |∆E(0)| and |∆E(4)|, to reach the
saturation error ϵc. Differently colored lines in each panel are for different values of signal
strength s.
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