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The Relevance of Dimensionality Reduction

• Advances in data collection and storage capabilities have

led to an information overload

• A system processes data in the form of a collection of

real-valued vectors: speech signals, images, etc.

• Suppose the system is effective if the dimension of the

vector is not too high

• Problem of Dimensionality Reduction appears when the

data are of a higher dimension than tolerated

• Example: Stat Analysis of a Multivariate

Population–interested in finding structures and/or

interpreting the variables

– Convenient to visualize the data, i.e., reducing their

dimensionality to 2 or 3.

• In general, when the intrinsic dimensionality of the

data is smaller than the actual, DR brings improved

understanding of the data and their structure

– Feature extraction

– Representation in a different coordinate system
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In Mathematical Terms

• Given the p-dimensional Random vector

X = (X1, X2, . . . , Xp)
T

• Find a lower representation S = (S1, S2, . . . , Sk)
T ,

k ≤ p, with the same ”information content” as X

– Have to select a criterion

• The S-components are called hidden or latent variables

• Two Types of DR Problems: Linear and Non-Linear

• Concentrate on Linear DR Techniques– Result in

Sk×n = Wk×pXp×n

where Wk×p is the transformation weight matrix

Xp×n = Ap×kSk×n
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General Definition of DR

• Suppose we have a sample {X}n
i=1 of p-dimensional

vectors lying in a data space X ⊂ R
p

• Fundamental Assumption for DR: the sample actually

lies, at least approximately, on a manifold (linear or

nonlinear) of smaller dimension than the data space.

• Goal of DR: find a representation of this manifold (a

coordinate system) that will allow to project the data

vectors on it and obtain a low-dimensional, compact

representation of the data

• Formally, given {X}n
i=1 ∈ X , find

– A space S ⊂ R
k

– A dimensionality reduction mapping F :

F : X → S
X → S = F (X)

– a smooth, nonsingular reconstruction mapping

f :

f : S → X
S → X = f(S)
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• such that

1. k ≤ p is as small as possible

2. The manifold M = f(S) approximately contains all

the sample points {X}n
i=1

3. Or, the reconstruction error of the sample,

Ed({X}n
i=1) =

n∑

i=1

d(Xn,X
′
n)

where X′
n = f(F (Xn) is the reconstructed vector for

Xn and d is a suitable distance in X
• Conditions 2 and 3 are not equivalent: 3 implies 2 but

not vice versa – F ◦ f �= 1

– E.g., when X has a distribution on X , this is typically

the case.
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The Curse of Dimensionality (Bellman, 1961)

• In the absence of simplifying assumptions, sample size

required to estimate a function of several variables grows

exponentially with the number of variables

• Empty Space Phenomenon: high-dimensional spaces are

inherently sparse

– one-dimensional standard normal: 68% of the mass is

contained in [-1,1]

– 10-dimensional standard normal, the same

hypersphere contains only 0.02% of the mass
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Supervised and Unsupervised Learning

• Unsupervised Learning: Xn comprise all the data

– Principal Component Analysis: finds a few orthogonal

linear combinations of the X-components with the

largest variance

– Factor Analysis and Principal Factor Analysis:

estimates unknown common factors

– Projection Pursuit: given a projection index that

defines the ”interestingness” of a direction, PP finds

directions maximizing the index

– Independent Component Analysis: finds linear

projections that are as nearly statistically independent

as possible

– Multidimensional Scaling: finds a k-dimensional

representation of X so that the distances among the

points in the new space reflect the proximities in the

data

– Neural Nets
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Supervised Learning: Prediction

• a response variable or vector is available

• try to reduce the dimension of X after imposing a

specific structure on the regression curve E(Y|X)

– additive, generalized additive and projection

pursuit models (Friedman and Stuetzle, 1981; Hastie

and Tibshirani, 1990), ACE (Breiman and Friedman,

1985), MARS (Friedman, 1991), partially linear or

spline models (Green and Silverman, 1994), single-

and multi-index models along with different fitting

methods such as average derivatives (Härdle, 1990;

Newey and Stoker, 1989; Samarov, 1993), interaction

splines, and CART (Breiman, Friedman, Olshen and

Stone, 1984)

– A concise discussion of the above and additional

nonparametric modelling techniques can be found in

Fan and Gijbels (1996)
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Pre-Modelling Approach

• Reduce the regressor dimension prior to assuming any

model for the regression relationship

– Partial Least Squares: SVD on XY

∗ extensively used in chemometrics

∗ emphasis on predicting the response and not on

understanding the underlying relationship of the

variables

– ”Global” methods – involving a spectral

decomposition of an appropriate matrix

– ”Local” methods – Structure Adaptive Approaches
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Global Methods for Dimension Reduction

• Y is a q × 1 response vector

• X is a p × 1 predictor vector

Sufficient dimension reduction in regression

focuses on finding k ≤ p linear combinations

ηT
1 X, . . . , ηT

k X

that can replace X

• without loss of information

• without requiring restrictive conditions on Y|X
If η = (η1, . . . , ηk) : p × k matrix, the previous statement

is expressed by

Y X|ηTX

• Goal: Estimate the smallest subspace spanned by η.
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Definitions:

• S(η), the subspace spanned by the columns of η, is

called a dimension reduction subspace.

• The Central Subspace SY|X = ∩S(η) is the smallest

dimension-reduction subspace which provides the

greatest dimension reduction in the predictor vector.

• The dimension of the Central Subspace is the

Structural Dimension of the regression

• Problem: estimate (1) the dimension of SY|X and (2)

basis elements of SY|X

• The estimation is based on finding a kernel matrix M so

that S(M) ⊂ SY|X
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Estimation Methods

Two main approaches

• First moment methods

– SIR and variations (Li, 1991): M = Cov(E(X|Y))

– polynomial inverse regression (Bura and Cook, 2001):

M = E(X|Y)

• Second moment methods

– pHd (Li, 1991): M = E((Y − E(Y))XXT)

– SAVE (Cook and Weisberg, 1991):

M = E(Cov(X) − Cov(X|Y)2

– SIRII (Li, 1991):

M = E(Cov(X|Y) − E(Cov(X|Y)))2.

• Sliced Average Variance Estimation (SAVE) is possibly

the most exhaustive:

• it gains information from both the inverse mean function

and the differences of the inverse covariances.

• Schott (1993) essentially showed: SAVE= SIR ⊕ SIRII
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Continuous Response - Continuous predictors

Let Z = Σ−1/2(X− E(X)). Assume there exists a k × d

matrix η such that

Y Z|ηTZ

with d << k.

• S(η) is the range space of η: a dimension reduction

subspace

• SY|Z: Central Subspace in the Z-scale

• SY|X = Σ
−1/2
X SY|Z

• The estimation of the central subspace in the two scales

yields equivalent results
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• All first and second moment methods can be used to

estimate directions in SY |Z

• The Inverse Mean Subspace:

SE(Z|Y) = span E(Z|Y)

• The Inverse Covariance Subspace:

SVar(Z|Y) = span{I− Var(Z|Y)}2

• Two Important Conditions:

1. Linearity Condition: E(Z|ηTZ) is linear in ηTZ

2. Constant Variance Condition: Var(Z|ηTZ) is constant

• Linearity Condition yields:

SE(Z|Y) ⊆ SY|Z

• The Linearity and Constant Variance Conditions yield:

SVar(Z|Y) ⊆ SY|Z

• Under both conditions, any weighted average of E(Z|Y),

E(Z|Y)E(Z|Y)T or I − Var(Z|Y) span a subspace of SY|Z

13



• Both conditions refer to the marginal distribution of the

predictors

• They are satisfied when Z is normal but normality is not

necessary

• Ellipticity of the regressor vector guarantees the linearity

condition

• They can be empirically checked by considering the

scatterplot matrix of the predictors.

• The linearity of E(Z|ηTZ) can be ascertained if the

scatterplots look roughly linear or random, and the

homogeneity of the variance holds if there are no

apparent fluctuations in data density

• Only substantial departures from both conditions are

problematic: Transformations of the regressors
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Estimation of the Structural Dimension

• Let d = dim SY|Z

• Let M̂ be a sample estimate of the kernel matrix M

• Let (û1, û2, . . . , ûp)
T be the eigenvectors corresponding

to the eigenvalues (or singular values)

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p of M̂

• Let Λ̂k ∼ n
∑p

j=k+1 λ̂j be a test statistic

• Λ̂d has an asymptotic weighted chi-squared distribution

• d̂ = k if Λ̂k−1 is large whereas Λ̂k is small
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Marginal moment based dimension reduction

k-th Moment Dimension Reduction Subspaces

• Let M (k)(Y |X) denote the kth centered moment of

F (Y |Y)

• M (1)(Y |X) = E(Y|X)

• M (2)(Y |X) = Var(Y |X)

If

Y {M (1)(Y |X), ..., M (k)(Y |X)}|ηTX,

then S(η) is called a k-th moment dimension reduction

subspace (DRS) for the regression of Y on X

• The central k-th moment subspace (CKMS)

S(k)
Y |X is the intersection of all k-th moment DRSs

S(1)
Y |X ⊆ . . . ⊆ S(k)

Y |X
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The First Moment of F (Y |X)

• The regression function E(Y|X)

– Central Mean Subspace: SE(Y|X) ⊂ SY |X
– SE(Y|X) = SY |X when Y X|E(Y|X), e.g.,

Y = f(βTX) + ε, ε X

– Inference for the Central Mean Subspace SE(Y|X) in

Cook and Li (2002)

– Investigated OLS, SIR, pHd, SAVE and proposed

alternatives
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In general, marginal methods like Covk (Yin and Cook

2002) and phd (Li 1992)

• use moment estimates of moments of functions of the

response and predictor vectors avoiding nonparametric

estimation

• they can be easily extended to multivariate response

regressions, e.g., multi Covk (Yin and Bura, 2003)
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Categorical Response – Continuous Predictors

• Both SIR and SAVE can be used to estimate directions

in SY |Z

• Cook and Lee (1999): Binary Response

• Cook and Critchley (2000) and Cook and Yin (2001):

Generalization and Discriminant Analysis

• SIR is equivalent to Linear Discriminant Analysis in the

sense that they both estimate the same discriminant

linear combinations of the predictors when they are

normal.

– Disadvantage: LDA and SIR find at most C − 1

linear combinations for discrimination. In binary

regression, at most 1.

• SAVE is equivalent to Quadratic Discriminant Analysis

when predictors are normal
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Continuous Response – Mixed Type Predictors

• Projections of Categorical Variables are not well defined

• Partial Dimension Reduction: One Categorical

Predictor W and continuous random vector X

• Chiaromonte, Cook and Li (2001) and Li, Cook and

Chiaromonte (2003) developed Partial Sliced Inverse

Regression for the subpopulations in (Y,X) defined by

the W -categories

• Problematic when there are many categorical predictors,

if not all – e.g. epidemiological studies
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Discussion and Limitations

• At least the linearity condition has to be satisfied for any

of these methods to apply

• First moment methods are sensitive to linear trends in

dependence of Y on X

– Y = (βTX)2 + ε, with X ∼ N(0, Ip)

– SIR will estimate 0 and miss β

• All estimators are
√

n-consistent

• But ŜY|X is not an exhaustive estimate for SY|X

• The tests for dimension are sequential. Not much is

known about their power or ”optimality”.

• What is the structural dimension of non-linear manifolds?

A measure of complexity and hence non-discrete?

• Other?
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Local Methods: concentrate on local features

• Multi-index NP-regression modelling

• not quite pre-modelling: NP-estimation of the link

function along with the index space

• virtually no assumptions on X

• slower than
√

n-convergence

• computationally intensive

• Xia, Tong, Li and Zhu (2002) and Hristache, Juditsky,

Polzehl, Spokoiny (2001)
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