
Object-Oriented Desgin Visitor Pattern

George Blankenship 1

Visitor Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Visitor Pattern

George Blankenship

Visitor Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Visitor Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Visitor Pattern

George Blankenship 2

Visitor Pattern George Blankenship 4

The Visitor Pattern: The Problem
Represents an operation to be performed on the
elements of an object structure. Visitor lets you define
a new operation without changing the classes of the
elements on which it operates

• many distinct and unrelated operations need to be
performed on objects in an object structure an you want to
avoid “polluting” their classes with these operations
• the classes defining the object structure rarely change but
you often want to define new operations over the structure

Visitor Pattern George Blankenship 5

Visitor Example
• The root of the structure accepts a visitor:

root.accept(visitor)
• The root and every child object in the structure have a an accept method:

void accept(visitor) {
visitor.visit(this);
for each child of mine

child.accept(visitor) next
}

• In short order our visitor gets a visit() call from each object in the collection.
• An interesting collection might contain different types of objects. To handle this, the visitor

overloads the method visit() with a variety of argument types.
• The visitor interface for an HTML tool has methods

visit(Document node)
visit(Tag node)
visit(TagBlock node)
visit(Comment node)
visit(Text node)

• If a Document object calls visit(this), the first method is invoked. If a Comment object calls
visit(this), the fourth method is invoked.

Visitor Pattern George Blankenship 6

NodeVisitor

Object-Oriented Desgin Visitor Pattern

George Blankenship 3

Visitor Pattern George Blankenship 7

The Vistor Pattern: Structure

Visitor Pattern George Blankenship 8

The Visitor Pattern: Participants
• Context

– Declares a Visit operation for each class of ConcreteElement in
the object structure

– The operations name and signature identified the class that sends
the Visit request

• ConcreteVisitor
– Implements each operation declared by Visitor
– Each operation implements a fragment of the algorithm for the

corresponding class of object in the object structure
– Provides the context for the algorithm and stores its state (often

accumulating results during traversal)
• Element

– Defines an accept operation that takes a visitor as an argument

Visitor Pattern George Blankenship 9

The Visitor Pattern: Collaboration
• ConcreteElement

– Implements an accept operation that takes a visitor as an argument
• ObjectStructure

– Can enumerate its elements
– May provide a high-level interface to allow the visitor to visit its

elements
– May either be a Composite or a collection such as a list or a set

• A client that uses the visitor pattern must create a
ConcreteVisitor object and then traverse the object structure
visiting each element with the visitor

• When an element is visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an
argument to this operation

Object-Oriented Desgin Visitor Pattern

George Blankenship 4

Visitor Pattern George Blankenship 10

Participant Map

Visitor Pattern George Blankenship 11

Process Flow

Visitor Pattern George Blankenship 12

The Visitor Pattern: Consequences

• Makes adding new operations easy: a new operation is
defined by adding a new visitor (in contrast, when you spread
functionality over many classes each class must be changed to
define the new operation)

• Gathers related operations and separates unrelated
ones: related behavior is localised in the visitor and not spread
over the classes defining the object structure

• Adding new ConcreteElement classes is hard:each new
ConcreteElement gives rise to a new abstract operation in
Visitor and a corresponding implementation in each
ConcreteVisitor

Object-Oriented Desgin Visitor Pattern

George Blankenship 5

Visitor Pattern George Blankenship 13

The Visitor Pattern: Visiting
• Allows visiting accross class hierarchies: an iterator can

also visit the elements of an object structure as it traverses them
and calls operations on them but all elements of the object
structure then need to have a common parent. Visitor does not
have this restriction.

• Accumulating state: visitor can accumulate state as it
proceeds with the traversal. Without a visitor this state must be
passed as an extra parameter of handled in global variables

• Breaking encapsulation :Visitor’s approach assumes that the
ConcreteElement interface is powerful enough to allow the
visitors to do their job. As a result the pattern ofthen forces to
provide public operations that access an element’s internal state
which may compromise its encapsulation

Visitor Pattern George Blankenship 14

The Visitor Pattern: Warnings
• An obvious problem is that the arguments and the return type of visiting

methods have to be known in advance. A new Visitor class has to be
defined, as well as a new accept method in every class of the hierarchy.

• The code is may be obscure.
• A lot of code has to be written to prepare the use of visitors: the visitor class

with one abstract method per class, and a accept method per class. This code
is tedious and boring to write. If we add a new class, the visitor class needs a
new method. Furthermore, it is indeed likely that a new visiting method will
need the definition of a new visitor pattern. At the least, several patterns have
often to be written.

• If a visitor pattern has not been written in the first time, the hierarchy has to
be modified to implement it. In particular, if the hierarchy cannot be
modified because you are not allowed to, the visitor pattern cannot be applied
at all.

Visitor Pattern George Blankenship 15

The Visitor Pattern Implementation
• Double Dispatch. The key to visitor is a double dispatch: the

meaning of the accept operation depends on the visitor and on
the element. Languages that support double dispatch (CLOS)
can do without this pattern.

• Who is responsible for traversing the object structure?
Responsibility for traversal can be with:
– The object structure
– The visitor: is advisable when a particular complex traversal

is needed (for example one that depends on the outcome of
the operation), otherwise it I not advisable because a lot of
traversal code will be duplicated in each ConcreteVisitor for
each aggregate ConcreteElement

– A separate iterator object

