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The Relevance of Dimensionality Reduction

e Advances in data collection and storage capabilities have
led to an information overload

e A system processes data in the form of a collection of
real-valued vectors: speech signals, images, etc.

e Suppose the system is effective if the dimension of the
vector is not too high

e Problem of Dimensionality Reduction appears when the
data are of a higher dimension than tolerated

e Example: Stat Analysis of a Multivariate
Population-interested in finding structures and/or
interpreting the variables

— Convenient to visualize the data, i.e., reducing their
dimensionality to 2 or 3.

e In general, when the intrinsic dimensionality of the
data is smaller than the actual, DR brings improved
understanding of the data and their structure

— Feature extraction

— Representation in a different coordinate system




In Mathematical Terms]|

e Given the p-dimensional Random vector
X = (X1, Xo, ..., X"

e [Find a lower representation S = (Sy, Sy, ..., 5!,
k < p, with the same "information content” as X

— Have to select a criterion
e The S-components are called hidden or latent variables
e Two Types of DR Problems: Linear and Non-Linear

e Concentrate on Linear DR Techniques— Result in

Sk‘ Xn — Wk' ><pX'p>< n

where Wy, is the transformation weight matrix

prn — Apx/{Sk‘xn




General Definition of DR

e Suppose we have a sample {X}!_; of p-dimensional
vectors lying in a data space X C RP

e Fundamental Assumption for DR: the sample actually
lies, at least approximately, on a manifold (linear or
nonlinear) of smaller dimension than the data space.

e Goal of DR: find a representation of this manifold (a
coordinate system) that will allow to project the data
vectors on it and obtain a low-dimensional, compact
representation of the data

e Formally, given {X}7_; € X, find
— A space S C R¥

— A dimensionality reduction mapping F':

F.: X -8
X — S = F(X)

— a smooth, nonsingular reconstruction mapping

f:

f:§—X
S — X = f(S)




e such that

1. k < pis as small as possible
2. The manifold M = f(S) approximately contains all
the sample points {X}7_,

3. Or, the reconstruction error of the sample,

Ba({X}, Z d(X,, X))
where X! = f(F(X,,) is the reconstructed vector for

X,, and d is a suitable distance in X

e Conditions 2 and 3 are not equivalent: 3 implies 2 but
not vice versa — F o f # 1

— F.g., when X has a distribution on X, this is typically
the case.




The Curse of Dimensionality (Bellman, 1961)'

e In the absence of simplifying assumptions, sample size
required to estimate a function of several variables grows
exponentially with the number of variables

o ['mpty Space Phenomenon: high-dimensional spaces are
inherently sparse

— one-dimensional standard normal: 68% of the mass is
contained in [-1,1]

— 10-dimensional standard normal, the same

hypersphere contains only 0.02% of the mass




Supervised and Unsupervised Learning

e Unsupervised Learning: X, comprise all the data

— Principal Component Analysis: finds a few orthogonal
linear combinations of the X-components with the
largest variance

— Factor Analysis and Principal Factor Analysis:
estimates unknown common factors

— Projection Pursuit: given a projection index that
defines the "interestingness” of a direction, PP finds
directions maximizing the index

— Independent Component Analysis: finds linear
projections that are as nearly statistically independent
as possible

— Multidimensional Scaling: finds a k-dimensional
representation of X so that the distances among the
points in the new space reflect the proximities in the
data

— Neural Nets




Supervised Learning: Prediction
e a response variable or vector is available

e try to reduce the dimension of X after imposing a
specific structure on the regression curve E(Y|X)

— additive, generalized additive and projection
pursuit models (Friedman and Stuetzle, 1981; Hastie
and Tibshirani, 1990), ACE (Breiman and Friedman,
1985), MARS (Friedman, 1991), partially linear or
spline models (Green and Silverman, 1994), single-
and multi-index models along with different fitting
methods such as average derivatives (Hardle, 1990;
Newey and Stoker, 1989; Samarov, 1993), interaction
splines, and CART (Breiman, Friedman, Olshen and
Stone, 1984)

— A concise discussion of the above and additional
nonparametric modelling techniques can be found in

Fan and Gijbels (1996)




Pre-Modelling Approach

e Reduce the regressor dimension prior to assuming any
model for the regression relationship

— SVD on XY

x extensively used in chemometrics

x emphasis on predicting the response and not on
understanding the underlying relationship of the
variables

— "Global” methods — involving a spectral
decomposition of an appropriate matrix

— "Local” methods — Structure Adaptive Approaches




Global Methods for Dimension Reduction

e Y is a g X 1 response vector
e X is a p X 1 predictor vector

Sufficient dimension reduction in regression
focuses on finding £ < p linear combinations

n'X,...,niX
that can replace X
e without loss of information
e without requiring restrictive conditions on Y |X

Ifn=(n,....,n;:) :pxk matrix, the previous statement
is expressed by

Y 1L X|p'X

e (Goal: Estimate the smallest subspace spanned by 7.




Definitions:

e S(7m), the subspace spanned by the columns of n, is
called a dimension reduction subspace.

e The Central Subspace Syx = NS(n) is the smallest
dimension-reduction subspace which provides the
greatest dimension reduction in the predictor vector.

e The dimension of the Central Subspace is the
Structural Dimension of the regression

e Problem: estimate (1) the dimension of Syx and (2)
basis elements of Sy|x

e The estimation is based on finding a kernel matrix M so

that S<M> C Sy‘X




Estimation Methods|

Two main approaches

e First moment methods
— SIR and variations (Li, 1991): M = Cov(E(X]|Y))
— polynomial inverse regression (Bura and Cook, 2001):
M = E(X]Y)
e Second moment methods
— pHd (Li, 1991): M = E((Y — E(Y))XX1!)
— SAVE (Cook and Weisberg, 1991):
M = E(Cov(X) — Cov(X[|Y)?
— SIRIT (Li, 1991):
M = E(Cov(X|Y) — E(Cov(X[Y)))?.

e Sliced Average Variance Estimation (SAVE) is possibly
the most exhaustive:

e it gains information from both the inverse mean function

and the differences of the inverse covariances.

e Schott (1993) essentially showed: SAVE= SIR ¢ SIRII




Continuous Response - Continuous predictors

Let Z = X7Y4(X — E(X)). Assume there exists a k x d
matrix 1 such that

Y LZn'Z
with d << k.

e S(m) is the range space of i: a dimension reduction
subspace

e Syz: Central Subspace in the Z-scale
i SY|X — Zp_gl/QSYz

e The estimation of the central subspace in the two scales

yields equivalent results




e All first and second moment methods can be used to
estimate directions in Syz

e The Inverse Mean Subspace:

Seziy) = span E(Z|Y)

e The Inverse Covariance Subspace:

SVar(zy) = span{l — Var(Z|Y)}?
e T'wo Important Conditions:
1. Linearity Condition: E(Z|n'Z) is linear in '’ Z
2. Constant Variance Condition: Var(Z|n!Z) is constant
e Linearity Condition yields:

SE(zZ[Y) € Sy|z

e The Linearity and Constant Variance Conditions yield:

Svar(z|Y) € SY|z

e Under both conditions, any weighted average of E(Z|Y),
E(Z|Y)E(Z|Y)" or I — Var(Z[Y) span a subspace of Sy|z




e Both conditions refer to the marginal distribution of the
predictors

e They are satisfied when Z is normal but normality is not
necessary

e Ellipticity of the regressor vector guarantees the linearity
condition

e They can be empirically checked by considering the
scatterplot matrix of the predictors.

e The linearity of E(Z|n'Z) can be ascertained if the
scatterplots look roughly linear or random, and the
homogeneity of the variance holds if there are no
apparent fluctuations in data density

e Only substantial departures from both conditions are

problematic: Transformations of the regressors




Estimation of the Structural Dimension|

o Let d =dim Sy‘z
e Let M be a sample estimate of the kernel matrix M

A A A T . .
o Let (11, Uy,...,10,)" be the eigenvectors corresponding

to the eigenvalues (or singular values)
M>X>... >N 0ofM

o Let Ay ~n P ); be a test statistic

e Ay has an asymptotic weighted chi-squared distribution

od=Fkif Ak_l is large whereas /A\k is small




Marginal moment based dimension reductionl

k-th Moment Dimension Reduction Subspaces

e Let M™(Y|X) denote the kth centered moment of
FYTY)

e MW(Y|X) = E(Y|X)
o M) (Y|X) = Var(Y|X)
If

then S(n) is called a k-th moment dimension reduction
subspace (DRS) for the regression of Y on X

e The central k-th moment subspace (CKMS)
S}(/k;( is the intersection of all k-th moment DRSs

(1) (k)
Syx C-..CS

Y|X




The First Moment of F(Y|X)

e The regression function E(Y|X)

— Central Mean Subspace: Sgryx) C Syx
— SE(Y|X) = SY\X when Y 1L X|E(Y‘X), €.g.,

Y =f(B'X)+e e1X

— Inference for the Central Mean Subspace Sgyx) in
Cook and Li (2002)

— Investigated OLS, SIR, pHd, SAVE and proposed

alternatives




In general, marginal methods like Covy (Yin and Cook
2002) and pHd (Li 1992)

e use moment estimates of moments of functions of the
response and predictor vectors avoiding nonparametric
estimation

e they can be easily extended to multivariate response

regressions, e.g., multi Covy (Yin and Bura, 2003)




Categorical Response — Continuous Predictors

e Both SIR and SAVE can be used to estimate directions
n Sy‘z

e Cook and Lee (1999): Binary Response
e Cook and Critchley (2000) and Cook and Yin (2001):

Generalization and Discriminant Analysis

e SIR is equivalent to Linear Discriminant Analysis in the
sense that they both estimate the same discriminant
linear combinations of the predictors when they are
normal.

— Disadvantage: LDA and SIR find at most C' — 1
linear combinations for discrimination. In binary
regression, at most 1.

e SAVE is equivalent to Quadratic Discriminant Analysis

when predictors are normal




Continuous Response — Mixed Type Predictors

e Projections of Categorical Variables are not well defined

e Partial Dimension Reduction: One Categorical
Predictor VW and continuous random vector X

e Chiaromonte, Cook and Li (2001) and Li, Cook and
Chiaromonte (2003) developed Partial Sliced Inverse
Regression for the subpopulations in (Y, X) defined by
the W-categories

e Problematic when there are many categorical predictors,

if not all — e.g. epidemiological studies




Discussion and Limitations]

e At least the linearity condition has to be satisfied for any
of these methods to apply

e [irst moment methods are sensitive to linear trends in
dependence of Y on X

—Y = (BTX)? + ¢, with X ~ N(0,L,)
— SIR will estimate 0 and miss 3
e All estimators are y/n-consistent
e But Sy|X is not an exhaustive estimate for Syx

e The tests for dimension are sequential. Not much is
known about their power or ”optimality”.

e What is the structural dimension of non-linear manifolds?

A measure of complexity and hence non-discrete?

e Other?




Local Methods: concentrate on local features

e Multi-index NP-regression modelling

e not quite pre-modelling: NP-estimation of the link
function along with the index space

e virtually no assumptions on X

e slower than y/n-convergence

e computationally intensive

e Xia, Tong, Li and Zhu (2002) and Hristache, Juditsky,
Polzehl, Spokoiny (2001)




