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Abstract

This paper presents simulations of unsteady flow past plunging and pitching airfoils

using a high-order spectral difference (SD) method. Both third-order and fourth-

order SD methods are employed on unstructured quadrilateral grids for the plunging

airfoil at a low Reynolds number. The vortex shedding pattern of an airfoil in an

oscillating plunge motion becomes asymmetric at a sufficiently high frequency. The

SD method is able to capture this effect and reveal a fine structure that closely

replicates the experimental photograph. Interestingly, our simulations also predict

that the degree of this asymmetry increases with Reynolds number. Unsteady flow at

a higher Reynolds number past a pitching airfoil is studied using the fifth-order SD

method. Our predictions show very good agreements with the available experimental

data. The developed high-order accurate SD algorithms could enable high-order
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accurate simulations of unsteady flow past flapping Micro-Air-Vehicles (MAVs).

Key words: Spectral difference method, Plunging, Pitching, Micro Air Vehicle

1 Introduction

Increases in computational power are enabling high-order accurate simulations

of various research problems previously deemed intractable such as unsteady

Large Eddy Simulation (LES), Aero-acoustics and fluid-structure interaction.

The need for highly accurate methods in these applications on complex geome-

tries has seen the development of higher order schemes for unstructured meshes

such as the Discontinuous Galerkin (DG) Method (F.Bassi and Rebay, 1997),

Spectral Volume (SV) method (Liu et al., 2006b; Wang and Liu, 2006) and

Spectral Difference (SD) Method (Liu et al., 2006a; Wang et al., 2007). The

SD method is a recently developed efficient high-order approach based on the

differential form of the governing equation. It was originally proposed by Ko-

priva and Kolias (1996). A general formulation was given by Liu et al. (2006a),

who developed the method for wave equations on triangular grids. Wang et al.

(2007) extended it to 2D Euler equations on triangular grids and Sun et al.

(2007) further developed it for three-dimensional Navier-Stokes equations on

hexahedral unstructured meshes. The SD method combines elements from

finite-volume and finite-difference techniques. The method is particularly at-

tractive because it is conservative, has a simple formulation and is easy to im-

plement. The conservative property of the SD scheme was discussed in Wang

et al. (2007).

∗ Corresponding author. Tel: 202 994 7073
Email address: chliang@gwu.edu ( Chunlei Liang).
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Lift is produced by steady flow over aircraft surfaces. In contrast, natural fliers

create lift and thrust from unsteady aerodynamics by flapping and hovering

their wings. Computing unsteady flows at low to moderate Reynolds number

continues to be of significant interest due to its application in MAVs and its

relevance to insect and bird flight. Flapping flight of birds and insects are fine

examples of highly efficient motion of aerodynamic surfaces that simultane-

ously develop the necessary thrust for forward motion and sustained lift to

remain airborne. Because of the abrupt nature of the vortex formation and

breakdown and their extreme sensitivity to plunging/pitching amplitude and

frequency, a high order accurate simulation is very desirable in order to mini-

mize the numerical dissipation which often prevents accurate prediction of the

energy and location of vortices as well as their life cycle.

In addition, the oscillating wing devices using hybrid plunging and pitching

motion, have been demonstrated as a potentially more efficient concept to har-

ness wind (Mckinney and DeLaurier, 1981) and tidal energy (Platzer et al.,

2009) than conventional energy harvesting systems with rotational blades.

Kinsey and Dumas (Kinsey and Dumas, 2008) reported that for their sinu-

soidal cases studied, where high power coefficients were generated, the plung-

ing contribution to power largely dominated the pitching contribution. They

concluded that generation of leading edge vortices aided synchronization be-

tween the airfoil velocity and the translational force for as long as possible

through the flapping cycle, a condition necessary for high power generation.

Platzer et al (Platzer et al., 2009) implemented their idea that the airfoil

plunge is maintained for as long as possible at a high velocity, followed by

rapid pitching reversals. They demonstrated that non-sinusoidal pitch-plunge

motion produces 30% increase in power generation.
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Oscillating wing devices commonly produce vortex dominated unsteady flow.

As a result, schemes with low numerical dissipation on moving grids are de-

sirable in order to perform accurate simulations. In this paper, we report our

further developments of the high-order SD method for these moving boundary

unsteady flow problems. We study plunging and pitching motions separately

in order to understand their individual impacts on airfoil performance.

For remaining parts of this paper, we present numerical formulation of the

SD method in section 2. In section 3, we verify the accuracy of our method

using a 2D viscous flow Taylor-Couette flow problem. The major results for

unsteady flow past an airfoil are presented in section 4. Finally, conclusions

are drawn in section 5.

2 Numerical formulation

We have reported the baseline 2D code development for solving Navier-Stokes

equations on fixed grids in Liang et al. (Liang et al., 2009c,a).

2.1 Discretization in 2D space

Consider the unsteady 2D conservation law of the form

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (1)

where Q is the vector of conserved variables; F and G are the total fluxes

including both inviscid and viscous flux vectors. To achieve an efficient imple-

mentation, all elements in the physical domain (x, y) are transformed into a
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standard square element (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1) as shown in figure 1. The

transformation can be written as:

⎛
⎝ x

y

⎞
⎠ =

K∑
i=1

Mi (ξ, η)

⎛
⎝ xi

yi

⎞
⎠ (2)

where K is the number of points used to define the physical element, (xi, yi)

are the cartesian coordinates of those points, and Mi (ξ, η) are the shape func-

tions. The metrics and the Jacobian of the transformation can be computed.

The governing equations in the physical domain are then transferred into the

computational domain, and the transformed equations take the following form:

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
= 0 (3)

where Q̃ = |J | · Q and

⎛
⎝ F̃

G̃

⎞
⎠ = |J |

⎛
⎝ ξx ξy

ηx ηy

⎞
⎠

⎛
⎝ F

G

⎞
⎠ (4)

In the standard element, two sets of points are defined, namely the solution

points and the flux points, illustrated in figure 1. In order to construct a

degree (N − 1) polynomial in each coordinate direction, solution at N points

are required. The solution points in 1D are chosen to be the Gauss points

defined by:

Xs =
1

2

[
1 − cos

(
2s − 1

2N
· π

)]
, s = 1, 2, · · · , N. (5)

The flux points are selected as Legendre-Gauss-quadrature points plus two

end points as suggested by Huynh (2007) and Van den Abeele et al. (2008).
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Solution points

ξ

η

Flux points

Fig. 1. Distribution of flux and solution points for the third order SD scheme

Using the solutions at N solution points, a degree (N − 1) polynomial can be

built using the following Lagrange basis defined as:

hi (X) =
N∏

s=0,s �=i

(
X − Xs

Xi − Xs

)
(6)

Similarly, using the fluxes at (N + 1) flux points, a degree N polynomial can

be built for the flux using a similar Lagrange basis defined as:

li+1/2 (X) =
N∏

s=0,s �=i

(
X − Xs+1/2

Xi+1/2 − Xs+1/2

)
(7)

For instance, for a second order scheme, the first basis is defined as

l1/2 (X) =
X − X1+1/2

X1/2 − X1+1/2

X − X2+1/2

X1/2 − X2+1/2

(8)

The reconstructed solution for the conserved variables in the standard element

is just the tensor products of the two one-dimensional polynomials,

Q (ξ, η) =
N∑

j=1

N∑
i=1

Q̃i,j

|Ji,j|hi (ξ) · hj (η) (9)

Similarly, the reconstructed flux polynomials take the following form:
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F̃ (ξ, η)=
N∑

j=1

N∑
i=0

F̃i+1/2,jli+1/2 (ξ) · hj (η),

G̃ (ξ, η)=
N∑

j=0

N∑
i=1

G̃i,j+1/2hi (ξ) · lj+1/2 (η) (10)

These reconstructed fluxes are only element-wise continuous, but discontinu-

ous across cell interfaces. For the inviscid flux, a Riemann solver is employed

to compute a common flux at interfaces to ensure conservation and stability.

In our case, we have used both the Rusanov solver (Rusanov, 1961) and the

Roe solver (Roe, 1981) to compute the interface fluxes.

In summary, the algorithm to compute the inviscid flux derivatives consists of

the following steps:

• Given the conservative variables at the solution points, the conservative

variables are computed at the flux points and the inviscid fluxes at the

interior flux points can be determined.

• The inviscid fluxes at the element interfaces are computed using the Rie-

mann solver. Given the normal direction of the interface n, and the averaged

normal velocity component Vn and the sound speed c, the inviscid flux on

the interface can be determined.

• The derivatives of the fluxes are computed at the solution points using the

derivatives of Lagrange operators l

(
∂F̃

∂ξ

)
i,j

=
N∑

r=0

F̃r+1/2,j · l′r+1/2 (ξi),

(
∂G̃

∂η

)
i,j

=
N∑

r=0

G̃i,r+1/2 · l′r+1/2 (ηj) (11)
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To illustrate the treatment of viscous flows, one can write the two-dimensional

Navier-Stokes equations in conservation form as

∂Q

∂t
+ ∇Finv(Q) −∇Fvis(Q,∇Q) = 0 (12)

where the conservative variables Q and Cartesian components fe(Q) and ge(Q)

of the inviscid flux vector Finv(Q) are given by

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

E

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, finv(Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p

ρuv

u(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, ginv(Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv

ρv2 + p

v(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Here ρ is the density, u and v are the velocity components in x and y directions,

p stands for pressure and E is the total energy. The pressure is related to the

total energy by

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (14)

with a constant ratio of specific heats γ. For all test cases in the present study,

γ is set as 1.4 for air.

The Cartesian components fvis(Q,∇Q) and gvis(Q,∇Q) of the viscous flux

vector Fvis(Q,∇Q) are given by

fvis(Q,∇Q) = µ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

2ux + λ(ux + vy)

vx + uy

u[2ux + λ(ux + vy)] + v(vx + uy) + Cp

Pr
Tx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,
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gvis(Q,∇Q) = µ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

vx + uy

2vy + λ(ux + vy)

v[2vy + λ(ux + vy)] + u(vx + uy) + Cp

Pr
Ty

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15)

where µ is the dynamic viscosity, Cp is the specific heat and Pr stands for

Prandtl number. T is temperature which can be derived from the perfect gas

assumption. λ is set to −2/3 according to the Stokes hypothesis.

The procedures to get the viscous fluxes can be described as the following

steps:

(1) reconstruct Qf at the flux points from the conservative variables at the

solution points using equation (9).

(2) average the field of Qf on the element interfaces as Qf = 1
2
(QL

f + QR
f ).

For interior flux points, Qf = Qf . Meanwhile, appropriate boundary

conditions shall be applied for specific boundary flux points.

(3) evaluate ∇Q at solution points from Qf using equation (11) where ∇Q =⎧⎨
⎩ Qx

Qy

⎫⎬
⎭ and Qx = ∂Q

∂ξ
ξx + ∂Q

∂η
ηx, etc.

(4) reconstruct ∇Q from solution points to flux points and using equation

(9), average them on the element interfaces as ∇Qf = 1
2
(∇QL

f + ∇QR
f )

(5) use Qf and ∇Qf in order to compute the viscous flux vectors described

in equation (15) at the element interfaces.

2.2 Extension of the SD method to moving and deformable grids

Morton et al. (Morton et al., 1998) and Persson et al. (Persson et al., 2009)

have shown that the Navier-Stokes equations on moving and deformable grids

can be transformed using a mapping technique to a stationary structured and
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unstructured grids respectively.

Let M denote a time-dependent continuous mapping function from a reference

domain (X, Y )t0 to a physical domain (x, y)t such that (x, y) = M(X, Y, t).

The mapping gradient is G = ∇XM = ∂(x,y)
∂(X,Y )

. The determinant of the map-

ping is the Jacobian g. The mapping velocity w can be determined from the

time derivative of M.

The conservative equation (12) on the physical (moving and deformable) do-

main can be re-written as

∂Q̂

∂t
|X + ∇XF̂inv(Q̂) −∇F̂vis(Q̂,∇Q̂) = 0 (16)

where Q̂ = gQ, F̂inv = gG−1Finv−G−1wQ̂ and F̂vis = gG−1Fvis. The gradient

of conservative variables on the physical domain can be simply expressed on

the reference domain using a chain rule

∇Q = ∇X(g−1Q̂)∂X/∂x =
[
g−1∇XQ̂ + Q̂∇X(g−1)

]
G−T . (17)

The high-order method can then be applied directly to the transformed equa-

tions on the stationary grids. Implementing the geometric conservation law

correction term for g is also expected to make our algorithms more robust for

large deformations. Nevertheless, since we only consider plunge/pitch motion

without mesh deformation in this paper, a simplification can be made as g = 1

for both cases. The transverse plunge motion is defined as a mapping function

of X = x and Y (t) = y + hcos(ωt) globally for all mesh points. The pitching

motion is defined as X = cosθ · x + sinθ · y and Y = −sinθ · x + cosθ · y for

all mesh points, where θ = Asin(2πft) and A is pitching amplitude.
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(a) grid (b) Mach Contour

Fig. 2. Compressible Taylor Couette Flow

2.3 Time advancement schemes

Flows with either steady or unsteady solutions are considered in this paper. All

computations utilize a fourth-order accurate, strong-stability-preserving five-

stage explicit Runge-Kutta time stepping scheme (Spiteri and Ruuth, 2002).

3 Validation studies

3.1 Order verification using compressible Taylor-Couette flow

In this example, the numerical order of accuracy is validated against the an-

alytical solution for the compressible Taylor Couette flow. This test problem

was taken from a recent paper presented by Michalak and Ollivier-Gooch

(Michalak and Ollivier-Gooch, 2009).

The Reynolds number is 10 based on the tangential magnitude of the spin-

ning velocity of the inner cylinder and its radius (=1). The temperature and

pressure are prescribed for the inner cylinder giving a Mach number 0.5. The

outer cylinder is fixed and an adiabatic wall boundary condition is employed.
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A grid with 24×2 cells is shown in figure 2. Two other finer grids are obtained

using successive grid refinements in both directions. A steady solution of Mach

number contour obtained by the SD method is shown in figure 2 (b). A cubic

curved wall boundary is used for inner and outer cylinders. We obtained de-

sired numerical order L2 accuracy of the y-component of the angular velocity

as shown in table 1. The maximum accuracy of fourth-order is demonstrated

in the table. The explicit Runge-Kutta scheme becomes slow when the poly-

nomial order is increased. However, the fifth-order and even higher accuracy

can also be demonstrated using the implicit LU-SGS method and p-multigrid

approach with a significantly shorter CPU time (Liang et al., 2009b).

No. of elements No. of DOFs L2-error Order

3rd order SD

48 432 8.896E-04 -

192 1728 1.002E-04 3.15

768 6912 1.084E-05 3.21

4th order SD

48 768 1.4815E-04 -

192 3072 1.0036E-05 3.88

768 12288 6.5746E-07 3.93
Table 1

L2 errors and orders of accuracy of viscous Taylor-Couette flow

4 Simulation results

In this section, we study unsteady flow past an airfoil using unstructured grids.

The initial mixed-element mesh is shown in figure 3 and the far-field distance

is 20 chords. The initial grid consists of 1881 elements. The NACA0012 airfoil

upper surface is formed using only 20 edges. This grid is denoted as ‘Mesh

1A’. To perform one-level h-refinement and treat solid boundaries using high-
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order curved representation, the airfoil surface curve was subdivided to match

the domain of each edge on the surface of an existing mesh. After one-level

h-refinement, a quadrilateral mesh with 5792 elements is obtained. A sectional

part of this grid (Mesh 1B) is visualized in Figure 4. Further details on the

technique of h-refinement can be seen in Liang et al. (Liang et al., 2009a). In

order to demonstrate the property of grid independence, a finer grid, namely

Mesh 2B, is generated as shown in figure 5 with all triangular cells. The airfoil

upper surface consists of 30 edges in Mesh 2A. We again perform one-level

h-refinement of Mesh 2A in order to obtain a finer mesh (Mesh 2B) to have

60 edges on the airfoil upper surface as shown in figures 6 and 7. If it is

not mentioned elsewhere, the time step size of ∆tU∞/c = 2 × 10−5 will be

employed.

4.1 Viscous flow past a stationary NACA 0012 airfoil

Mesh 1B is used firstly for computing the flow past a stationary NACA 0012

airfoil. The inflow Mach number is 0.2 and the Reynolds number is 1,850.

Figure 8 shows the pressure contour distribution obtained on Mesh 1B using

a fourth-order SD method. The symmetry of pressure contour plot indicates

that the viscous flow eventually settles with a steady flow solution. The drag

coefficient predicted is 0.054.

Following the notation of Jones et al. (Jones et al., 1998), we define the plunge

amplitude as h and plunge circular frequency as ω = 2πf . Subsequently, the

Strouhal number is determined as Sr = ωhc
U∞ , where c is the airfoil chord length

and U∞ is the free-stream velocity. The airfoil plunge motion profile considered

in this paper is prescribed as Y (t) = hsin(ωt). In the following, we consider
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Fig. 3. Initial mixed-element mesh for NACA 0012 (Mesh 1A)

Fig. 4. Quadrilateral mesh after h-refinement for NACA 0012 (Mesh 1B)

14



  

Fig. 5. A close view on the triangular cells in Mesh 2A

Fig. 6. A close view on the quadrilateral cells in Mesh 2B
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Fig. 7. Overall view of Mesh 2B

Fig. 8. The pressure contour plot obtained on Mesh 1B

two test problems, i.e. slow plunging airfoil and fast plunging airfoil.
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4.2 Slow plunging airfoil

We consider a plunge motion with ω = 1.15 and h = 0.08c. It corresponds to

the test case with Sr = 0.46 in the paper of Jones et al (Jones et al., 1998).

We examine this slow plunging airfoil case using both the 3rd-order and 4th-

order SD methods on Mesh 1B. This flow has boundary layer separations from

top and bottom sides which result in alternate vortex shedding patterns as

shown in figure 9. The total 12 contour levels of ωc/U∞ shown in figure 9

are bounded between -6 and 6. In general, vortices are more confined by the

4th-order scheme than the third-order scheme. Figure 9 also reveal that the

numerical dissipation produced by the third-order scheme is significant after

the seventh vortex. By analyzing the lift and drag coefficients for this slow

plunging airfoil, we found that the vortex shedding frequency obtained from

the lift coefficient (as shown in figure 10) is identical to the airfoil plunge

motion frequency. The maximum of lift coefficients is around 4.77 and the

minimum locates at the level of -4.78. After discarding the initial transients

for statistics, the overall time-averaged lift coefficient predicted is very close to

zero (-0.0042). In contrast, the maximum drag coefficient predicted is 0.1 and

the minimum drag reaches -0.181. The overall time-averaged drag coefficient is

negative (-0.0436). It can be summarized that the slow plunging airfoil under

the above performance condition generates thrust but not lift.

In order to evaluate the effect of viscous stresses on this plunging airfoil, we

compare computed lift and drag coefficients obtained by our SD viscous solver

with the ones obtained by the inviscid Panel code employed in (Jones et al.,

1998). As shown in figure 11, the Panel code predicted a smaller magnitude

of the lift coefficient and a considerably bigger magnitude of thrust force than
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Fig. 9. The vorticity contour plot obtained using the 3rd-order (top) and 4th-order

(bottom) methods

Fig. 10. The lift and drag coefficients obtained on Mesh 1B with the 4th-order SD

method

that of the predictions by the SD solver.
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(a) Lift coefficient (b) Drag coefficient

Fig. 11. Force coefficients obtained by SD and Panel codes

4.3 Fast plunging airfoil

Finally, we consider the same airfoil with a plunge motion with ω = 2.46 and

h = 0.12c. This setup is identical to the one with Sr = 1.5 in the paper of

Jones et al (Jones et al., 1998). The free-stream Mach number is equivalent

to the previous test case and maintained at the level of 0.2 using the Dirichlet

boundary condition. As shown in figures 12 (a) and (b), our simulations sug-

gest that the vortex shedding associated with a high-speed jet travels upwards

with a degree of angle if the first stroke of the airfoil goes downwards, and vice

versa. It shall be noted here that Heathcote and Gursul (2007) observed that

the high-speed jet switched to a different direction in their experiment at a

much higher Reynolds number. We also noted that a numerical simulation by

Lewin and Haj-Hariri (2003), which solved incompressible Navier-Stokes equa-

tions at Reynolds number of 500, predicted that their high-speed jet switched

direction with either upward or downward angles.

The 3rd-order SD method is able to reproduce the dual-mode vortex street

as shown in figures 12(a) and (b). They agree well with the experimental

results shown in figure 12(d) obtained in a water tunnel. Using the same
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computational grid, the fourth-order SD method is able to reproduce the fine

structures traveling in the opposite direction in the wake of the airfoil as

shown in figure 12 (c). These fine structures resemble the structures shown in

the photograph of the experiment by Jones et al (Jones et al., 1998) and have

not previously been reproduced in numerical simulations.

The lift and drag coefficients predicted by the third-order SD method shown

on both Mesh 1B and Mesh 2B in figure 13 demonstrate that the solution is

close to the state of grid independence. The difference between lift coefficients

predicted Meshes 1B and 2B is negligible although there is a small difference

between drag coefficients predicted by both meshes. The 4th-order SD scheme

on Mesh 1B predicts that the time-averaged lift and drag coefficients are 2.57

and -0.51 respectively. The maximum instantaneous thrust is generated at the

level of Cd = −1.51 in comparison to the maximum instantaneous drag of

only around Cd = 0.37. Similar to the case with slow plunging motion, the

dominant frequency obtained from the lift coefficient spectra is also equivalent

to the plunge motion frequency.

Once again, in order to evaluate the effect of viscous stresses on the plunging

airfoil, in figure 14, we compare computed lift and drag coefficients obtained

by our SD viscous code with the ones obtained by the inviscid Panel code

employed in (Jones et al., 1998). Both codes compute the same plunge motion.

The differences of lift coefficients predicted by both codes are very small.

As the transverse plunge velocity increases, the dynamic pressure difference

between top and bottom surfaces becomes more and more dominant and the

difference of viscous stresses on top and bottom surfaces becomes negligible.

However, viscous stresses win over pressure in the streamwise direction. The

resultant thrust force predicted by the SD code has a peak magnitude only
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(a) First stroke downward (b) first stroke upward

(c) first stroke downward; simulation resolving fine structures (d) Experiment

Fig. 12. The vorticity field predicted by the SD method against the experimental

results presented in Jones et al Jones et al. (1998) and the contour levels are within

the range of −6 ≤ ωc/U∞ ≤ 6. Both (a) and (b) are obtained by the third-order

SD method, and (c) is obtained by the fourth-order SD method.

30% as big as the peak magnitude predicted the Panel code.

The SD method worked well with the refined grid (Mesh 1B) as reported above.

In order to demonstrate the grid-independence of our simulation results, two-

level h-refinements are performed for the initial hybrid mesh (Mesh 1A). The

final grid is shown in figure 15. This mesh is defined as ‘Mesh 1C’. Mesh 1C

has 23,168 grid points, which are 16 times the number of Mesh 1A.

In order to see the h-refinement effect on our simulation results, Mesh 1C is

also used for the 3rd order SD simulation. Figure 16 presents the vorticity
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  (a) Lift coefficient (b) Drag coefficient

Fig. 13. Lift and drag coefficients predicted by Meshes 1B and 2B using third order

SD method

(a) Lift coefficient (b) Drag coefficient

Fig. 14. Force coefficients obtained by SD and Panel codes

contour plot. The contour levels are within the range of −6 ≤ ωc/U∞ ≤ 6.

The 3rd order SD scheme on Mesh 1C is able to capture some fine structures

in the downstream below the airfoil which were not resolved on Mesh 1B.

However, The 3rd order SD scheme on Mesh 1C does not resolve these fine

structures as clearly as the 4th order SD scheme on Mesh 1B. It demonstrates

that the p refinement is more effective than the h refinement.
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Fig. 15. All-quadrilateral-element mesh after two-level h-refinements (Mesh 1C)

Fig. 16. vorticity contour predicted on Mesh 1C using the 3rd order SD method

4.3.1 The effect of Reynolds number

Four Reynolds numbers (1850, 1000, 500 and 252) are investigated for the

fast plunging case. We observe deflected wakes for all these Reynolds num-

bers. Interestingly, the angle of deflection decreases as the Reynolds number

decreases. Figure 17 presents vorticity shedding behind the airfoil at different
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Reynolds numbers. Figures (a), (b), (c) and (d) each contain 12 contour lev-

els within the range of −6 ≤ ωc/U∞ ≤ 6. The simulations were performed

using the third order SD method on Mesh 2B for all cases. The time step size

∆tU∞/c = 2 × 10−5 remains the same for all cases.

(a) Re=1850 (b) Re=1000

(c) Re=500 (d) Re=252

Fig. 17. Vortcity around the fast plunging airfoil at different Reynolds numbers

The variation of Reynolds number results in little change of the lift coefficients

as illustrated in figure 18 (a). However, as the Reynolds number decreases, the

drag coefficient increases evidently as shown in figure 18 (b). To our knowledge,
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  (a) Lift coefficient (b) Drag coefficient

Fig. 18. Lift and drag coefficients predicted for different Reynolds number for the

fast plunging case

this is the first report on the dependence of Reynolds numbers for the angle

of deflected wakes behind a fast plunging airfoil.

4.4 Viscous flow past a pitching NACA 0012 airfoil

In this section we study viscous flow over a pitching NACA 0012 airfoil along

its quarter chord axis. The simulations were performed at a much higher

Reynolds number than the previous plunging case. In particular, we aim to

validate the simulation with existing experiment results of a pitching airfoil,

test the solver with increased Reynolds number, and study the lift and drag

characteristics of a pitching airfoil.

4.4.1 Pitching Airfoil Flow Simulation Setup

The simulation Reynolds number, based on the airfoil chord length, is Re =

12, 000. Mesh 1B with 5792 cells is employed for computations of all cases of

pitching airfoil. Note that the mesh points are shifted in the streamwise direc-
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tion so that the quarter chord locates at (0,0). The Reynolds number is chosen

according to the experimental study carried out by Koochesfahani (Kooches-

fahani, 1989), in which the vortical patterns behind a pitching NACA0012

airfoil around the quarter chord axis were studied and visualized in a water

tunnel. The simulations were computed at a small mach number of M∞ = 0.15,

at a reduced frequency k of 2πfc/(2u∞) = 20.9f , where f is the pitching fre-

quency. The amplitude of the sinusoidal pitching motion is denoted A. The

airfoil starts with a zero mean angle of attack. Three cases have been com-

puted and compared with the corresponding experimental results. The vortical

pattern for each case is illustrated in figures 19, 20 and 21. In order to pro-

duce little numerical dissipation, the simulations here were performed with 5th

order SD method.

4.4.2 Pitching Airfoil Flow Patterns

Comparing the vortical patterns, the simulations for the cases with (A=4 de-

gree, k=0.835) and (A=2 degree, k=6.68) produce wakes that are very similar

to the experimental visualizations as shown in figures 19 and 20. Note that

the freestream flow comes from the right side. This is opposite to the previ-

ous cases of plunging airfoil. In the first case with (A=4 degree, k=0.835),

the wake assumes a form of undulating vortex sheet. In the later case, an

alternating vortex pattern is formed, with the vortices positioned in a nearly

straight line, similar to the slow plunging case. For the case with (A=4 de-

gree, k=3.09), the simulation captures the double-vortex feature, but only in

the region about two chords downstream of the airfoil. The vorticity further

downstream seems to dissipate and merge into one another, losing the double-

vortex feature that is characteristic of this particular pitching frequency and
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(a) Computational Wake pattern (b) Experimental Wake pattern

Fig. 19. Vortical pattern for A=4deg, k=0.835

(a) Computational Wake pattern (b) Experimental Wake pattern

Fig. 20. Vortical pattern for A=2deg, k=6.68

(a) Computational Wake pattern (b) Experimental Wake pattern

Fig. 21. Vortical pattern for A=4deg, k=3.09

amplitude. It is likely that this special case where two vortices of the same sign

are shed on each half-cycle of the oscillation requires a finer mesh downstream

of the airfoil, since it occupies a wider flow domain, and has finer features than

other cases. Also, the mesh currently used was chosen to be rather unstruc-

tured to demonstrate the capability of the solver, hence can introduce more

dissipation than otherwise it would. The pitching airfoil considered here has a

much higher Reynolds number than the plunging case. In this paper, we only

consider 2D simulations. As a result, possible 3D effect is not confirmed. It is

worthy of mentioning that Visbal (Visbal, 2009) recently studied a plunging

airfoil case at a Reynolds number of 10,000 using both 2D and 3D simulations.

The 3D effect on lift and drag coefficients is nearly negligible according to his

simulations.
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(a) CD Time History (b) CL Time History

Fig. 22. CD and CL Time History for A=2 degree and k=6.68

4.4.3 Force Coefficients Time History for A=2 degree and k=6.68

As shown in figure 22, with the pitching amplitude set to A = 2deg, and the

reduced frequency set to k = 6.68, the airfoil produces zero mean lift and

generates a small drag force.

The lift coefficient varies sinusoidally with time around zero axis. The average

lift acting on the airfoil is zero. The instantaneous lift coefficient is, however,

very big, largely due to the contribution from the pressure term, as can be

clearly observed from the lift coefficient plot. The skin friction term has neg-

ligible contribution to the instantaneous lift force.

While the average lift force is zero, there is a small average drag acting on

the airfoil under this condition. The contribution from the skin friction is

significant. The skin friction drag coefficient is also nearly constant at a value

of CDv = 0.0276. In the contrast, the pressure term has a beneficial mean

thrust contribution of CDp = −0.015. This helps to offset the skin friction

drag by a large amount, reducing the overall drag acting on the airfoil. The

pressure drag term has large instantaneous variations, with half of the pitching
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(a) CD Time History (b) CL Time History

Fig. 23. CD and CL Time History for A=4 degree and k=0.835

cycle producing thrust, and the other half generating drag.

4.4.4 Force Coefficients Time History for A=4 degree and k=0.835

As shown in figure 23, with the pitching amplitude set to A = 4deg, and the

reduced frequency set to k = 0.835, the airfoil produces zero mean lift and

generates a drag force that is larger than the previous case.

The lift coefficient time history is very similar to the previous case, with large

instantaneous but zero average value.

The entire drag coefficient curve stays above the zero axis. Hence the airfoil

experiences drag at all time. The contribution from the skin friction term is

almost the same as the previous case, with CDv = 0.0234. The pressure term,

however, has zero mean contribution to the drag. The mean overall drag force

is entirely due to skin friction.
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(a) CD Time History (b) CL Time History

Fig. 24. CD and CL Time History for A=4 degree and k=3.09

4.4.5 Force Coefficients Time History for A=4 degree and k=3.09

As shown in figure 24, with the pitching amplitude set to A = 4deg, and the

reduced frequency set to k = 3.09, the airfoil again produces zero mean lift,

but a smaller drag force than the previous case.

Again, no mean lift force is produced, and the instantaneous force remains

large.

The skin friction remains at about CDv = 0.0255. The pressure term is thrust

producing with an average CDp = −0.0139. This helps to reduce the overall

mean drag force.

4.4.6 Variation of Drag Coefficient with Reduced Frequency

Three additional cases have been computed to produce the following curves

showing the variation of drag coefficients with reduced frequencies for different

pitching amplitudes. The mean CD values for all the cases are also tabulated

in table 2.
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Table 2

Drag Coefficients for Various Pitching Frequencies and Amplitudes

A K CDp CDv CDt A K CDp CDv CDt

0 0 0.0254 0.0254 0 0 0.0254 0.0254

2 5.01 -0.0039 0.0253 0.0214 4 0.835 0.0045 0.0234 0.0253

6.68 -0.0172 0.0276 0.0104 3.09 -0.0139 0.0255 0.0115

From the previous section, we note that, by pitching faster, the pressure term

becomes thrust producing while the skin friction term remains roughly unal-

tered, leading to an overall reduction in drag experienced by the airfoil. Both

curves shown in figure 25 demonstrate the beneficial effect of increasing pitch-

ing frequency. We also observe that this effect is more pronounced for higher

pitching amplitude.

0 1 2 3 4 5 6 7
−0.026

−0.024

−0.022

−0.02

−0.018

−0.016

−0.014

−0.012

−0.01
Variation of Drag Coefficient with Reduced Frequency

k

C
D

Fig. 25. Variation of Drag Coefficient with Reduced Frequency for Amplitude=2deg

(Triangle) and Amplitude=4deg (Circle)

5 Conclusions

The spectral difference method is robust and accurate. Both third and fourth

order SD simulations of unsteady flow past a plunging airfoil confirm that the

vortex shedding pattern becomes asymmetric at a sufficiently high frequency.
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The fourth order SD method both captures this effect and also reveal a fine

structure that closely replicates the experimental photographs. It is found that

the vortex shedding frequencies of these plunging airfoils are equivalent to the

plunging frequencies. The angle of deflected wake increases with the Reynolds

number. Conversely, the increase of Reynolds number from 252 to 1850 results

in decreases of the drag coefficient.

Our predictions for the pitching airfoil also achieved excellent agreements with

experimental data. Comparison between our high-order SD simulations and

other inviscid flow solvers confirms that it is necessary to solve a full set

of Navier-Stokes equations in order to predict accurately both lift and drag

characteristics for oscillating airfoils.

The SD method could enable high-order accurate simulations of unsteady flow

past flapping MAVs. Our planned future work is to apply this technique for

predictions of unsteady flow past oscillating wings with combined plunging

and pitching motion.
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