Object-Oriented Desgin Visitor Pattern

CSCI 253

Object Oriented Design:
Visitor Pattern
George Blankenship

Visitor Pattern George Blankenship 1

Overview

Creational Patterns
(3 Singleton

El Abstract factory
gl Factory Method
gl Prototype

=) Builder

Visitor Pattern

Structural Patterns
Composite
Fagade

£ Proxy

& Flyweight

& Adapter

[Bridge

& Decorator

George Blankenship

Behavioral Patterns
& Chain of Respons.

& Command

& Interpreter
Iterator

& Mediator

& Memento

) Observer

State

Strategy

& Template Method
& Visitor 2

The Elements of a Design Pattern

« A pattern name
¢ The problem that the pattern solves
— Including conditions for the pattern to be applicable
« The solution to the problem brought by the pattern

— The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

— Not a particular concrete design or implementation
« The consequences of applying the pattern

— Time and space trade off

— Language and implementation issues

— Effects on flexibility, extensibility, portability

Visitor Pattern George Blankenship 3

George Blankenship 1

Object-Oriented Desgin Visitor Pattern

The Visitor Pattern: The Problem

Represents an operation to be performed on the
elements of an object structure. Visitor lets you define
a new operation without changing the classes of the
elements on which it operates

+» many distinct and unrelated operations need to be
performed on objects in an object structure an you want to
avoid “polluting” their classes with these operations

« the classes defining the object structure rarely change but
you often want to define new operations over the structure

Visitor Pattern George Blankenship 4

Visitor Example

* The root of the structure accepts a visitor:
root.accept(visitor)
* The root and every child object in the structure have a an accept method:
void accept(visitor) {
wsltor.wsltﬁ this);
for each child of mine
child.accept(visitor) next

* Inshort order our visitor gets a visit() call from each object in the collection.
« Aninteresting collection might contain different types of objects. To handle this, the visitor
overloads the method visit() with a variety of argument types.
* The visitor interface for an HTML tool has methods
visit(Document node)
visit(Tag node)
visit(TagBlock node
visit(Comment node
visit(Text node)
« If aDocument object calls visit(this), the first method is invoked. If a Comment object calls
visit(this), the fourth method is invoked.

Visitor Pattern George Blankenship 5

NodeVisitor

NodeVisitor

VisitAssignment{AssignmentNode)
VisitVariableRef{VarableRefNode)

A

TypeCheckingVisitor CodeGeneratingVisitor

VisitAssignment{AssignmentMode) VisitAssignment{AssignmentMode)

VisitVariableRef{VariableRetMode) VisitVariableFet{VarableRefNode)
Visitor Pattern George Blankenship 6

George Blankenship 2

Object-Oriented Desgin Visitor Pattern

The Vistor Pattern: Structure

Visitor Pattern George Blankenship 7

The Visitor Pattern: Participants

» Context

— Declares a Visit operation for each class of ConcreteElement in
the object structure

— The operations name and signature identified the class that sends
the Visit request

 ConcreteVisitor
— Implements each operation declared by Visitor

— Each operation implements a_fraﬂment of the algorithm for the
corresponding class of object in the object structure

— Provides the context for the algorithm and stores its state (often
accumulating results during traversal)

¢ Element
— Defines an accept operation that takes a visitor as an argument

Visitor Pattern George Blankenship 8

The Visitor Pattern: Collaboration

« ConcreteElement
— Implements an accept operation that takes a visitor as an argument
« ObjectStructure
— Can enumerate its elements
— May provide a high-level interface to allow the visitor to visit its
elements
— May either be a Composite or a collection such as a list or a set
« A client that uses the visitor pattern must create a
ConcreteVisitor object and then traverse the object structure
visiting each element with the visitor
« When an element is visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an
argument to this operation

Visitor Pattern George Blankenship 9

George Blankenship 3

Object-Oriented Desgin

Participant Map

Node

AccepliNode Visitor)

A

AssignmentNode

VariableRefNode

AcceptNodeVisitor v) ? Accept{ModeVisitor v} "T‘
T T
i i
| |

v-=VisitAssig nrnenz(mls]E"|

| \.'---)\."I5IlV8rIaD|L’!-1L’fLThIS,’-E‘1

Visitor Pattern George Blankenship

10

Visitor Pattern

anObjectStructure aConcreteElementA

AcoeptiaVisitar)
VisitCaner

Process Flow

aConcreteElementB

aConcreteVisitor

OpsrationAl)

AcceptiaVisitr)

‘r—|msnc_.. o {aConcreteEle

)

OperationB()

Visitor Pattern George Blankenship

1

define the new operation)

ConcreteVisitor

Visitor Pattern George Blankenship

The Visitor Pattern: Consequences

« Makes adding new operations easy: a new operation is
defined by adding a new visitor (in contrast, when you spread
functionality over many classes each class must be changed to

« Gathers related operations and separates unrelated
ones: related behavior is localised in the visitor and not spread
over the classes defining the object structure

« Adding new ConcreteElement classes is hard:each new
ConcreteElement gives rise to a new abstract operation in
Visitor and a corresponding implementation in each

George Blankenship

Object-Oriented Desgin Visitor Pattern

The Visitor Pattern: Visiting

« Allows visiting accross class hierarchies: an iterator can
also visit the elements of an object structure as it traverses them
and calls operations on them but all elements of the object
structure then need to have a common parent. Visitor does not
have this restriction.

¢ Accumulating state: visitor can accumulate state as it
proceeds with the traversal. Without a visitor this state must be
passed as an extra parameter of handled in global variables

« Breaking encapsulation :Visitor’s approach assumes that the
ConcreteElement interface is powerful enough to allow the
visitors to do their job. As a result the pattern ofthen forces to
provide public operations that access an element’s internal state
which may compromise its encapsulation

Visitor Pattern George Blankenship 13

The Visitor Pattern: Warnings

« An obvious problem is that the arguments and the return type of visiting
methods have to be known in advance. A new Visitor class has to be
defined, as well as a new accept method in every class of the hierarchy.

« The code is may be obscure.

« A lot of code has to be written to prepare the use of visitors: the visitor class
with one abstract method per class, and a accept method per class. This code
is tedious and boring to write. If we add a new class, the visitor class needs a
new method. Furthermore, it is indeed likely that a new visiting method will
need the definition of a new visitor pattern. At the least, several patterns have
often to be written.

« Ifavisitor pattern has not been written in the first time, the hierarchy has to
be modified to implement it. In Farticular, if the hierarchy cannot be .
modified because you are not allowed to, the visitor pattern cannot be applied
atall.

Visitor Pattern George Blankenship 14

The Visitor Pattern Implementation

» Double Dispatch. The key to visitor is a double dispatch: the
meaning of the accept operation depends on the visitor and on
the element. Languages that support double dispatch (CLOS)
can do without this pattern.

* Who is responsible for traversin%the object structure?

Responsibility for traversal can be with:

— The object structure

- The visitor: is advisable when a particular complex traversal
is needed (for example one that depends on the outcome of
the operation), otherwise it | not advisable because a lot of
traversal code will be duplicated in each ConcreteVisitor for
each aggregate ConcreteElement

— A separate iterator object

Visitor Pattern George Blankenship 15

George Blankenship 5

